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SUMMARY

Last Class:

- Stochastic gradient descent (SGD).
- Online optimization and online gradient descent (OGD).

- Analysis of SGD as a special case of online gradient descent.

This Class:

- Finish discussion of SGD.

+ Understanding gradient descent and SGD as applied to least
squares regression.

+ Connections to more advanced techniques: accelerated methods
and adaptive gradient methods.



LOGISTICS

This class wraps up the optimization unit.

Three remaining classes after break. Give your feedback on
Piazza about what you'd like to see.

. Hig@é—i—m@nﬂm@ry and connections to random

projection.

- Randomized methods for fast approximate SVD,
eigendecomposition, regression.

- Fourier methods, compressed sensing, sparse recovery.

- More advanced optimization methods (alternating
minimization, k-means clustering,...)

- Fairness and differential privacy.



QUICK REVIEW

Gradient Descent:
- Applies to: Any differentiable f: RY — R.
+ Goal: Find § € R with () < ming_g. f(0) + .
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QUICK REVIEW

Gradient Descent:
- Applies to: Any differentiable f: RY — R.

+ Goal: Find § € R with () < ming_g. f(0) + .
- Update Step: 601 = g0) — nVf(H).
Online Gradient Descent:
- Appliesto: fi,f>,....fi : RY — R presented online.

* Goal: Pick 60, ..., 00 € RY in an online fashion with
SRV < mm§€Rd S f(6) + € (i.e, achieve regret < ¢).
- Update Step: 601 = g0) — v, (81).
Stochastic Gradient Descent:
- Applies to: f: RY — R that can be written as f(f) = 31, fi(6).
+ Goal: Find § € R? with f(f) < mlngeRdf( )) + €.

- Update Step: 60+ = gl) — an( D) where j; is chosen uniformly
at random from1,...,n



QUICK REVIEW

Gradient Descent:
- Applies to: Any differentiable f: RY — R.

* Goal: Find § € R? with f(f) < ming_g. f(6) + €.
- Update Step: 60+ = g) — an(a(’ )
Online Gradient Descent:
- Appliesto: fi,f>,....fi : RY — R presented online.

* Goal: Pick 60, ...,00 e R in an online fashion with
S fi(8D) < ming DS (7 7) + € (i.e., achieve regret < e).

* Update Step: 6+7) = 60) — v (90). R ?ré\w\w

Stochastic Gradient Descent: |
- Applies to: f: R? — R that can be written as f(# ) SrLfi ) \o
» Goal: Find 6 € RY with f(d) < min_g. f(0) + €. Lﬁ’”é“”»f:f”
\
- Update Step: 60+ = gl) — QV}‘,(H( )) where j; is chosen umforml
at random from1,...,n
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STOCHASTIC GRADIENT ANALYSIS RECAP
Q

Minimizing a finite sum function: f() = 321, fi(6).

—,——————

- Stochastic gradient descent is identical to online gradient
descent run on the sequence of t functions f,fj,,...,fj,

- These funcgons a fckedhuniformly at random, so in

expectatidp, E M)ﬂ E Zt:1f(§(i))}- o g.¢6

gives only a better solution. l.e,

)=o),

i=1

l———

~—
- Quality directly bounded by the regret analysis for online
gradient descent!



SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

f(6) = VZf, 0) vs. Vfi(0)

Stochastic Gradient Descent
'Batch’ Gradient Descent

(] 500 1000 1500 2000 2500 3000 3500



SGD VS. GD

Consider f(6) = ZL}?—(@) with each f; convex.

Theorem - SGD: \¢ ||Vfi(6), < § V@, after t > " O iterations
outputs @ satisfying E[fOT=<T(0*) + e.

after t > “0° jterations
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Consider f(6) = ZF:1}‘)-(§) with each f; convex.

Theorem - SGD: If |VL(0)||, < ¢ V0, after t > "0 |
outputs @ satisfying: E[f(0 )] 0*) +

Theorem - GD: If | V£(Q)|l, < G v, after t > " iterations
outputs 8 satisfying: f() < f(8*) + €. ﬁ;‘f
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SGD VS. GD

Consider f(6) = Zfzd‘j(@ with each f; convex.

