
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 22

0



logistics

• Problem Set 4 released last night. Due Sunday 12/15 at 8pm.
• Final Exam Thursday 12/19 at 10:30am in Thompson 104.
• Exam prep materials (list of topics, practice problems)
coming in next couple of days.
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summary

Before Break:

• Finished discussion of SGD.
• Gradient descent and SGD as applied to least squares
regression.

This Class:

• A quick tour of the counterintuitive properties of
high-dimensional space.

• Many connections to concentration inequalities.
• Implications for working with high-dimensional data (curse
of dimensionality).
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high-dimensional data

Modern data analysis often involves very high-dimensional
data points.

• Websites record (tens of) thousands of measurements per
user: who they follow, when they visit the site, timestamps
for specific iteractions, etc.

• A 3 minute, 500× 500 pixel video clip at 15 FPS has ≥ 2
billion pixel values.

• The human genome has 3 billion+ base pairs.

Typically when discussing algorithm design we imagine data in
much lower (usually 3) dimensional space.
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low-dimensional intuition

This can be a bit dangerous as in reality high-dimensional space is
very different from low-dimensional space.
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orthogonal vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?

Answer: d.
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nearly orthogonal vectors

What is the largest set of unit vectors in d-dimensional space that
have all pairwise dot products |⟨⃗x, y⃗⟩| ≤ ϵ? (think ϵ = .01)

1. d 2. Θ(d) 3. Θ(d2) 4. 2Θ(d)

In fact, an exponentially large set of random vectors will be nearly
pairwise orthogonal with high probability!

Proof: Let x1, . . . , xt each have independent random entries set to
±1/

√
d.

• xi is always a unit vector.

• E[⟨xi, xj⟩] = ?

• By a Chernoff bound, Pr[|⟨xi, xj⟩| ≥ ϵ] ≤ 2e−ϵ2d/3.

• If we chose t = 1
2e

ϵ2d/6, using a union bound over all ≤ t2 = 1
4e

ϵ2d/3

possible pairs, with probability ≥ 1/2 all with be nearly orthogonal.
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curse of dimensionality

Up Shot: In d-dimensional space, a set of 2Θ(ϵ2d) random unit
vectors have all pairwise dot products at most ϵ (think ϵ = .01)

∥xi − xj∥22

= ∥xi∥22 + ∥xj∥22 − 2xTi xj ≥ 1.98.

Even with an exponential number of samples, we don’t see any
nearby vectors.

• Can make methods like k-nearest neighbor classification or
kernel regression useless.

Curse of dimensionality for sampling/learning functions in
high dimensional space – samples are very ‘sparse’ unless we
have a huge amount of data.

• Only hope is if we have strong low-dimensional structure.
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bizarre shape of high-dimensional balls

Let Bd be the unit ball in d dimensions. Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of the volume of Bd falls within ϵ distance of its
surface?

Answer: all but a (1− ϵ)d ≤ e−ϵd fraction. Exponentially
small in the dimension d!

Volume of a radius R ball is π
d
2

(d/2)! · R
d.
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bizarre shape of high-dimensional balls

All but an e−ϵd fraction of a unit ball’s volume is within ϵ of its
surface.

• Isoperimetric inequality: the ball has the maximum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional shape,
nearly all will fall near its surface.

• ‘All points are outliers.’
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bizarre shape of high-dimensional balls

What percentage of the volume of Bd falls within ϵ distance of its
equator?

Answer: all but a 2Θ(−ϵ2d) fraction.

Formally: volume of set S = {x ∈ Bd : |x(1)| ≤ ϵ}.

By symmetry, all but a 2Θ(−ϵ2d) fraction of the volume falls within ϵ of
any equator! S = {x ∈ Bd : |⟨x, t⟩| ≤ ϵ}
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bizarre shape of high-dimensional balls

Claim 1: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within
ϵ of any equator.

