COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 21

SUMMARY

Last Class:

- · Stochastic gradient descent (SGD).
- · Online optimization and online gradient descent (OGD).
- · Analysis of SGD as a special case of online gradient descent.

Last Class:

- · Stochastic gradient descent (SGD).
- · Online optimization and online gradient descent (OGD).
- · Analysis of SGD as a special case of online gradient descent.

This Class:

- · Finish discussion of SGD.
- Understanding gradient descent and SGD as applied to least squares regression.
- Connections to more advanced techniques: accelerated methods and adaptive gradient methods.

LOGISTICS

This class wraps up the optimization unit.

Three remaining classes after break. Give your feedback on Piazza about what you'd like to see.

- High dimensional geometry and connections to random projection.
- Randomized methods for fast approximate SVD, eigendecomposition, regression.
- · Fourier methods, compressed sensing, sparse recovery.
- More advanced optimization methods (alternating minimization, k-means clustering,...)
- · Fairness and differential privacy.

QUICK REVIEW

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

QUICK REVIEW

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon$ (i.e., achieve regret $\leq \epsilon$).
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_i(\vec{\theta}^{(i)})$.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon$ (i.e., achieve regret $\leq \epsilon$).
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_i(\vec{\theta}^{(i)})$.

Stochastic Gradient Descent:

- Applies to: $f: \mathbb{R}^d \to \mathbb{R}$ that can be written as $f(\vec{\theta}) = \sum_{i=1}^n f_i(\vec{\theta})$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$ where j_i is chosen uniformly at random from $1, \ldots, n$.

Gradient Descent:

- Applies to: Any differentiable $f: \mathbb{R}^d \to \mathbb{R}$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- · Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f(\vec{\theta}^{(i)})$.

Online Gradient Descent:

- Applies to: $f_1, f_2, \dots, f_t : \mathbb{R}^d \to \mathbb{R}$ presented online.
- Goal: Pick $\vec{\theta}^{(1)}, \dots, \vec{\theta}^{(t)} \in \mathbb{R}^d$ in an online fashion with $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} \sum_{i=1}^t f(\vec{\theta}) + \epsilon$ (i.e., achieve regret $\leq \epsilon$).
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_i(\vec{\theta}^{(i)})$.

Stochastic Gradient Descent:

- Applies to: $f: \mathbb{R}^d \to \mathbb{R}$ that can be written as $f(\vec{\theta}) = \sum_{i=1}^n f_i(\vec{\theta})$.
- Goal: Find $\hat{\theta} \in \mathbb{R}^d$ with $f(\hat{\theta}) \leq \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$.
- Update Step: $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$ where j_i is chosen uniformly at random from $1, \ldots, n$.

STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.

STOCHASTIC GRADIENT ANALYSIS RECAP

Minimizing a finite sum function: $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.

- Stochastic gradient descent is identical to online gradient descent run on the sequence of t functions $f_{j_1}, f_{j_2}, \ldots, f_{j_t}$.
- These functions are picked uniformly at random, so in expectation, $\mathbb{E}\left[\sum_{i=1}^t f_{j_i}(\vec{\theta}^{(i)})\right] = \mathbb{E}\left[\sum_{i=1}^t f(\vec{\theta}^{(i)})\right]$.

Minimizing a finite sum function: $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.

- Stochastic gradient descent is identical to online gradient descent run on the sequence of t functions $f_{j_1}, f_{j_2}, \ldots, f_{j_t}$.
- These functions are picked uniformly at random, so in expectation, $\mathbb{E}\left[\sum_{i=1}^t f_{j_i}(\vec{\theta}^{(i)})\right] = \mathbb{E}\left[\sum_{i=1}^t f(\vec{\theta}^{(i)})\right]$.
- · By convexity $\hat{\theta} = \frac{1}{t} \sum_{i=1}^{t} \vec{\theta}^{(i)}$ gives only a better solution. I.e.,

$$\mathbb{E}\left[\sum_{i=1}^t f(\hat{\theta})\right] \leq \mathbb{E}\left[\sum_{i=1}^t f(\bar{\theta}^{(i)})\right].$$

 Quality directly bounded by the regret analysis for online gradient descent! Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of *n*).

$$\vec{\nabla} f(\vec{\theta}) = \vec{\nabla} \sum_{j=1}^n f_j(\vec{\theta})$$
 vs. $\vec{\nabla} f_j(\vec{\theta})$

SGD VS. GD

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq \vec{G} \ \forall \vec{\theta}$, after $t \geq \frac{R^2 \vec{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq \bar{G} \ \forall \vec{\theta}$, after $t \geq \frac{R^2 \bar{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq \bar{G} \ \forall \vec{\theta}$, after $t \geq \frac{R^2 \bar{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight? I.e., SGD takes the same number of iterations as GD.

Consider $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$ with each f_j convex.

Theorem – SGD: If $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n} \ \forall \vec{\theta}$, after $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – GD: If $\|\vec{\nabla} f(\vec{\theta})\|_2 \leq \bar{G} \ \forall \vec{\theta}$, after $t \geq \frac{R^2 \bar{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying: $f(\hat{\theta}) \leq f(\theta^*) + \epsilon$.

