COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 20

LOGISTICS

- Problem Set 3 was due Friday/Sunday.
- Problem Set 4 will be on optimization. Out before
 Thanksgiving and due sometime towards the end of classes.
- · Final is on December 19th, 10:30am-12:30pm.

SUMMARY

Last Class:

- · Analysis of gradient descent for optimizing convex functions.
- (The same) analysis of projected gradient descent for optimizing under constraints.

SUMMARY

Last Class:

- · Analysis of gradient descent for optimizing convex functions.
- (The same) analysis of projected gradient descent for optimizing under constraints.

This Class:

- Stochastic and online gradient descent for computationally efficient and online learning.
- · Unified analysis.

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathbb{R}^d}{\operatorname{arg\,min}} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta^*} = \underset{\vec{\theta} \in \mathbb{R}^d}{\text{arg min }} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, \mathbf{X})$ has one component per data point:

$$\vec{\nabla}L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla}\ell(M_{\vec{\theta}}(\vec{x_{j}}), y_{j}).$$

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, \mathbf{X})$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

When *n* is large this is very expensive to compute!

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, \mathbf{X})$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

When *n* is large this is very expensive to compute!

Training a neural network on ImageNet would require n=14 million back propagations!

Typical Optimization Problem in Machine Learning: Given data points $\vec{x}_1, \dots, \vec{x}_n$ and labels/observations y_1, \dots, y_n solve:

$$\vec{\theta}^* = \underset{\vec{\theta} \in \mathbb{R}^d}{\operatorname{arg\,min}} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^n \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

The gradient of $L(\vec{\theta}, \mathbf{X})$ has one component per data point:

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$$

When *n* is large this is very expensive to compute!

Training a neural network on ImageNet would require n=14 million back propagations! ... per iteration of GD.

Solution: Update using just a single data point, or a small batch of data points per iteration.

Solution: Update using just a single data point, or a small batch of data points per iteration.

 Looking at a single data point gives you a coarse, but still useful cue on how to improve your model. **Solution:** Update using just a single data point, or a small batch of data points per iteration.

- Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.
- If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=j}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}) \rightarrow \mathbb{E}_{j \sim [n]} [\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j})] = \frac{1}{n} \cdot \vec{\nabla} L(\vec{\theta}, \mathbf{X}).$$

Solution: Update using just a single data point, or a small batch of data points per iteration.

- Looking at a single data point gives you a coarse, but still useful cue on how to improve your model.
- If the data point is chosen uniformly at random, the sampled gradient is correct in expectation.

$$\vec{\nabla} L(\vec{\theta}, X) = \sum_{i=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}) \xrightarrow{\mathbb{E}_{j \sim [n]}} [\vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j})] = \frac{1}{n} \cdot \vec{\nabla} L(\vec{\theta}, X).$$

• The key idea behind stochastic gradient descent (SGD).

STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent takes more, but much cheaper steps than gradient descent.

STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent takes more, but much cheaper steps than gradient descent.

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} L(\vec{\theta}^{(i)}, \mathbf{X}) \text{ vs. } \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} \ell(M_{\vec{\theta}^{(i)}}(\vec{x_j}), y_j)$$

SGD is closely related to online gradient descent.

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X})$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (like in streaming algorithms)

SGD is closely related to online gradient descent.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X})$, when data points are presented in an online fashion $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ (like in streaming algorithms)

Will view SGD as a special case: when data points are presented (by design) in a random order.

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function *f*, we see a different objective function at each step:

$$f_1,\ldots,f_t:\mathbb{R}^d\to\mathbb{R}$$

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function *f*, we see a different objective function at each step:

$$f_1,\ldots,f_t:\mathbb{R}^d\to\mathbb{R}$$

- · At each step, first pick (play) a parameter vector $\vec{\theta}^{(i)}$.
- Then are told f_i and incur cost $f_i(\bar{\theta}^{(i)})$.
- **Goal:** Minimize total cost $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

No assumptions on how f_1, \ldots, f_t are related to each other!

ONLINE OPTIMIZATION EXAMPLE

UI design via online optimization.

- · Parameter vector $\vec{\theta}^{(i)}$: some encoding of the layout at step i.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = 1$ if user does not click 'add to cart' and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
- Want to maximize number of purchases. I.e., minimize $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$

ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

 $\vec{x} = [\#baths, \#beds, \#floors...]$

- · Parameter vector $\vec{\theta}^{(i)}$: coefficients of linear model at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = (\cancel{x}_i, 0)^2 price_i)^2$ revealed when home, is listed or sold.
- Want to minimize total squared error $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$ (same as classic least squares regression).