R o

Theorem - SGD: If ||Vfi(6), < ¢ ¥, after t > " iterations
~ _(_j. ¢
outputs 6 satisfying: E[f(0)] < f(0*) + e.

—

Theorem - GD: If |[Vf(6)|, < G V6, after t > O iterations
outputs 8 satisfying: f() < f(8*) + €. &< &

e g N [y e ‘
VIOl = [IVAO) + ... + Vn(O) o= [VAO)a < - T < G
When would this bound be tight? I.e., SGD takes the same number of

Iterations as GD. =)
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SGD VS. GD

Consider f(6) = Zfzd‘j(@ with each f; convex.

Theorem - SGD: If[Vf;(6)|, < 9V6, after t > " iterations
outputs @ satisfying: E[f(9)] < f(0*) +e.

Theorem - GD: WJVf(6)|, < GV, after t > O iterations
outputs @ satisfying: f(9) < +e

IVAB)Il = IVA@) + ...+ Va(O)ll < S, VA <n- S <6
When would this bound be tight? I.e., SGD takes the same number of

iterations as GD.

When is it loose? l.e., SGD performs very poorly compared to GD.

:cO-c0=0 L@ =0 £oye (oo
—F?CQD E.W)*‘qw) R(@): AV F;Le):'—b 6



SGD VS. GD
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Roughly: SGD performs well compared to GD when Y7, [ Vfi(8) |2 is
small compared to || VF(6)].. I
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SGD VS. GD

Roughly: SGD performs well compared to GD when Y7L, [ Vfi(8) |2 is
small compared to || V().

>_IVE@)IE - IVA)I3
j=1
S

Reducing this variance is a key technique used to increase
performance of SGD.

Z:HWC/ng —Vf (63 (good exercise)

* mini-batching
- stochastic variance reduced gradient descent (SVRG)

- stochastic average gradient (SAG)
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TEST OF INTUITION

What does f1(0) + f>(0) + f3(6) look like?

12000

10000

8000

6000

4000

2000

A sum of convex functions is always convex (good exercise).



REST OF TODAY

Linear Algebra + Convex Optimization



ITERATIVE OPTIMIZATION FOR LEAST SQUARES REGRESSION

Least Squares Regression: Given data matrix X € R"*¢ an{
label vector y € R"™: C x< 67 \j\>

f(6) = X0 = ¥13.

10
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ITERATIVE OPTIMIZATION FOR LEAST SQUARES REGRESSION

Least Squares Regression: Given data matrix X € R"*9 and
label vector y € R":

K=0gV! 1(6) = ji2.

1
. . T/, 1T
Optimum given by 6* = VE~"UTy. Have X9* :@ﬁf U ‘(j
X

- T
UU%/
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ITERATIVE OPTIMIZATION FOR LEAST SQUARES REGRESSION

Least Squares Regression: Given data matrix X € R"*? and
label vector y € R":

f(6) = |1X0 - V3.
Optimum given by §* = VE~'U"y. Have X6* =

colspan(X)

é l\-"’\.
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ITERATIVE OPTIMIZATION FOR LEAST SQUARES REGRESSION

Least Squares Regression: Given data matrix X € R"*? and
label vector y € R":

Optimum given by §*

®  fnd

colspan(X)

Why solve with an iterative method (e.g., gradient descent)? 10



LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"*? and

label vector y € R":
0w )

Claim 1: f(8) = G — X2 ¢ = X — F)|2 + c.
a '
s T HhelE - ag RS
IRl Iy - s uedE Uy
__/\/\—/
&é%‘uo%
,Qli\ﬁu/()\ﬂ C
28T
29y, + (\XBIHBj

%Ol X0k =200y = el ‘F“ﬂ“ X
7\9’\(\\9‘ 11



LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"*9 and
label vector y € R":

f(6) = X6 — 5.
Claim 1: f(6) = X6 — X0 |2 + c = ||X(6 — %) |2 + c. >< :1/
P

[\§~§)‘”L

—_—




LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"*9 and
label vector y € R":

7(0) = X6 - 715
Claim 1: f(8) = X0 — X6*|2 + ¢ = [[X(6 — §%)|2 + c.

