COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 21

SUMMARY

Last Class:

- · Stochastic gradient descent (SGD).
- · Online optimization and online gradient descent (OGD).
- · Analysis of SGD as a special case of online gradient descent.

SUMMARY

Last Class:

- Stochastic gradient descent (SGD).
- · Online optimization and online gradient descent (OGD).
- · Analysis of SGD as a special case of online gradient descent.

This Class:

- · Finish discussion of SGD.
- Understanding gradient descent and SGD as applied to least squares regression.
- Connections to more advanced techniques: accelerated methods and adaptive gradient methods.

LOGISTICS

This class wraps up the optimization unit.

Three remaining classes after break. Give your feedback on Piazza about what you'd like to see.

- High dimensional geometry and connections to random projection.
- Randomized methods for fast approximate SVD, eigendecomposition, regression.
- · Fourier methods, compressed sensing, sparse recovery.
- More advanced optimization methods (alternating minimization, k-means clustering,...)
- · Fairness and differential privacy.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- · Update Step: $\vec{\theta}^{(i)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- f: Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
 - · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon \text{ (i.e., achieve regret } \leq \epsilon \text{)}.$
 - · Update Step: $\vec{\theta^{(i+1)}} = \vec{\theta^{(i)}} \eta \vec{\nabla} f_i(\vec{\theta^{(i)}})$.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon$ (i.e., achieve regret $\leq \epsilon$).
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_i(\vec{\theta}^{(i)})$.

Stochastic Gradient Descent:

- Applies to: $f: \mathbb{R}^d \to \mathbb{R}$ that can be written as $f(\vec{\theta}) = \sum_{i=1}^n f_i(\vec{\theta})$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- **Update Step:** $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$ where j_i is chosen uniformly at random from $1, \dots, n$.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon$ (i.e., achieve regret $\leq \epsilon$). total presiden error
- · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_i(\vec{\theta}^{(i)})$.

Stochastic Gradient Descent:

- Stochastic Gradient Descent:

 Applies to: $f: \mathbb{R}^d \to \mathbb{R}$ that can be written as $f(\vec{\theta}) = \sum_{i=1}^n f_i(\vec{\theta})$.

 Coal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$ where j_i is chosen uniformly at random from $1, \ldots, n$.

STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: $\underline{f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})}$.

STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.

- Stochastic gradient descent is identical to online gradient descent run on the sequence of t functions $f_{j_1}, f_{j_2}, \dots, f_{j_t}$.
- These functions are picked uniformly at random, so in expectation, $\mathbb{E}\left[\sum_{i=1}^t f_{j_i}(\vec{\theta}^{(i)})\right] = \mathbb{E}\left[\sum_{i=1}^t f(\vec{\theta}^{(i)})\right]$.

STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.

- Stochastic gradient descent is identical to online gradient descent run on the sequence of t functions $f_{j_1}, f_{j_2}, \ldots, f_{j_t}$.
- These functions are picked uniformly at random, so in expectation, $\mathbb{E}\left[\sum_{i=1}^t f_{j_i}(\vec{\theta}^{(i)})\right] \neq \mathbb{E}\left[\sum_{i=1}^t f(\vec{\theta}^{(i)})\right]$. \mathcal{O}'
- · By convexity $\hat{\theta} = \frac{1}{t} \sum_{i=1}^{t} \vec{\theta}^{(i)}$ gives only a better solution. I.e.,

 Quality directly bounded by the regret analysis for online gradient descent! Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of *n*).

$$\vec{\nabla} f(\vec{\theta}) = \vec{\nabla} \sum_{j=1}^{n} f_j(\vec{\theta}) \text{ vs. } \vec{\nabla} f_j(\vec{\theta})$$

SGD VS. GD

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \|\vec{\nabla}\vec{\theta}\|$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \vec{G} \ \forall \vec{\theta}$ after $t \geq \frac{R^2\vec{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

