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LOGISTICS

- Problem Set 3 was due Friday/Sunday.

- Problem Set 4 will be on optimization. Out before
Thanksgiving and due sometime towards the end of classes.

- Final is on December 19th, 10:30am-12:30pm.
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- (The same) analysis of projected gradient descent for optimizing
under constraints.
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- Analysis of gradient descent for optimizing convex functions.

- (The same) analysis of projected gradient descent for optimizing
under constraints.

This Class:

- Stochastic and online gradient descent for computationally
efficient and online learning.

- Unified analysis.
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points Xy, ..., X, and labels/observations yi, ..., y, solve:

g = argmin L(6,X) ZK

feRrd

The gradient of L(§, X) has one component per data point:

= VUM(%).5)
j=1

When n is large this is very expensive to compute!

Training a neural network on ImageNet would require n = 14
million back propagations! ... per iteration of GD.
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GRADIENT DESCENT AT SCALE

Solution: Update using just a single data point, or a small batch of
data points per iteration.

- Looking at a single data point gives you a coarse, but still useful
cue on how to improve your model.

- If the data point is chosen uniformly at random, the sampled
gradient is correct in expectation.

Zw 0 ﬂ ‘ ' [fw,)]; vL(G,X).
f w

* The key idea behind stochastlc gradient descent (SGD).
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Stochastic gradient descent takes more, but much cheaper steps
than gradient descent.

o = G0 — LD, X) v, 05D = G0 — - (Mg, (7). )

_—
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SGD is closely related to online gradient descent.

In reality many learning problems are online.

+ Websites optimize ads or recommendations to show users, given
continuous feedback from these users.

- Spam filters are incrementally updated and adapt as they see
more examples of spam over time.

- Face recognition systems, other classification systems, learn from
mistakes over time.

Want to minimize some global loss L(f, X), when data points are
presented in an online fashion X;,X, ..., X, (like in streaming
algorithms)

Will view SGD as a special case: when data points are presented (by
design) in a random order.
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ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a
different objective function at each step:

fiooo fi : RIS R

- At each step, first pick (play) a parameter vector 6.
- Then are told f; and incur cost f;(61)). g @r

- Goal: Minimize total cost 3¢, f;(6()).
A

No assumptions on how fy,...,f; are related to each other!




ONLINE OPTIMIZATION EXAMPLE

Ul design via online optimization.

i AddtoCart [

Add to Cart

- Parameter vector #): some encoding of the layout at step |.

- Functions fi,....f: £i(6") = 1if user does not click ‘add to
cart’ and f;(61)) = 0 if they do click.

- Want to maximize number of purchases. l.e.,, minimize

i fi(60) ;



ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

linear medel

$275,000

X = [#baths, #beds, #floors ...]

- Parameter vector 8): coefficients of linear model at step i.

- Functions fi, ..., f: JE)) (&P pr/ce) revealed when
home; is listed or sold. <><‘ NY4 F"‘Q\)

- Want to minimize total squared error Z, 1f,( D) (same as
classic least squares regression).
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In normal optimization, we seek 8 satisfying:

— g

f(8) < minf(6) + ¢

min
0

In online optimization we will ask for the same.

t
Zf,e*(' < é; 9+e—§::f,ﬁ/9‘

e is called the regret.
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REGRET

In normal optimization, we seek 8 satisfying:
f(B) < minf(6) + .

In online optimization we will ask for the same.

t t t
D O <min > fi(0) +e=> fi(6%) + e
i—1 = i=1

%
e is called the regret. (‘Q’&r{/—\- ZONR 7 J\ﬁc&\&ﬂ

- This error metric is a bit ‘unfair. Why?
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REGRET

In normal optimization, we seek 8 satisfying:

e is called the regret.

- This error metric is a bit ‘unfair. Why?

- Comparing online solution to best fixed solution in
hindsight. € can be negative!

10
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Assume that: @, 0 } 3|>

- f1,...,frare all convex.
- Each f; is G-Lipschitz (i.e., | Vfi(8)|l» < G for all )

—, — M
- 160 — g°!|, < R where 8V is the first vector chosen.