Claim 2: All but a 2Θ(−ϵd) fraction falls within ϵ of its surface.

How is this possible?

High-dimensional space looks nothing like this
picture!
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concentration of volume at equator

Claim: All but a 2Θ(−ϵ2d) fraction of the volume of a ball falls within ϵ

of its equator. I.e., in S = {x ∈ Bd : |x(1)| ≤ ϵ}.

Proof Sketch:

• Let x have entries set to independent Gaussians N (0, 1) and let
x̄ = x

∥x∥2 . x̄ is selected uniformly at random from the surface of the
ball.

• Suffices to show that Pr[|x̄(1)| > ϵ] ≤ 2Θ(−ϵ2d). Why?
• x̄(1) = x(1)

∥x∥2 . What is E[∥x∥
2
2]?

Pr[∥x∥22 ≤ d/2] ≤ 2−Θ(d)

• Conditioning on ∥x∥22 ≥ d/2, since x(1) is normally distributed,

Pr[|x̄(1)| > ϵ] = Pr[|x(1)| > ϵ · ∥x∥2]

≤ Pr[|x(1)| > ϵ ·
√
d/2]

= 2Θ(−(ϵ
√
d/2)2) = 2Θ(−ϵ2d).
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of its equator. I.e., in S = {x ∈ Bd : |x(1)| ≤ ϵ}.

Proof Sketch:

• Let x have entries set to independent Gaussians N (0, 1) and let
x̄ = x

∥x∥2 . x̄ is selected uniformly at random from the surface of the
ball.

• Suffices to show that Pr[|x̄(1)| > ϵ] ≤ 2Θ(−ϵ2d). Why?
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high dimensional cubes

Let Cd be the d-dimensional cube: Cd = {x ∈ Rd : |x(i)| ≤ 1 ∀ i}.

In low-dimensions, the cube is not that different from the ball.

But volume of Cd is 2d while volume of Bd is π
d
2

(d/2)! =
1

dΘ(d) . A
huge gap! So something is very different about these shapes...
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high dimensional cubes

Data generated from the ball Bd will behave very differently than
data generated from the cube Cd.

• x ∼ Bd has ∥x∥22 ≤ 1.
• x ∼ Cd has E[∥x∥22] = ?,

and Pr[∥x∥22 ≤ d/6] ≤ 2−Θ(d).
• Almost all the volume of the unit cube falls in its corners, and
these corners lie far outside the unit ball.
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connection to dimensionality reduction

If high-dimensional geometry is so different from
low-dimensional geometry, how is dimensionality reduction
(e.g., the Johnson-Lindenstrauss lemma) possible?

Recall: The Johnson Lindenstrauss lemma states that if
Π ∈ Rm×d is a random matrix (linear map) with m = O

(
log n
ϵ2

)
,

for x1, . . . , xn ∈ Rd with high probability, for all i, j:

(1− ϵ)∥xi − xj∥2 ≤ ∥Πxi −Πxj∥2 ≤ (1+ ϵ)∥xi − xj∥2.

If x1, . . . , xn are random unit vectors in d-dimensions, can
show that Πx1, . . . ,Πxn are essentially random unit vectors in
m-dimensions.

But these different dimensional spaces have very different
geometries, so how is this possible?
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connection to dimensionality reduction

x1, . . . , xn are sampled from the surface of Bd and Πx1, . . . ,Πxn
are (approximately) sampled from the surface of Bm.

• In d dimensions, 2ϵ2d random unit vectors will have all
pairwise dot products at most ϵ with high probability

• After JL projection, Πx1, . . . ,Πxn will still have pairwise dot
products at most O(ϵ) with high probability.

• In m = O
(
log n
ϵ2

)
dimensions, 2ϵ2m = 2O(log n) >> n random

unit vectors will have all pairwise dot products at most ϵ
with high probability.

• m is chosen just large enough so that the odd geometry of
d-dimensional space will still hold on the n points in
question.
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Questions?
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