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reminder

By Next Thursday 9/12:

• Sign up for Piazza.
• Pick a problem set group with 3 people and have one
member email me the names of the members and a group
name.

• Fill out the Gradescope consent poll on Piazza and contact
me via email if you don’t consent.
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last time

Last Class We Covered:

• Linearity of expectation: E[X+ Y] = E[X] + E[Y] always.
• Linearity of variance: Var[X+ Y] = Var[X] + Var[Y] if X and Y
are independent.

• Markov’s inequality: a non-negative random variable with a
small expectation is unlikely to be very large:

Pr(X ≥ t) ≤ E[X]
t .

• Talked about an application to estimating the size of a
CAPTCHA database efficiently.
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today

Today: We’ll see how a simple twist on Markov’s inequality can
give much stronger bounds.

• Enough to prove a version of the law of large numbers.

But First: Another example of how powerful linearity of
expectation and Markov’s inequality can be in randomized
algorithm design.

• Will learn about random hash functions, which are a key tool
in randomized methods for data processing.
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hash tables

Want to store a set of items from some finite but massive
universe of items (e.g., images of a certain size, text
documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and
deletion today.
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hash tables

• hash function h : U→ [n] maps elements from the universe
to indices 1, · · · ,n of an array.

• Typically |U| ≫ n. Many elements map to the same index.
• Collisions: when we insert m items into the hash table we
may have to store multiple items in the same location
(typically as a linked list).
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collisions

Query runtime: O(c) when the maximum number of collisions
in a table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case could have c = m (all items hash to the
same location).

• Two approaches: 1) we assume the items inserted are
chosen randomly from the universe U or 2) the hash
function is chosen randomly.
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random hash function

Let h : U→ [n] be a random hash function.

• I.e., for x ∈ U, Pr(h(x) = i) = 1
n for all i = 1, . . . ,n and

h(x),h(y) are independent for any two items x ̸= y.
• Caveat: It is very expensive to represent and compute such a
random function. We will see how a hash function
computable in O(1) time function can be used instead.

Assuming we insert m elements into a hash table of size n,
what is the expected total number of pairwise collisions?
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linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0
otherwise. The number of pairwise duplicates is:

E[C] =
∑
i,j

E[Ci,j]. (linearity of expectation)

For any pair i, j: E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑
i,j

1
n =

(m
2
)
n =

m(m− 1)
2n .

Identical to the CAPTCHA analysis from last class!

xi, xj : pair of stored items, m: total number of stored items, n: hash table size,
C: total pairwise collisions in table, h: random hash function.
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collision free hashing

E[C] = m(m− 1)
2n .

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

• Can you give a lower bound on the probability that we have
no collisions, i.e., Pr[C = 0]?

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1
8 =

7
8 .

Pretty good...but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions
in table.
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two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function
mapping [si] → [s2i ].

• Just Showed: A random function is collision free with probability
≥ 7

8 so only requires checking O(1) random functions in
expectation to find a collision free one.
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space usage

Query time for two level hashing is O(1): requires evaluating two
hash functions. What is the expected space usage?

Up to constants, space used is: E[S] = n+
∑n

i=1 E[s2i ]

E[s2i ] = E


 m∑

j=1

Ih(xj)=i

2


= E

∑
j,k

Ih(xj)=i · Ih(xk)=i



=
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
.

Collisions again!

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2 .

xj, xk : stored items, n: hash table size, h: random hash function, S: space usage
of two level hashing, si : # items stored in hash table at position i. 11
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space usage

E[s2i ] =
∑
j,k

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1n + 2 ·

(
m
2

)
· 1n2

=
m
n +

m(m− 1)
n2 ≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n .

• For j ̸= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2 .

Total Expected Space Usage: (if we set n = m)

E[S] = n+
n∑
i=1

E[s2i ]

≤ n+ n · 2 = 3n = 3m.

Near optimal space with O(1) query time!

xj, xk : stored items, m: # stored items, n: hash table size, h: random hash
function, S: space usage of two level hashing, si : # items stored at pos i. 12
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something to think about

What if we want to store a set and answer membership queries
in O(1) time. But we allow a small probability of a false
positive: query(x) says that x is in the set when in fact it isn’t.

Can we do better than O(m) space?

Many Applications:

• Filter spam email addresses, phone numbers, suspect IPs,
duplicate Tweets.

