COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 22

- Problem Set 4 released last night. Due Sunday 12/15 at 8pm.
- Final Exam Thursday 12/19 at 10:30am in Thompson 104.
- Exam prep materials (list of topics, practice problems) coming in next couple of days.

SUMMARY

Before Break:

- Finished discussion of SGD.
- Gradient descent and SGD as applied to least squares regression.

Before Break:

- Finished discussion of SGD.
- Gradient descent and SGD as applied to least squares regression.

This Class:

- A quick tour of the counterintuitive properties of high-dimensional space.
- Many connections to concentration inequalities.
- Implications for working with high-dimensional data (curse of dimensionality).

Modern data analysis often involves very high-dimensional data points.

- Websites record (tens of) thousands of measurements per user: who they follow, when they visit the site, timestamps for specific iteractions, etc.
- $\cdot\,$ A 3 minute, 500 \times 500 pixel video clip at 15 FPS has \geq 2 billion pixel values.
- The human genome has 3 billion+ base pairs.

Modern data analysis often involves very high-dimensional data points.

- Websites record (tens of) thousands of measurements per user: who they follow, when they visit the site, timestamps for specific iteractions, etc.
- $\cdot\,$ A 3 minute, 500 \times 500 pixel video clip at 15 FPS has \geq 2 billion pixel values.
- The human genome has 3 billion+ base pairs.

Typically when discussing algorithm design we imagine data in much lower (usually 3) dimensional space.

LOW-DIMENSIONAL INTUITION

LOW-DIMENSIONAL INTUITION

This can be a bit dangerous as in reality high-dimensional space is very different from low-dimensional space.

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

1. d 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

1. d 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let x_1, \ldots, x_t each have independent random entries set to $\pm 1/\sqrt{d}$.

• x_i is always a unit vector.

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = ?$

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0.$

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0.$
- By a Chernoff bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/3}$.

1.
$$d$$
 2. $\Theta(d)$ 3. $\Theta(d^2)$ 4. $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

- x_i is always a unit vector.
- $\mathbb{E}[\langle x_i, x_j \rangle] = 0.$
- By a Chernoff bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/3}$.
- If we chose $t = \frac{1}{2}e^{\epsilon^2 d/6}$, using a union bound over all $\leq t^2 = \frac{1}{4}e^{\epsilon^2 d/3}$ possible pairs, with probability $\geq 1/2$ all with be nearly orthogonal.

$$||x_i - x_j||_2^2$$

$$\|x_i - x_j\|_2^2 = \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i^T x_j$$

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j \ge 1.98.$$

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j \ge 1.98.$$

Even with an exponential number of samples, we don't see any nearby vectors.

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j \ge 1.98.$$

Even with an exponential number of samples, we don't see any nearby vectors.

• Can make methods like *k*-nearest neighbor classification or kernel regression useless.

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j \ge 1.98.$$

Even with an exponential number of samples, we don't see any nearby vectors.

• Can make methods like *k*-nearest neighbor classification or kernel regression useless.

Curse of dimensionality for sampling/learning functions in high dimensional space – samples are very 'sparse' unless we have a huge amount of data.

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2x_i^T x_j \ge 1.98.$$

Even with an exponential number of samples, we don't see any nearby vectors.

• Can make methods like *k*-nearest neighbor classification or kernel regression useless.

Curse of dimensionality for sampling/learning functions in high dimensional space – samples are very 'sparse' unless we have a huge amount of data.

 \cdot Only hope is if we have strong low-dimensional structure.

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}.$

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$. What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume of a radius *R* ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius *R* ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.

• **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

• **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.

• **Isoperimetric inequality**: the ball has the maximum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- 'All points are outliers.'
What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}.$

By symmetry, all but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume falls within ϵ of any equator! $S = \{x \in \mathcal{B}_d : |\langle x, t \rangle| \le \epsilon\}$

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?

Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!

CONCENTRATION OF VOLUME AT EQUATOR

Claim: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of its equator. I.e., in $S = \{x \in \mathcal{B}_d : |x(1)| \le \epsilon\}$.

Proof Sketch:

• Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\||\bar{x}\||_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. What is $\mathbb{E}[\|x\|_2^2]$?

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?

•
$$\bar{x}(1) = \frac{x(1)}{\|x\|_2}$$
. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$.