6

SGD VS. GD

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla} \underline{f_i(\vec{\theta})}\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\overline{\mathbb{E}[f(\hat{\theta})]} \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla} \underline{f(\vec{\theta})}\|_2 \leq \bar{G} \ \forall \vec{\theta}$, after $t \geq \frac{R^2 \bar{G}^2}{\epsilon_2^2}$ iterations outputs $\hat{\theta}$ satisfying: $\underline{f(\hat{\theta}) \leq f(\theta^*)} + \epsilon$.

$$\underbrace{\|\vec{\nabla}f(\vec{\theta})\|_{2}} = \|\vec{\nabla}f_{1}(\vec{\theta}) + \ldots + \vec{\nabla}f_{n}(\vec{\theta})\|_{2} \leq \sum_{j=1}^{n} \|\vec{\nabla}f_{j}(\vec{\theta})\|_{2} \leq n \cdot \frac{G}{n} \leq G.$$

6

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \vec{G} \ \forall \vec{\theta}$, after $\underline{t} \geq \frac{R^2\vec{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

$$\|\vec{\nabla}f(\vec{\theta})\|_2 = \|\vec{\nabla}f_1(\vec{\theta}) + \ldots + \vec{\nabla}f_n(\vec{\theta})\|_2 + \sum_{j=1}^n \|\vec{\nabla}f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight? I.e., SGD takes the same number of iterations as GD.

Consider $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$ with each f_i convex.

Theorem – SGD: If $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq \frac{G}{2} \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{c^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] < f(\theta^*) + \epsilon$.

Theorem – GD: $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq \vec{G} \forall \vec{\theta}$, after $t \geq \frac{R^2 \vec{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

$$\|\vec{\nabla}f(\vec{\theta})\|_{2} = \|\vec{\nabla}f_{1}(\vec{\theta}) + \ldots + \vec{\nabla}f_{n}(\vec{\theta})\|_{2} \le \sum_{j=1}^{n} \|\vec{\nabla}f_{j}(\vec{\theta})\|_{2} \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight? I.e., SGD takes the same number of iterations as GD.

SGD VS. GD

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_{2}$.

SGD VS. GD

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_j(\vec{\theta})\|_2^2$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_2^2$.

$$\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}^{2} - \|\vec{\nabla} f(\vec{\theta})\|_{2}^{2} = \sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta}) - \vec{\nabla} f(\vec{\theta})\|_{2}^{2} \text{ (good exercise)}$$

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_{2}$.

$$\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}^{2} - \|\vec{\nabla} f(\vec{\theta})\|_{2}^{2} = \sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta}) - \vec{\nabla} f(\vec{\theta})\|_{2}^{2} \text{ (good exercise)}$$

Reducing this variance is a key technique used to increase performance of SGD.

- · mini-batching
- stochastic variance reduced gradient descent (SVRG)
- stochastic average gradient (SAG)

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

A sum of convex functions is always convex (good exercise).

REST OF TODAY

Linear Algebra + Convex Optimization

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Optimum given by $\vec{\theta}^* = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{y}$. Have $\mathbf{X} \vec{\theta}^* =$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

Why solve with an iterative method (e.g., gradient descent)?

Least Squares Regression: Given data matrix
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
 and label vector $\vec{y} \in \mathbb{R}^n$:

Claim 1: $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2 + c = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c$.

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1: $f(\vec{\theta}) = \|X\vec{\theta} - X\vec{\theta}^*\|_2^2 + c = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c.$

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = ||X\vec{\theta} - X\vec{\theta^*}||_2^2 + c = ||X(\vec{\theta} - \vec{\theta^*})||_2^2 + c.$$