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight? I.e., SGD takes the same number of iterations as GD.

When is it loose? I.e., SGD performs very poorly compared to GD.

SGD VS. GD

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_j(\vec{\theta})\|_2$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_2$.

SGD VS. GD

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_j(\vec{\theta})\|_2$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_2$.

$$\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}^{2} - \|\vec{\nabla} f(\vec{\theta})\|_{2}^{2} = \sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta}) - \vec{\nabla} f(\vec{\theta})\|_{2}^{2} \text{ (good exercise)}$$

Roughly: SGD performs well compared to GD when $\sum_{j=1}^{n} \|\vec{\nabla} f_j(\vec{\theta})\|_2$ is small compared to $\|\vec{\nabla} f(\vec{\theta})\|_2$.

$$\sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta})\|_{2}^{2} - \|\vec{\nabla} f(\vec{\theta})\|_{2}^{2} = \sum_{j=1}^{n} \|\vec{\nabla} f_{j}(\vec{\theta}) - \vec{\nabla} f(\vec{\theta})\|_{2}^{2} \text{ (good exercise)}$$

Reducing this variance is a key technique used to increase performance of SGD.

- · mini-batching
- stochastic variance reduced gradient descent (SVRG)
- stochastic average gradient (SAG)

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

TEST OF INTUITION

What does $f_1(\theta) + f_2(\theta) + f_3(\theta)$ look like?

A sum of convex functions is always convex (good exercise).

REST OF TODAY

Linear Algebra + Convex Optimization

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{\mathbf{y}}\|_2^2.$$

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Optimum given by $\vec{\theta}^* = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{y}$. Have $\mathbf{X} \vec{\theta}^* =$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Optimum given by $\vec{\theta}^* = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^\mathsf{T} \mathbf{y}$. Have $\mathbf{X} \vec{\theta}^* =$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Optimum given by $\vec{\theta}^* = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{y}$. Have $\mathbf{X} \vec{\theta}^* =$

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = \|X\vec{\theta} - X\vec{\theta}^*\|_2^2 + c = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c$$
.

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{\mathbf{y}}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = ||X\vec{\theta} - X\vec{\theta^*}||_2^2 + c = ||X(\vec{\theta} - \vec{\theta^*})||_2^2 + c.$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1: $f(\vec{\theta}) = \|X\vec{\theta} - X\vec{\theta}^*\|_2^2 + c = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c$.

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = \|X\vec{\theta} - X\vec{\theta}^*\|_2^2 + c = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c$$
.

Claim 2:
$$\vec{\nabla} f(\theta) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{\theta} - 2\mathbf{X}^{\mathsf{T}} \vec{y} = 2\mathbf{X}^{\mathsf{T}} \underbrace{(\mathbf{X} \vec{\theta} - \vec{y})}_{\text{residual}}$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2.$$

Claim 1:
$$f(\vec{\theta}) = \|X\vec{\theta} - X\vec{\theta}^*\|_2^2 + c = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2 + c$$
.

Claim 2:
$$\vec{\nabla} f(\theta) = 2X^T X \vec{\theta} - 2X^T \vec{y} = 2X^T \underbrace{(X \vec{\theta} - \vec{y})}_{\text{residual}}$$

Gradient Descent Update:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y})$$
$$= \vec{\theta}^{(i)} - 2\eta \sum_{i=1}^{n} \vec{x}_{j} \cdot r_{i,j}.$$

where $r_{i,j} = (\vec{x}_i^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

SGD FOR REGRESSION

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2$$

SGD FOR REGRESSION

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{\mathbf{y}}\|_2^2 = \sum_{j=1}^n \left(\vec{\mathbf{x}}_j^\mathsf{T}\vec{\theta} - \mathbf{y}_j\right)^2$$

SGD FOR REGRESSION

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} - \vec{y}\|_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2\eta \vec{x}_j \cdot r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2\eta \vec{x}_j \cdot r_{i,j} \text{ verses } -2\eta \sum_{j=1}^n \vec{x}_j r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

SGD FOR REGRESSION

Least Squares Regression: Given data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\vec{y} \in \mathbb{R}^n$:

$$f(\vec{\theta}) = ||\mathbf{X}\vec{\theta} - \vec{y}||_2^2 = \sum_{j=1}^n (\vec{x}_j^T \vec{\theta} - y_j)^2 = \sum_{j=1}^n f_j(\vec{\theta}).$$

Claim 3:
$$\vec{\nabla} f_j(\theta) = \underbrace{2(\vec{x}_j^T \vec{\theta} - \vec{y}_j)}_{\text{residual}} \cdot \vec{x}_j$$

SGD Update: Pick random $j \in \{1, ..., n\}$ and set:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f_j(\theta^{(i)}) = \vec{\theta}^{(i)} - 2\eta \vec{x}_j \cdot r_{i,j} \text{ verses } -2\eta \sum_{i=1}^n \vec{x}_j r_{i,j}$$

where $r_{i,j} = (\vec{x}_j^T \vec{\theta}^{(i)} - y_j)$ is the residual for data point j at step i.