REGRET

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \le \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{ol}) + \epsilon$$

 ϵ is called the regret.

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\underbrace{\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})}_{t} \leq \min_{\vec{\theta}} \underbrace{\sum_{i=1}^{t} f_i(\vec{\theta})}_{t} + \epsilon = \underbrace{\sum_{i=1}^{t} f_i(\vec{\theta}^{ol})}_{t} + \epsilon$$

$$\epsilon \text{ is called the regret.}$$

· This error metric is a bit 'unfair'. Why?

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\underline{\vec{\theta}^{(i)}}) \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{ol}) + \epsilon$$

 ϵ is called the regret.

- · This error metric is a bit 'unfair'. Why?
- Comparing online solution to best fixed solution in hindsight. ϵ can be negative!

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq \underline{G}$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{ol}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{ol}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

0° i argmin Efi(0)

- Set step size $\eta = \frac{\mathbf{r}_R}{G\sqrt{t}}$.
- For $i = 1, \ldots, t$
 - · Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$.
 - $\cdot \underline{\vec{\theta}^{(i+1)}} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_i(\vec{\theta}^{(i)})$

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{ol}\|_2 < R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

- Set step size $\eta = \frac{R}{G_{1}/f}$.
- For $i = 1, \ldots, t$
 - Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$. $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \nabla f_i(\vec{\theta}^{(i)})$

Theorem – OGD on Convex Lipschitz Functions: For convex $G_{\overline{\Omega}}$ Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{\mathbf{Q}})\right] \le RG\sqrt{t}$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\frac{1}{+} \left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{0}) \right] \leq RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$.

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^*)\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Theorem – OGD on Convex Lipschitz Functions: For convex *G*-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^*)\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all i, $\nabla f_i(\theta^{(i)})(\theta^{(i)} - \theta^{ol}) \le \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. $\|\theta^{i+1} - \theta^{ol}\|^2 \le \|\theta^{i} - \eta \nabla f_i(\theta^i) - \theta^{ol}\|^2 - \|\theta^{(i)} - \theta^{ol}\|^2 + \|\eta G^2\|^2$ $\le \|\theta^{i} - \theta^{ol}\|^2 - \|\eta \nabla f_i(\theta^i)\|^2$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^*)\right] \le RG\sqrt{t}$$

Average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})(\theta^{(i)} - \theta^{ol}) \leq \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Convexity \implies Step 1: For all i,

$$f_i(\theta^{(i)}) - f_i(\theta^{ol}) \le \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{ol})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i, f_i(\theta^{(i)}) - f_i(\theta^{ol}) \le \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

ONLINE GRADIENT DESCENT ANALYSIS

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1, \ldots, f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{ol} , using step size $\eta = \frac{R}{G\sqrt{t'}}$, has regret bounded by:

$$\left[\sum_{i=1}^{t} f_i(\theta^{(i)}) - \sum_{i=1}^{t} f_i(\theta^{ol})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i, f_i(\theta^{(i)}) - f_i(\theta^{ol}) \le \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{\|\theta^{'} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2} \Longrightarrow \left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{ol}) \right] \le \sum_{i=1}^t \frac{\|\theta^{(i)} - \theta^{ol}\|_2^2 - \|\theta^{(i+1)} - \theta^{ol}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Recall: Stochastic gradient descent is an efficient offline optimization method, seeking $\hat{\theta}$ with

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.$$

Recall: Stochastic gradient descent is an efficient offline optimization method, seeking $\hat{\theta}$ with

$$f(\hat{\theta}) \le \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon = f(\vec{\theta}^*) + \epsilon.$$

Easily analyzed as a special case of online gradient descent!

Assume that:

• f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j)$.

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_{j}), y_{j}).$
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{i=1}^{n} f_i(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$
- Each f_i is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)

• What does this imply about how Lipschitz
$$f$$
 is?

$$\nabla F(\theta) = \sum_{j=1}^{n} \nabla F_j(\theta) \qquad ||\nabla F(\theta)|| = || \leq \nabla F_j(\theta)||$$

$$\leq \sum_{j=1}^{n} ||\nabla F_j(\theta)||$$

$$\leq \sum_{j=1}^{n} ||\nabla F_j(\theta)||$$

$$\leq C.$$

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, X) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 - What does this imply about how Lipschitz f is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 \le R$.