-
l\ o - gl P

o <61

\\x(e—eﬁ“i’



LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"*9 and
label vector y € R":

f(6) = X6 — 5.
Claim 1: f(6) = ||[Xd — X6*|3 + ¢ = ||X(6 — 5*)\|§ +c
Claim 2: V() = 2X™X0 — 2Xj = 2X7 ( xe

XB . res'dual
[ \3“'1. 9>&><9 Aﬁx\d/ UT/g/

|\»<(9(\3



LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"*9 and
label vector y € R":

f(6) = X6 — 5.
Claim 1: f(6) = X0 = X* |2 +c = [X(0 = 0) P +c. -\, «
o'y @‘-Mﬁﬂg)
Claim 2: V() = 2X™X0 — 2Xj = 2XT (X4 — 37)

resiqual
Gradient Descent Update: (i U’W J
o (=0 - Znﬂxﬂ'\ )
g ' |
\X) ’g > &) :5(’)—2772)@-%,-7}-. '_l "‘—Q'N\J

4271-(—‘

where r; = (XTU) — ;) is the residual for data point j at step i.

¥



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<¢ and label
vector y € R

f(0) = 110"~ 3



SGD FOR REGRESSION

Least Squares Regression: Given data mat(ix X € R and label
vector y € R ﬁé?i

n
70 = IXT— 513 = > (0 -y,)’

j=1



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<¢ and label
vector y € R
n 2 n
f0) = IX0 =912 = 3" (10— ;) = D5i(8).
j=1

j=1
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Least Squares Regression: Given data matrix X € R"<¢ and label
vector y € R

. T s BN
f0) = IX0 =912 = 3" (10— ;) = D5i(8).
j=1 j=1
Claim 3: V£(8) = 2(X10 — ) %,

residual



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<¢ and label
vector y € R

. T s BN
f0) = IX0 =912 = 3" (10— ;) = D5i(8).
j=1 j=1
Claim 3: V£(8) = 2(X10 — ) %,
residual

SGD Update: Pick randomj € {1,...,n} and set:

AU = 60— (60) = 60 — 25 -1,

where r;; = (>?]T5(’) —y;) is the residual for data point j at step i.



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<¢ and label

vector j € R": )P(x 3} LN
70) = X092 = | (%10 - )] = S50, £ Fxe)
=1 e It
Claim 3: Vf;(0) = 2(X/0 — 7)) %,
residual

SGD Update: Pick randomj € {1,...,n} and set:

gi) = g0 — pvf(90) = 60 — 2% - 1 verses — 2y Zx}ru
e — N _

where r;; = (>?]T5(’) —y;) is the residual for data point j at step i.



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<¢ and label
vector y € R

78 = - 73 =3 (16— v)" =3 5(6).
j=1

j=1
Claim 3: Vf(0) = 2(x10 — 7)) -X;
residual
SGD Update: Pick randomj € {1,...,n} and set:
Ut = 9O — pUF(00) = 80 — 29%, - 1y verses — 2y Z %,
j=1

where r;; = (>?]T5(’) —y;) is the residual for data point j at step i.

Make a small correction for a single data point in each step. In the
direction of the data point. 12



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:
00 = g0 — VAV = 61 — 2pXT (X1 — 7).

Initialize 800 = 0.
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GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:
00 = g0 — VAV = 61 — 2pXT (X1 — 7).

Initialize 60 = 0.
6@ =0 — 29X"(X0 — ) = 2nXTy.

0C) = 2pXTj—2XT (2nXXTy =) = 4nXTj— 4> (XX)XTY = tn(1—nX X)XTy



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:

G+ = ) — () = ) — 20X (381 — 7 )"
\_R

6® =0 — 29X"(X0 — §) WT;‘]
— —_—

9_,(3) = 277XU7— 27}XT(27]XXT)_/'—)_/') = 477XTV— 4’[72(XTX)XTV — 4’[7('—’[7XTX XTy
Xg'™
g = 90 — X" (X0 — i) = 6nXTy — 160X X)XV + 87 (X'X)* X,
- Z (%1
Zjém,:[ Lo (57K #8gn (X) KX\G

—

Initialize 80 = 0.



