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Last Class:

- Stochastic gradient descent (SGD).
- Online optimization and online gradient descent (OGD).

+ Analysis of SGD as a special case of online gradient descent.

This Class:

+ Finish discussion of SGD.

 Understanding gradient descent and SGD as applied to least
squares regression.

- Connections to more advanced techniques: accelerated methods
and adaptive gradient methods.



LOGISTICS

This class wraps up the optimization unit.

Three remaining classes after break. Give your feedback on
Piazza about what you'd like to see.

- High dimensional geometry and connections to random
projection.

- Randomized methods for fast approximate SVD,
eigendecomposition, regression.

- Fourier methods, compressed sensing, sparse recovery.

- More advanced optimization methods (alternating
minimization, k-means clustering,...)

- Fairness and differential privacy.
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QUICK REVIEW

Gradient Descent:
- Applies to: Any differentiable f: RY — R.

- Goal: Find § € RY with () < min f((/) + €
- Update Step: 60+ = gl) — an( ).

Online Gradient Descent:
- Appliesto: fi,f>,....fi : RY = R presented online.

- Goal: Pick 5 67() € R% in an online fashion with
SR < mmgeRd S°LLf(6) + € (e, achieve regret < e).
- Update Step: 60+ = 1) — V£ (91)).
Stochastic Gradient Descent:
- Applies to: f: R? — R that can be written as f(6) = 27:1ﬁ(§).
+ Goal: Find & € RY with f(8) < ming_g, f(6) + e.

- Update Step: 60+ = g0 — ;Vf, (§1)) where j; is chosen uniformly
at random from1,...,n.
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STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: f(§) = 31, fi(6).

- Stochastic gradient descent is identical to online gradient
descent run on the sequence of t functions fj . f,, . ... fj..

- These functions are picked uniformly at random, so in
expectation, E [Zfﬂ ﬁ/(g(i))} =E [ZL f(g(i))}.

- By convexity § = 1 3°¢_, 60) gives only a better solution. l.e,

t t
S~ 10) §:ﬂﬂ%].
=1

i=1
- Quality directly bounded by the regret analysis for online
gradient descent!

E <E




SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

f(0) = VZ]Z vs. Vfi(0)

Stochastic Gradient Descent

‘Batch’ Gradient Descent
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SGD VS. GD

Consider f(6) = ZL]Z-(@) with each f; convex.

Theorem - SGD: If ||Vf,(9)||2 < 6@, after t > " jterations
outputs @ satisfying: E[f(d)] < f(6*) + .

=

Theorem - GD: If |[Vf(6)|, < G V0, after t > " iterations
outputs @ satisfying: f(d) < f(6*) +

\.

IVf@)ll2 = IVA(0) + . + VFa(@)ll: < L IVF(B)l < n- § < 6.
When would this bound be tight? l.e.,, SGD takes the same number of

iterations as GD.

When is it loose? l.e., SGD performs very poorly compared to GD.
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SGD VS. GD

Roughly: SGD performs well compared to GD when Y27, [|Vf;(8)|; is
small compared to ||Vf(8)|..

IG5 = IVADI; = Z IV;(6) — VA(9)]5 (good exercise)
j=1

Reducing this variance is a key technique used to increase
performance of SGD.

* mini-batching

- stochastic variance reduced gradient descent (SVRG)

- stochastic average gradient (SAG)
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TEST OF INTUITION

What does f1(0) + f2(6) + f3(6) look like?

12000

10000

8000

6000

4000

2000

A sum of convex functions is always convex (good exercise).



REST OF TODAY

Linear Algebra + Convex Optimization
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ITERATIVE OPTIMIZATION FOR LEAST SQUARES REGRESSION

Least Squares Regression: Given data matrix X € R"? and
label vector y € R":

f(8) = (X6 — J|13.
Optimum given by §* = VE~'U"y. Have X6* =

colspan(X)

Why solve with an iterative method (e.g,, gradient descent)? 10
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label vector y € R":

70) = X0 - 71
Claim 1: f(9) = [[X6 — X6%|2 + ¢ = |X(d — §)|2 + c.
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LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"? and
label vector y € R":

f(6) = [1X6 - ¥|13.
Claim 1: f(8) = ||[X8 — X6*|3 + ¢ = |[X(@ — 6%)|2 + c.