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\||\bar{x}\||_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$ $\le \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}]$

- Let x have entries set to independent Gaussians $\mathcal{N}(0, 1)$ and let $\bar{x} = \frac{x}{\|x\|_2}$. \bar{x} is selected uniformly at random from the surface of the ball.
- Suffices to show that $\Pr[|\bar{x}(1)| > \epsilon] \le 2^{\Theta(-\epsilon^2 d)}$. Why?
- $\bar{x}(1) = \frac{x(1)}{\|x\|_2}$. $\mathbb{E}[\|x\|_2^2] = \sum_{i=1}^d \mathbb{E}[x(i)^2] = d$. $\Pr[\|x\|_2^2 \le d/2] \le 2^{-\Theta(d)}$
- Conditioning on $||x||_2^2 \ge d/2$, since x(1) is normally distributed, $\Pr[|\bar{x}(1)| > \epsilon] = \Pr[|x(1)| > \epsilon \cdot ||x||_2]$ $\le \Pr[|x(1)| > \epsilon \cdot \sqrt{d/2}] = 2^{\Theta(-(\epsilon\sqrt{d/2})^2)} = 2^{\Theta(-\epsilon^2d)}.$

Let C_d be the *d*-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \forall i\}.$

Let C_d be the *d*-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \forall i\}$. In low-dimensions, the cube is not that different from the ball.

Let C_d be the *d*-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \forall i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap!

Let C_d be the *d*-dimensional cube: $C_d = \{x \in \mathbb{R}^d : |x(i)| \le 1 \forall i\}$. In low-dimensions, the cube is not that different from the ball.

But volume of C_d is 2^d while volume of \mathcal{B}^d is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} = \frac{1}{d^{\Theta(d)}}$. A huge gap! So something is very different about these shapes...

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = ?$,

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[||x||_2^2] = d/3$,

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[\|x\|_2^2] = d/3$, and $\Pr[\|x\|_2^2 \le d/6] \le 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.

- $x \sim \mathcal{B}_d$ has $||x||_2^2 \leq 1$.
- $x \sim C_d$ has $\mathbb{E}[||x||_2^2] = d/3$, and $\Pr[||x||_2^2 \le d/6] \le 2^{-\Theta(d)}$.
- Almost all the volume of the unit cube falls in its corners, and these corners lie far outside the unit ball.

Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i-x_j||_2 \le ||\mathbf{\Pi}x_i-\mathbf{\Pi}x_j||_2 \le (1+\epsilon)||x_i-x_j||_2.$$

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i-x_j||_2 \le ||\Pi x_i-\Pi x_j||_2 \le (1+\epsilon)||x_i-x_j||_2.$$

If x_1, \ldots, x_n are random unit vectors in *d*-dimensions, can show that $\mathbf{\Pi} x_1, \ldots, \mathbf{\Pi} x_n$ are essentially random unit vectors in *m*-dimensions.

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i - x_j||_2 \le ||\mathbf{\Pi} x_i - \mathbf{\Pi} x_j||_2 \le (1+\epsilon)||x_i - x_j||_2.$$

If x_1, \ldots, x_n are random unit vectors in *d*-dimensions, can show that $\mathbf{\Pi} x_1, \ldots, \mathbf{\Pi} x_n$ are essentially random unit vectors in *m*-dimensions.

But these different dimensional spaces have very different geometries, so how is this possible?

• In *d* dimensions, 2^{e^2d} random unit vectors will have all pairwise dot products at most e with high probability

- In *d* dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.

- In *d* dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.
- In $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, $2^{\epsilon^2 m} = 2^{O(\log n)} >> n$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
x_1, \ldots, x_n are sampled from the surface of \mathcal{B}_d and $\Pi x_1, \ldots, \Pi x_n$ are (approximately) sampled from the surface of \mathcal{B}_m .

- In *d* dimensions, $2^{\epsilon^2 d}$ random unit vectors will have all pairwise dot products at most ϵ with high probability
- After JL projection, $\Pi x_1, \ldots, \Pi x_n$ will still have pairwise dot products at most $O(\epsilon)$ with high probability.
- In $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, $2^{\epsilon^2 m} = 2^{O(\log n)} >> n$ random unit vectors will have all pairwise dot products at most ϵ with high probability.
- *m* is chosen just large enough so that the odd geometry of *d*-dimensional space will still hold on the *n* points in question.

Questions?