Make a small correction for a single data point in each step. In the direction of the data point.

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\vec{\theta}^{(4)} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(3)} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Initialize $\vec{\theta}^{(1)} = \vec{0}$.

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\vec{\theta^{(4)}} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta^{(3)}} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y}$$

where p_t is a degree t-2 polynomial.

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Initialize $\vec{\theta}^{(1)} = \vec{0}$.

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\vec{\theta^{(4)}} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta^{(3)}} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^\mathsf{T}\mathbf{X}) \cdot \mathbf{X}^\mathsf{T} \vec{y} \approx \boldsymbol{\theta}^*$$

where p_t is a degree t-2 polynomial.

Gradient Descent for Regression:

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \vec{\nabla} f(\vec{\theta}^{(i)}) = \vec{\theta}^{(i)} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta}^{(i)} - \vec{y}).$$

Initialize $\vec{\theta}^{(1)} = \vec{0}$.

$$\vec{\theta}^{(2)} = \vec{0} - 2\eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{0} - \vec{y}) = 2\eta \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\theta^{(3)} = 2\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 2\eta \mathbf{X}^{\mathsf{T}} (2\eta \mathbf{X} \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - \vec{\mathbf{y}}) = 4\eta \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} - 4\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}} = 4\eta (\mathbf{I} - \eta \mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{\mathbf{y}}$$

$$\vec{\theta^{(4)}} = \theta^{(3)} - \eta \mathbf{X}^{\mathsf{T}} (\mathbf{X} \vec{\theta^{(3)}} - \vec{y}) = 6\eta \mathbf{X}^{\mathsf{T}} \vec{y} - 16\eta (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \vec{y} + 8\eta^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^2 \mathbf{X}^{\mathsf{T}} \vec{y}.$$

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx \boldsymbol{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y}.$$

where p_t is a degree t-2 polynomial.

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

View in Eigendecomposition:

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T\mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T\mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Upshot: Gradient descent computes

$$\vec{\theta}^{(t)} = p_t(\mathbf{X}^T \mathbf{X}) \cdot \mathbf{X}^T \vec{y} \approx (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \vec{y} = \theta^*.$$

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

• Is
$$f(\vec{\theta}) = \|X\vec{\theta} - \vec{y}\|_2^2 = \|X(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
 Lipschitz?

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

- Is $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} \vec{y}\|_2^2 = \|\mathbf{X}(\vec{\theta} \vec{\theta}^*)\|_2^2$ Lipschitz?
- A convex function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth and α -strongly convex if $\forall \vec{\theta_1}, \vec{\theta_2}$:

$$\frac{\alpha}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2 \le \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} (\vec{\theta}_1 - \vec{\theta}_2) - [f(\vec{\theta}_1) - f(\vec{\theta}_2)] \le \frac{\beta}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2.$$

Gradient descent for least squares regression requires a lot of iterations when the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are spread out. Formally:

- Is $f(\vec{\theta}) = \|\mathbf{X}\vec{\theta} \vec{y}\|_2^2 = \|\mathbf{X}(\vec{\theta} \vec{\theta}^*)\|_2^2$ Lipschitz?
- A convex function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth and α -strongly convex if $\forall \vec{\theta_1}, \vec{\theta_2}$:

$$\frac{\alpha}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2 \leq \vec{\nabla} f(\vec{\theta}_1)^{\mathsf{T}} (\vec{\theta}_1 - \vec{\theta}_2) - [f(\vec{\theta}_1) - f(\vec{\theta}_2)] \leq \frac{\beta}{2} \|\vec{\theta}_1 - \vec{\theta}_2\|_2^2.$$

• $f(\theta)$ is $\beta = \lambda_{max}(X^TX)$ smooth and $\alpha = \lambda_{min}(X^TX)$ strongly convex.

Theorem: For any α -strongly convex and β -smooth function $f(\vec{\theta})$, GD initialized with $\vec{\theta}^{(1)}$ within a radius R of $\vec{\theta}^*$ and run for $t = O\left(\frac{\beta}{\alpha} \cdot \log(1/\epsilon)\right)$ iterations returns $\hat{\theta}$ with $\|\hat{\theta} - \theta^*\|_2 \le \epsilon R$.

For least squares regression, $\alpha = \lambda_{min}(\mathbf{X}^T\mathbf{X})$, $\beta = \lambda_{max}(\mathbf{X}^T\mathbf{X})$, and $\frac{\beta}{\alpha}$ is called the condition number κ .

Recall: $f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue?

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue? Scale the directions to make the surface more 'round'.

Recall:
$$f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$$
.

How can we mitigate this issue? Scale the directions to make the surface more 'round'.

Recall: $f(\vec{\theta}) = \|\mathbf{X}(\vec{\theta} - \vec{\theta}^*)\|_2^2$.

How can we mitigate this issue? Scale the directions to make the surface more 'round'

Idea of adaptive gradient methods: AdaGrad, RMSprop, Adam. And quasi-Newton methods: BFGS, L-BFGS,...

MATHEMATICAL VIEW OF PRECONDITIONING - IF TIME