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_{2}^{2}.$$
Claim 1: $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \mathbf{X}\vec{\theta}^{*}\|_{2}^{2} + c = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^{*})\|_{2}^{2} + c.$
Claim 2: $\nabla f(\theta) = \underbrace{2\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\theta} - 2\mathbf{X}^{\mathsf{T}}\vec{y}}_{\text{T}} = 2\mathbf{X}^{\mathsf{T}}\underbrace{(\mathbf{X}\vec{\theta} - \vec{y})}_{\text{T}}$

$$\|\mathbf{X}\theta\|_{2}^{\mathsf{T}}$$

Least Squares Regression: Given data matrix $X \in \mathbb{R}^{n \times d}$ and label vector $\vec{v} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \mathbf{X}\vec{\theta}^*\|_2^2 + c = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c.$$
Claim 2: $\nabla f(\theta) = 2\mathbf{X}^T\mathbf{X}\vec{\theta} - 2\mathbf{X}^T\vec{y} = 2\mathbf{X}^T\underbrace{(\mathbf{X}\vec{\theta} - \vec{y})}$

Gradient Descent Update:

Gradient Descent Update:

$$(\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - 2\eta \vec{X}^{T} (\vec{X} \vec{\theta}^{(i)} - \vec{y}) \qquad (\vec{X})^{T} (\vec{X} \vec{\theta}^{(i)} - \vec{y}) \qquad (\vec{X})^{T}$$

where $\underline{r_{i,j}} = (\vec{x}_i^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

SGD FOR REGRESSION

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2$$

SGD FOR REGRESSION

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_{2}^{2} = \sum_{j=1}^{n} \left(\vec{X}_{j}^{T}\vec{\theta} - y_{j}\right)^{2}$$

SGD FOR REGRESSION

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2\eta \vec{x}_j \cdot r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

$$f(\vec{\theta}) = \|X\vec{\theta} - \vec{y}\|_{2}^{2} = \sum_{j=1}^{n} \left(\underbrace{\vec{x}_{j}^{T}\vec{\theta} - y_{j}} \right)^{\frac{1}{2}} = \sum_{j=1}^{n} f_{j}(\vec{\theta}). \quad f(\vec{x}) f(\vec{x}_{j})$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2 \underline{\eta \vec{x}_j \cdot r_{i,j}} \text{ verses } -2 \underline{\eta} \sum_{i=1}^n \vec{x}_j r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2\eta \vec{x}_j \cdot r_{i,j} \text{ verses } -2\eta \sum_{i=1}^n \vec{x}_j r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

Make a small correction for a single data point in each step. In the direction of the data point.

Gradient Descent for Regression:

$$\vec{\theta^{(i+1)}} = \vec{\theta^{(i)}} - \eta \vec{\nabla} f(\vec{\theta^{(i)}}) = \vec{\theta^{(i)}} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta^{(i)}} - \vec{y}).$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{T} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

Gradient Descent for Regression:

Initialize
$$\vec{\theta}^{(i)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta X^{T}(X\vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta X^{T}(X\vec{0} - \vec{y}) = 2\eta X^{T}\vec{y}.$$

$$\vec{\theta}^{(3)} = 2\eta X^{T}\vec{y} - 2\eta X^{T}(2\eta XX^{T}\vec{y} - \vec{y}) = 4\eta X^{T}\vec{y} - 4\eta^{2}(X^{T}X)X^{T}\vec{y} = 4\eta(I - \eta X^{T}X)X^{T}\vec{y}$$

$$\vec{\theta}^{(4)} = \theta^{(3)} - \eta X^{T}(X\vec{\theta}^{(3)} - \vec{y}) = 6\eta X^{T}\vec{y} - 16\eta(X^{T}X)X^{T}\vec{y} + 8\eta^{2}(X^{T}X)^{2}X^{T}\vec{y}.$$

$$\vec{\theta}^{(4)} = \vec{\theta}^{(3)} - \eta X^{T}(X\vec{\theta}^{(3)} - \vec{y}) = 6\eta X^{T}\vec{y} - 16\eta(X^{T}X)X^{T}\vec{y} + 8\eta^{2}(X^{T}X)^{2}X^{T}\vec{y}.$$

$$\vec{\theta}^{(4)} = \vec{\theta}^{(3)} - \eta X^{T}(X\vec{\theta}^{(3)} - \vec{y}) = 6\eta X^{T}\vec{y} - 16\eta(X^{T}X)X^{T}\vec{y} + 8\eta^{2}(X^{T}X)^{2}X^{T}\vec{y}.$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Initialize $\vec{\theta}^{(1)} = \vec{0}$.

