
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 2

0

reminder

By Next Thursday 9/12:

• Sign up for Piazza.
• Pick a problem set group with 3 people and have one
member email me the names of the members and a group
name.

• Fill out the Gradescope consent poll on Piazza and contact
me via email if you don’t consent.

1

last time

Last Class We Covered:

• Linearity of expectation: E[X+ Y] = E[X] + E[Y] always.
• Linearity of variance: Var[X+ Y] = Var[X] + Var[Y] if X and Y
are independent.

• Markov’s inequality: a non-negative random variable with a
small expectation is unlikely to be very large:

Pr(X ≥ t) ≤ E[X]
t .

• Talked about an application to estimating the size of a
CAPTCHA database efficiently.

2

today

Today: We’ll see how a simple twist on Markov’s inequality can
give much stronger bounds.

• Enough to prove a version of the law of large numbers.

But First: Another example of how powerful linearity of
expectation and Markov’s inequality can be in randomized
algorithm design.

• Will learn about random hash functions, which are a key tool
in randomized methods for data processing.

3

hash tables

Want to store a set of items from some finite but massive
universe of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.

4

hash tables

• hash function h : U→ [n] maps elements from the universe
to indices 1, · · · ,n of an array.

• Typically |U| ≫ n. Many elements map to the same index.
• Collisions: when we insert m items into the hash table we
may have to store multiple items in the same location
(typically as a linked list).

5

collisions

Query runtime: O(c) when the maximum number of collisions
in a table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the
same location).

• Two approaches: 1) we assume the items inserted are
chosen randomly from the universe U or 2) the hash
function is chosen randomly.

6

random hash function

Let h : U→ [n] be a random hash function.

• I.e., for x ∈ U, Pr(h(x) = i) = 1
n for all i = 1, . . . ,n and

h(x),h(y) are independent for any two items x ̸= y.
• Caveat: It is very expensive to represent and compute such a
random function. We will see how a hash function
computable in O(1) time function can be used instead.

Assuming we insert m elements into a hash table of size n,
what is the expected total number of pairwise collisions?

7

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑
i,j

E[Ci,j]. (linearity of expectation)

For any pair i, j: E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑
i,j

1
n =

(m
2
)
n =

m(m− 1)
2n .

Identical to the CAPTCHA analysis from last class!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.

8

collision free hashing

E[C] = m(m− 1)
2n .

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

• Can you give a lower bound on the probability that we have
no collisions, i.e., Pr[C = 0]?

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1
8 =

7
8 .

Pretty good...but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.

9

two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function
mapping [si] → [s2i].

• Just Showed: A random function is collision free with probability
≥ 7

8 so only requires checking O(1) random functions in
expectation to find a collision free one.

10

space usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n+
∑n

i=1 E[s2i]

E[s2i] = E

 m∑

j=1

Ih(xj)=i

2

= E

∑
j,k

Ih(xj)=i · Ih(xk)=i

=
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
.

Collisions again!

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2 .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. 11

space usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n+
∑n

i=1 E[s2i]

E[s2i] = E

 m∑

j=1

Ih(xj)=i

2

= E

∑
j,k

Ih(xj)=i · Ih(xk)=i

 =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2 .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. 11

space usage

E[s2i] =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i]

≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12

space usage

E[s2i] =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i]

≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12

space usage

E[s2i] =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i]

≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12

space usage

E[s2i] =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i] ≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12

something to think about

What if we want to store a set and answer membership queries
in O(1) time. But we allow a small probability of a false
positive: query(x) says that x is in the set when in fact it isn’t.

Can we do better than O(m) space?

Many Applications:

• Filter spam email addresses, phone numbers, suspect IPs,
duplicate Tweets.

• Quickly check if an item has been stored in a cache or is new.
• Counting distinct elements (e.g., unique search queries.)

13

efficiently computable hash function

So Far: we have assumed a fully random hash function h(x)
with Pr[h(x) = i] = 1

n for i ∈ 1, . . . ,n and h(x),h(y) independent
for x ̸= y.

• To store a random hash function we have to store a table of
x values and their hash values. Would take at least O(m)

space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!

14

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U→ [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n .

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = 1

n .

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random
a,b ∈ [p] with a ̸= 0. Let:

h(x) = (ax+ b mod p) mod n. 15

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U→ [n] is pairwise independent if for all i ∈ [n]:

Pr[h(x) = h(y) = i] = 1
n2 .

Which is a more stringent requirement? 2-universal or pairwise
independent?

Pr[h(x) = h(y)] =
n∑
i=1

Pr[h(x) = h(y) = i] = n · 1n2 =
1
n .