ONLINE GRADIENT DESCENT

Assume that:

- f1,...,frare all convex.
- Each f; is G-Lipschitz (i.e, |Vfi(8)|, < G for all 4.)
- |6 = 0!, < R where 6(V) is the first vector chosen.

9"' : ,\/‘Sm'm f«@(@}
t

Online Gradient Descent

. ' _ R
Set step size n _i‘/f'
- Fori=1,...,t
- Play 8) and incur cost f;(§1).

2 U = gl — . ﬁi(g(i))



ONLINE GRADIENT DESCENT

Assume that:

* fi,...,fr are all convex.
- Each f; is G-Lipschitz (i.e., | Vfi(8)|l, < G for all 6))

- |6 = 0!, < R where 6(V) is the first vector chosen.

Online Gradient Descent

- Set step sizen = %ﬁ.

- Fori=1,...,t
- Play 8) and incur cost f;(61).
R Ny O R v O



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex ¢
Lipschitz fy,...,f;, OGD initialized W|th starting point #() vv|th|n
radius R of 901, using step size n = G\/, has regret bounded by:

[Zt: £:(60) — zt: )‘,-(991)] < RGVA

i=1
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Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of 8, using step size n = %, has regret bounded by:

[Z fi(eM) =>" )‘,-(9*)] < RGVt

Average regret goes to 0 and t — co. No assumptionson f, ..., fi!

Step 1.1: For all i Vﬁ(a&(a(") — oty < L0010 | nG"

H 9]-)-1 _@oI”'L - \‘ 9;‘%‘7?(9;) 3 9o|”‘l..- |
“1g-0 - anva ) @-e) |Avae)

n' e’
,
A




ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of 8, using step size n = %, has regret bounded by:

[Z fi(eM) =>" )‘,-(9*)] < RGVt

Average regret goes to 0 and t — co. No assumptionson f, ..., fi!

Step 1.1: For all i, Vf(60)(90) — g0ty < 100" L0707l | nG"

n 2
Convexity = Step 1: For all |,
_ 169 — 6213 — Jo+D — 03 G

709) = 56" =

- 2n 2




ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within

radius R of 8, using step size n = %, has regret bounded by:

[if,-(e‘”) - thf,-(ef”)] < RGVE

. . (1) _poly2 _ 1 pli+1) _pol
Step 1: For all i, f;(9") — f,(6°!) < 12=2 I 21,‘9 7l nTGZ



ONLINE GRADIENT DESCENT ANALYSIS

Theorem — OGD on Convex Lipschitz Functions: For convex G-
Lipschitz fi, ..., f;, OGD initialized with starting point () within
radius R of 8%, using step size n = =&, has regret bounded by:

Lo
S (e - thf,-(ef”)] < RGVE

Step 1: For all i, f;(0M) — f;(°!) < 1169 —6°!|2— |60+ —go! .HZ
/( ) ( ) “9 -8 If”h . ”91,4' 6_'—”

t
| o] < 100 = 12 — o+ — g7 ’fLGZ
>0 Zf,e ]<Z . e
¢ 108", nbo B dmet
o > a2
Mf R&AF
& 13




STOCHASTIC GRADIENT DESCENT

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking § with

f(h) < mejnf(9)+e:f( ) +e.
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STOCHASTIC GRADIENT DESCENT

Recall: Stochastic gradient descent is an efficient offline
optimization method, seeking § with

=

flh) < mejnf(e) +e=f(0")+e

Easily analyzed as a special case of online gradient descent!

14
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STOCHASTIC GRADIENT DESCENT

Assume that:
+ fis convex and decomposable as f(f) = 3L, f;(6).
© B, L(6,X) = XL, 6(Mz(%), ).

- Each f; is S-Lipschitz (i.e, | Vfi(8)|l» < & for all 4.)
- What does this imply\about how Lipschitz fis?

vr(e) = Zvgey  IoFel): | 2ei0l)
g S nf osel

!
< f\'é <
g
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STOCHASTIC GRADIENT DESCENT

Assume that:

+ fis convex and decomposable as f(f) = 3L, f;(6).
©Eg, L(0,X) = S0 (M%), y))-

- Each f; is S-Lipschitz (i.e, | Vfi(8)|l» < & for all 4.)
- What does this imply about how Lipschitz f is?