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\theta^{(4)} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(3)} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^{2} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{2} \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(t)} = \rho_{t} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \cdot \mathbf{X}^{\mathsf{T}} \vec{y} \qquad .$$

where p_t is a degree t-2 polynomial.

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{y} - \vec{y}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y}$$

$$\vec{\theta}^{(4)} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(3)} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{T} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Initialize $\vec{\theta}^{(1)} = \vec{0}$.

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\vec{\theta}^{(4)} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(3)} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \underbrace{\cdot \mathbf{X}^T \vec{y}} \approx \theta^* = \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}}.$$

where p_t is a degree t-2 polynomial.

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = \underbrace{p_t(\vec{\mathbf{X}}^T\mathbf{X})}_{p_t(\vec{\mathbf{X}}^T\vec{\mathbf{X}})} \cdot \mathbf{X}^T \vec{y} \approx \underbrace{(\mathbf{X}^T\mathbf{X})^{-1}}_{q_t(\vec{\mathbf{X}}^T\vec{\mathbf{X}})} \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

View in Eigendecomposition:

Upshot: Gradient descent computes

$$\vec{\theta^{(t)}} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx \underline{(\mathbf{X}^T\mathbf{X})}^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

• Is
$$f(\vec{\theta}) = \|X\vec{\theta} - \vec{y}\|_2^2 = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
 Lipschitz?

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

- Is $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} \vec{y}\|_2^2 = \|\mathbf{X}(\vec{\theta} \vec{\theta}^*)\|_2^2$ Lipschitz?
- A convex function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth and α -strongly convex if $\forall \vec{\theta_1}, \vec{\theta_2}$:

$$\frac{\alpha}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2 \le \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} (\vec{\theta}_1 - \vec{\theta}_2) - [f(\vec{\theta}_1) - f(\vec{\theta}_2)] \le \frac{\beta}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2.$$

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

- Is $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} \vec{y}\|_2^2 = \|\mathbf{X}(\vec{\theta} \vec{\theta}^*)\|_2^2$ Lipschitz?
- A convex function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth and α -strongly convex if $\forall \vec{\theta_1}, \vec{\theta_2}$:

$$\frac{\alpha}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2 \leq \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} (\vec{\theta}_1 - \vec{\theta}_2) - [f(\vec{\theta}_1) - f(\vec{\theta}_2)] \leq \frac{\beta}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2.$$

• $f(\theta)$ is $\beta = \lambda_{max}(\mathbf{X}^T\mathbf{X})$ smooth and $\alpha = \lambda_{min}(\mathbf{X}^T\mathbf{X})$ strongly convex.

Theorem: For any α -strongly convex and β -smooth function $f(\vec{\theta})$, GD initialized with $\vec{\theta}^{(1)}$ within a radius R of $\vec{\theta}^*$ and run for $t = O\left(\frac{\beta}{\alpha} \cdot \log(1/\epsilon)\right)$ iterations returns $\hat{\theta}$ with $\|\hat{\theta} - \theta^*\|_2 \le \epsilon R$.

For least squares regression, $\alpha = \lambda_{min}(\mathbf{X}^T\mathbf{X})$, $\beta = \lambda_{max}(\mathbf{X}^T\mathbf{X})$, and $\frac{\beta}{\alpha}$ is called the condition number κ .

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue?

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue? Scale the directions to make the surface more 'round'.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue? Scale the directions to make the surface more 'round'.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue? Scale the directions to make the surface more 'round'.

Idea of adaptive gradient methods: AdaGrad, RMSprop, Adam. And quasi-Newton methods: BFGS, L-BFGS,...

MATHEMATICAL VIEW OF PRECONDITIONING - IF TIME