A closely related (ax+ b) mod p construction gives pairwise
independence on top of 2-universality.

16

pairwise independence

Another common requirement for a hash function:

k-wise Independent Hash Function. A random hash function
from h : U→ [n] is k-wise independent if for all i ∈ [n]:

Pr[h(x1) = h(x2) = . . . = h(xk) = i] = 1
nk .

Which is a more stringent requirement? 2-universal or pairwise
independent?

Pr[h(x) = h(y)] =
n∑
i=1

Pr[h(x) = h(y) = i] = n · 1n2 =
1
n .

A closely related (ax+ b) mod p construction gives pairwise
independence on top of 2-universality.

16

Questions on linearity of expectation/variance, Markov’s,
hashing?

17

next step

1. We’ll consider an application where our toolkit of linearity of
expectation + Markov’s inequality doesn’t give much.

2. Then we’ll show how a simple twist on Markov’s can give a
much stronger result.

18

another application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?
19

weakness of markov’s

Expected Number of requests assigned to server i:

E[Ri] =
n∑
j=1

E[Irequest j assigned to i] =
n∑
j=1

Pr [j assigned to i] = n
k .

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]
2E[Ri]

=
1
2 .

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

20

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made
much more powerful.

For any random variable X and any value t:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) ≤ E[X2]
t2 .

(by plugging in the random variable X− E[X])

21

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made
much more powerful.

For any random variable X and any value t:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2 .

(by plugging in the random variable X− E[X])
21

chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from
it’s mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2 .

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.

22

law of large numbers

Consider drawing independent identically distributed (i.i.d.)
random variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate
the true mean µ?

Var[S] = 1
n2 Var

[n∑
i=1

Xi

]
=

1
n2

n∑
i=1

Var [Xi] =
1
n2 · n · σ2 = σ2

n .

By Chebyshev’s Inequality: for any fixed valueϵ > 0,

Pr(|S− µ| ≥ ϵ) ≤ Var[S]
ϵ2

=
σ2

nϵ2 .

Law of Large Numbers: with enough samples, the sample
average will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.
23

back to load balancing

Recall that Ri is the load on server i when n requests are randomly
assigned to k servers.

Ri =
n∑
j=1

Ri,j

where Ri,j is 1 if request j is assigned to server i and 0 o.w.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]
= Pr(Ri,j = 1) ·

(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2
=
1
k ·

(
1− 1

k

)2
+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k − 1

k2 ≤ 1
k =⇒ Var[Ri] ≤

n
k .

Applying Chebyshev’s:

Pr
(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k
n2/k2 =

k
n .

Overload probability is extremely small when k≪ n!

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.

24

tighter tolerances

Provisioning each server with twice the expected necessary
capacity (2nk vs. nk) is really expensive.

If we give each server the capacity to serve (1+ δ) · nk requests
for δ ∈ (0, 1), what is the probability that a server exceeds its
capacity?

E[Ri] =
n
k and Var[Ri] ≤

n
k .

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ ϵ) ≤ Var[X]
ϵ2

.

Bonus: What if requests are assigned to servers with a 2-universal
hash function? With a pairwise independent hash function?

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. δ, ϵ any values.

25

tighter tolerances

If we give each server the capacity to serve (1+ δ) · nk requests for
δ ∈ (0, 1), what is the probability that a server exceeds its capacity?

E[Ri] =
n
k and Var[Ri] ≤

n
k .

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ ϵ) ≤ Var[X]
ϵ2

.

Pr
(
Ri ≥ (1+ δ) · nk

)
≤ Pr

(
|Ri − E[Ri]| ≥ δ · nk

)
≤ Var[Ri]

δ2 · n2/k2

=
k
δ2n .

Can set δ = O
(√

k
n

)
and still have a pretty good probability that a

server won’t be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. 26

assignment with efficient hash functions

Bonus: What if requests are assigned to servers with a
2-universal hash function? With a pairwise independent hash
function?

• To apply Chebyshev’s need to bound

Var[Ri] = E[R2i]− E[Ri]2 ≤ E[R2i].

• With pairwise independence can apply a similar technique
as we did to bounding the expected second level table size
for two level hashing, showing Var[Ri] = O

(n
k
)
.

• Will see that 2-universal hashing is not strong enough here!

27

next time

Chebyshev’s Inequality: A quantitative version of the law of
large numbers. The average of many independent random
variables concentrates around its mean.

Chernoff Type Bounds: A quantitative version of the central
limit theorem. The average of many independent random
variables is distributed like a Gaussian.

28

Questions?

29