- Initialize with 6 satisfying |80 — 6*||, < R.

Stochastic Gradient Descent

- Set step size n = %ﬁ-
- Fori=1,...,t
- Pickrandom j; €1,..., n.

—
I

-G = g0 — . F, @) |
) 1 t T
* Return 0 = 1577 00,



STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent

‘Batch' Gradient Descent

[} 500 1000 1500 2000 2500 3000 3500

—

gu+1 = gl) — py. Vf, (00 vs. gU+D = gU) — . T(61))
Note that: E[Vf; (60))] = 1Vf(61)).
E[VS,(00)] = AVAEY)
Analysis extends to any algorithm that takes the gradient step

in expectation (hjatch GD, randomly quantized, measurement

noise, differentially private, etc.) 16



STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz iterations, n = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> EC | = Giﬂ, and starting point within radius R
of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(9)

'\.

N f(o ‘) £ i lf00) — f(67)]
07338 T p(1dd) F (&)
oh® S 1ERE) - 6
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz iterations, n = G\/ and starting point within radius R

of %, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(é) —f0") < % ZLJJ‘(Q@) —f(07)] j‘ . 51 -
step 2: EIf(7) - f0°)] < 2 B[S [, 00) - o). 2"
_ ot
ey e < = :\ E[e) - 6N

<)

L2866 §)]

SOE )fﬁ (O?F %p, ) 6 (6) L5 RE)
-4 P(a) 17



STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz i = Giﬂ, and starting point within radius R

of 6*, outputs @ satisfying: E[f(9)] < f(67) + «.

Step 1: f(A) — f(67) < 1 S [f(69) — f(0 )1
Step 2: Ev(é)—f(e*)]s%~E[ i1, (6 f/,ﬁl

4\/‘3”\‘\"\ ZF]:(Q)
o
Step 3 BIf) ~ (0°) < 4 B [ I5,0) - 7]
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Theorem - SGD on Convex Lipschitz Functions: SGD run with
t> R;Gz i = Giﬂ, and starting point within radius R
of 8%, outputs 8 satisfying: E[f(9)] < f(6*) + e.

Step 1: f(0) - f(6") < 1 X2 [(0%) — f(0°)] R
step 2: E[f(d) — f(9°)] < - E [ [5,(09) — £,(07)]] - e
Step 3: EIf(7) ~ f10°)] < ¢ -E [SIL[509) —f 0] 9

~+|>

zh -

A G
Step 4: E[f(0) — f(6*)] < ¢ -R- o V= %_
H,_/
0OGD bound

o, T L0 Z 6 (6)
s S £ A CHERAL
q:('— P\é'/é _— 1=\ -

17



SGD VS. GD

Stochastic gradient descent generally makes more iterations
than gradient descent.

Each iteration is much cheaper (by a factor of n).

vZf, vs. Vfi(0)

18



SGD VS. GD

when f(8) = Y51, i(8) and |[V(@)]. < §:

Theorem - SGD: After t >

iterations outputs 8 satisfying:

€

E[f(6)] < f(6") + .
When |[VA(9)] < G:
Theorem - GD: After t > — iterations outputs 4 satisfying:
f(B) <f(6") +e.

19



SGD VS. GD

When f(6) = 327, £(6) and [ Vi(9)]2 < §:

Theorem - SGD: After ¢ > r»:rb:;‘ .

E[f(B)] < f(6%) + ¢
When |[VA(9)] < G:
Theorem - GD: After t > — iterations outputs 4 satisfying:
f(8) < f(67) + €

IVAO 2 = IVAO) + ...+ V@) < S V@) <n- £ <G

19



SGD VS. GD

When f(6) = 327, £(6) and [ Vi(9)]2 < §:

Theorem - SGD: After t >

E[f(6)] < f(67) + e

When V@), < &

Theorem - GD: After t > “

f(6) < f(67) + €

IVFO2 = IVA©O) + ... + Val®)]2 < 1L V(@) <n- ¢ <G
When would this bound be tight?

19



Questions?
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