Assume that:

- f is convex and decomposable as $f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$.
 - E.g., $L(\vec{\theta}, \mathbf{X}) = \sum_{j=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_j), y_j).$
- Each f_j is $\frac{G}{n}$ -Lipschitz (i.e., $\|\vec{\nabla}f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$ for all $\vec{\theta}$.)
 - · What does this imply about how Lipschitz f is?
- Initialize with $\theta^{(1)}$ satisfying $\|\vec{\theta}^{(1)} \vec{\theta}^*\|_2 \le R$.

Stochastic Gradient Descent

- Set step size $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t
 - Pick random $j_i \in 1, ..., n$.
 - $\cdot \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})$
- Return $\hat{\theta} = \frac{1}{t} \sum_{i=1}^{t} \overline{\hat{\theta}^{(i)}}$.

$$\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f_{i}(\vec{\theta}^{(i)})$$
 vs. $\vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} - \eta \cdot \vec{\nabla} f(\vec{\theta}^{(i)})$

Note that: $\mathbb{E}[\vec{\nabla} f_{j_i}(\vec{\theta}^{(i)})] = \frac{1}{n} \vec{\nabla} f(\vec{\theta}^{(i)}).$

Analysis extends to any algorithm that takes the gradient step in expectation (batch GD, randomly quantized, measurement noise, differentially private, etc.)

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

$$\hat{O} = \frac{1}{t} \underbrace{\stackrel{!}{\gtrsim}}_{i=1} \hat{O}^{i} \Rightarrow f\left(\frac{1}{t} \underbrace{\circlearrowleft}_{i=1} \hat{O}^{i}\right) - f\left(O^{*}\right)$$

$$\leq \frac{1}{t} f\left(O^{*}\right) - f\left(O^{*}\right)$$

Theorem - SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

of
$$\theta^*$$
, outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1: $f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^t [f(\theta^{(i)}) - f(\theta^*)]$

Step 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^t [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$.

 $f(0) = \sum_{j=1}^{n} f_{j}(0) = \sum_{j=1}^{n} P_{r}(j; j) \circ f_{j}(0) = \frac{1}{n} \xi f_{j}(0)$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \le \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \le \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$.

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ^* , outputs $\hat{\theta}$ satisfying: $\mathbb{E}[f(\hat{\theta})] \leq f(\theta^*) + \epsilon$.

Theorem – SGD on Convex Lipschitz Functions: SGD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of $\widehat{\theta^*}$, outputs $\widehat{\theta}$ satisfying: $\mathbb{E}[f(\widehat{\theta})] \leq f(\theta^*) + \epsilon$.

Step 1:
$$f(\hat{\theta}) - f(\theta^*) \leq \frac{1}{t} \sum_{i=1}^{t} [f(\theta^{(i)}) - f(\theta^*)]$$

Step 2: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^*)]\right]$.
Step 3: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{ol})]\right]$.
Step 4: $\mathbb{E}[f(\hat{\theta}) - f(\theta^*)] \leq \frac{n}{t} \cdot \mathbb{E}\left[\sum_{i=1}^{t} [f_{j_i}(\theta^{(i)}) - f_{j_i}(\theta^{ol})]\right]$.

Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of n).

$$\vec{\nabla} \sum_{j=1}^{n} f_j(\vec{\theta})$$
 vs. $\vec{\nabla} f_j(\vec{\theta})$

When
$$f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \tilde{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta^*) + \epsilon.$$

When
$$f(\vec{\theta}) = \sum_{j=1}^n f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \le \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2 G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \hat{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta^*) + \epsilon.$$

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When
$$f(\vec{\theta}) = \sum_{j=1}^{n} f_j(\vec{\theta})$$
 and $\|\vec{\nabla} f_j(\vec{\theta})\|_2 \leq \frac{G}{n}$:

Theorem – SGD: After $t \ge \frac{R^2 G^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$\mathbb{E}[f(\hat{\theta})] \le f(\theta^*) + \epsilon.$$

When $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq \bar{G}$:

Theorem – GD: After $t \ge \frac{R^2 \bar{G}^2}{\epsilon^2}$ iterations outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta^*) + \epsilon.$$

$$\|\vec{\nabla} f(\vec{\theta})\|_2 = \|\vec{\nabla} f_1(\vec{\theta}) + \ldots + \vec{\nabla} f_n(\vec{\theta})\|_2 \le \sum_{j=1}^n \|\vec{\nabla} f_j(\vec{\theta})\|_2 \le n \cdot \frac{G}{n} \le G.$$

When would this bound be tight?

Questions?