Claim 2: V() = 2X™Xd — 2XTj = 2XT (X4 — V)
——
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LEAST SQUARES REGRESSION REFORMULATION

Least Squares Regression: Given data matrix X € R"? and
label vector y € R":

f(6) = X6 = ¥]3.
Claim 1: f(6) = X6 — X0%|2 + ¢ = ||X(0 — 6%)|)2 + c.
Claim 2: V() = 2X™Xd — 2XTj = 2XT (X4 — V)
——

. residual
Gradient Descent Update:

gu+) = 1) — 2pxT(x6¥) — §)
n
= 9_‘(1) — 2?72)_(} . I’,’J.
j=1
where r;; = (%75(’) —y;) is the residual for data point j at step i.

1



SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<% and label
vector y € R

f(6) = X0~ I3
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Least Squares Regression: Given data matrix X € R"<% and label
vector y € R

. T s 2 L
f0) = X6 - 512 =3 (R0 -y;) =D 5(0).
j=1 j=1
Claim 3: Vf(0) = 2(X/6 — ) X;

residual

SGD Update: Pick randomj € {1,...,n} and set:
G — GO o7 (600) = 69 — 0%, - 1,

.
1

where r;; = ()?179() —y;) is the residual for data point j at step .
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Least Squares Regression: Given data matrix X € R"<% and label
vector y € R

. T s 2 L
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SGD FOR REGRESSION

Least Squares Regression: Given data matrix X € R"<% and label
vector y € R

. T s 2 L
f0) = X6 - 512 =3 (R0 -y;) =D 5(0).
j=1 j=1
Claim 3: Vf(0) = 2(X/6 — ) X;

residual

SGD Update: Pick randomj € {1,...,n} and set:

o) = g0 — nVf(00) = 60 — 2% - 1y verses — 21y Xr
J=1
where r;; = (XT01) — y)) is the residual for data point j at step i.
Make a small correction for a single data point in each step. In the
direction of the data point. 12
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Gradient Descent for Regression:

gutn — g — o) = 4 — 29X (XD — 7).

—

Initialize §0) = 0.
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GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Gradient Descent for Regression:
gurD = g0 — pTf(e0) = 40 — 2nXT (X6 — ).

—

Initialize §0) = 0.
6 =0 — 2pX"(X0 — ) = 20Xy
619 = 20Xy~ 20X (2nXXY ) = Xy —tiy? (XX)XTY = dep(1 =X X)Xy
g = 0O — X" (X®) — i) = 6nXTy — 16n(XT X)XV 4 81> (X"X)*XT.

00 = p,(X'X) - X'y ~ 6" = (X'%) "Xy
where p; is a degree t — 2 polynomial.
13
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GRADIENT DESCENT AS POLYNOMIAL APPROXIMATION

Upshot: Gradient descent computes
60 = p,(X'X) - XTj ~ (X'X)~"'XTy = 6*.

View in Eigendecomposition:

One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 14
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Upshot: Gradient descent computes
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Upshot: Gradient descent computes

60 = p,(X'X) - XTj ~ (X'X)~"'XTy = 6*.
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One of the most basic Krylov subspace methods. Chebyshev
iteration, Jacobi iteration, conjugate gradient, accelerated gradient
descent, heavy ball methods.... 14
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CONDITIONING

Gradient descent for least squares regression requires a lot of
iterations when the eigenvalues of X'X are spread out. Formally:

2 Lipschitz?

*Is f(8) = |X — VI3 = [|IX(6 — 6*)
- A convex function f: R — R is 5-smooth and a-strongly convex if
V6., 0>:
o - - N - - - - - -
10— 8ol < FHEY G~ 55) ~ 0) ~ A < 216~ Bl

* f(0) is B = Amax(X"X) smooth and a = Apin(X7X) strongly convex.

15



CONDITIONING

Theorem: For any a-strongly convex and -smooth func-
tion f(A), GD initialized with 8 within a radius R of 6*
and runfort =0 (g . log(1/e)) iterations returns @ with
16 — 6|l < eR.

For least squares regression, a = Apin(X'X), 8 = Amax(X'X), and
B'is called the condition number .

16
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CONDITIONING

Recall: f(6) = [|X(6 — 6%)]I2.

é’*

How can we mitigate this issue? Scale the directions to make the
surface more ‘round.

Idea of adaptive gradient methods: AdaGrad, RMSprop, Adam. And
quasi-Newton methods: BFGS, L-BFGS,...



MATHEMATICAL VIEW OF PRECONDITIONING = IF TIME