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:

GO = g0 — D) = 0 — 25XT (XD — ).

—

Initialize §0) = 0.
6 =0 — 29X"(X0 — ) = 20Xy
< =
0C) = 2pXTj—2XT (2nXXTy =) = 4nXTj— 4> (XX)XTY = tn(1—nX X)XTy
1) = 09 — X" (X0 — ) = 61Xy — 16n(X X)XV + 8n” (X'X)’XY.

0
ch\: (\é AU
610 = p,(X'X) - X'y

where p; is a degree t — 2 polynomial.



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:

GO = g0 — D) = 0 — 25XT (XD — ).

—

Initialize 6V = 0.
6@ =0 — 29X"(X0 — ) = 2nXTy.
0C) = 2pXTj—2XT (2nXXTy =) = 4nXTj— 4> (XX)XTY = tn(1—nX X)XTy

04 = 00) — pXT(X6® — ) = 6nXTy — 16n(XX)XTY + 87;2(XTX)2XT)7.

/T\
0 = pi(X'X) - XTy S v (X 7“) >< i

where Pt isade ree t—2 polynomial. = Q/ZZ\F> \/ju \6,_
UV

@iv Tj \/S \/ N \/T\/i 6 » 3



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:

GO = g0 — D) = 0 — 25XT (XD — ).

—

Initialize §0) = 0.
6@ =0 — 29X"(X0 — ) = 2nXTy.
0C) = 2pXTj—2XT (2nXXTy =) = 4nXTj— 4> (XX)XTY = tn(1—nX X)XTy

g =00 — X" (X0 — i) = 6nXTy — 160X X)XV + 87 (X'X)*XT¥.

0 e p(XRY - XTy ~ 0 @»
T— ——

where p; is a degree t — 2 polynomial.

<i



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes

g0 = p(X'X) - Xy =~ (XX)"'XTy = 6%
(X X) (X'X)

14
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Upshot: Gradient descent computes
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One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... %
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00 = p(XX) - Xy ~ (X'X)'XTY = 6*.

One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 1%



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes
00 = p(XX) - Xy ~ (X'X)'XTY = 6*.

View in Eigendecomposition:

One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 14



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes

00 = p(XX) - XT§ ~ (X'X)'XTY = 6%

_—
10 . T
—1/x
o —Py)
6
4k
oL
0 \
0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1

One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient

descent, heavy ball methods.... 1%
IR,



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes

00 = p(XX) - Xy ~ (X'X)'XTY = 6*.
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One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 1%



GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes

00 = p(XX) - Xy ~ (X'X)'XTY = 6*.

; ;
—1/x
8r —_— X)| 1
P (%)

ol

A

ol

0 ‘

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 1%
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CONDITIONING

Gradient descent for least squares regression requires a lot of
iterations when the eigenvalues of X'X are spread out. Formally:
“ Is f(0) = ||X0 — ¥|12 = |IX(6 — 6%)|3 Lipschitz?
- A convex function f: RY — R is -smooth and a-strongly convex if
V6, 0;:
o = - o - - — - - — -
16— a1 < VAEY(E,— 5) — [0 ~ A5 < 216~ s

© f(0) is B = Amax(X'X) smooth and a = Ay, (X"X) strongly convex.



CONDITIONING

Theorem: For any a-strongly convex and 3-smooth func-
tion f(6), GD initialized with () within a radius R of 6*

andrunfort=0 (g . log(T/a)) iterations returns # with
10 — 6%|], < €R.

For least squares regression, a = Ayin(X'X), 8 = Amax(X'X), and
g is called the condition number .

16



CONDITIONING

Recall: f(6) = ||X(6 — 6%)]I2.
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CONDITIONING

Recall: f(6) = ||X(6 — 6%)]I2.

-

6*

How can we mitigate this issue? Scale the directions to make the
surface more ‘round.

Idea of adaptive gradient methods: AdaGrad, RMSprop, Adam. And
quasi-Newton methods: BFGS, L-BFGS,...



MATHEMATICAL VIEW OF PRECONDITIONING — IF TIME

18