• Quickly check if an item has been stored in a cache or is new.
• Counting distinct elements (e.g., unique search queries.)
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efficiently computable hash function

So Far: we have assumed a fully random hash function h(x)
with Pr[h(x) = i] = 1

n for i ∈ 1, . . . ,n and h(x),h(y) independent
for x ̸= y.

• To store a random hash function we have to store a table of
x values and their hash values. Would take at least O(m)

space and O(m) query time if we hash m values. Making our
whole quest for O(1) query time pointless!
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efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A ran-
dom hash function from h : U→ [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1
n .

Exercise: Rework the two level hashing proof to show that this
property is really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = 1

n .

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random
a,b ∈ [p] with a ̸= 0. Let:

h(x) = (ax+ b mod p) mod n. 15



pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function
from h : U→ [n] is pairwise independent if for all i ∈ [n]:

Pr[h(x) = h(y) = i] = 1
n2 .

Which is a more stringent requirement? 2-universal or pairwise
independent?

Pr[h(x) = h(y)] =
n∑
i=1

Pr[h(x) = h(y) = i] = n · 1n2 =
1
n .

A closely related (ax+ b) mod p construction gives pairwise
independence on top of 2-universality.
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pairwise independence

Another common requirement for a hash function:

k-wise Independent Hash Function. A random hash function
from h : U→ [n] is k-wise independent if for all i ∈ [n]:

Pr[h(x1) = h(x2) = . . . = h(xk) = i] = 1
nk .
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Pr[h(x) = h(y) = i] = n · 1n2 =
1
n .

A closely related (ax+ b) mod p construction gives pairwise
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Questions on linearity of expectation/variance, Markov’s,
hashing?
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next step

1. We’ll consider an application where our toolkit of linearity of
expectation + Markov’s inequality doesn’t give much.

2. Then we’ll show how a simple twist on Markov’s can give a
much stronger result.
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another application

Randomized Load Balancing:

Simple Model: n requests randomly assigned to k servers. How
many requests must each server handle?

• Often assignment is done via a random hash function. Why?
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weakness of markov’s

Expected Number of requests assigned to server i:

E[Ri] =
n∑
j=1

E[Irequest j assigned to i] =
n∑
j=1

Pr [j assigned to i] = n
k .

If we provision each server be able to handle twice the
expected load, what is the probability that a server is
overloaded?

Applying Markov’s Inequality

Pr [Ri ≥ 2E[Ri]] ≤
E[Ri]
2E[Ri]

=
1
2 .

Not great...half the servers may be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made
much more powerful.

For any random variable X and any value t:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s
inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) ≤ E[X2]
t2 .

(by plugging in the random variable X− E[X])
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chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from
it’s mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2 .

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.
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law of large numbers

Consider drawing independent identically distributed (i.i.d.)
random variables X1, . . . , Xn with mean µ and variance σ2.

How well does the sample average S = 1
n
∑n

i=1 Xi approximate
the true mean µ?

Var[S] = 1
n2 Var

[ n∑
i=1

Xi

]
=

1
n2

n∑
i=1

Var [Xi] =
1
n2 · n · σ2 = σ2

n .

By Chebyshev’s Inequality: for any fixed valueϵ > 0,

Pr(|S− µ| ≥ ϵ) ≤ Var[S]
ϵ2

=
σ2

nϵ2 .

Law of Large Numbers: with enough samples, the sample
average will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.
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back to load balancing

Recall that Ri is the load on server i when n requests are randomly
assigned to k servers.

Ri =
n∑
j=1

Ri,j

where Ri,j is 1 if request j is assigned to server i and 0 o.w.

Var[Ri,j] = E
[(
Ri,j − E[Ri,j]

)2]
= Pr(Ri,j = 1) ·

(
1− E[Ri,j]

)2
+ Pr(Ri,j = 0) ·

(
0− E[Ri,j]

)2
=
1
k ·

(
1− 1

k

)2
+

(
1− 1

k

)
·
(
0− 1

k

)2

=
1
k − 1

k2 ≤ 1
k =⇒ Var[Ri] ≤

n
k .

Applying Chebyshev’s:

Pr
(
Ri ≥

2n
k

)
≤ Pr

(
|Ri − E[Ri]| ≥

n
k

)
≤ n/k
n2/k2 =

k
n .

Overload probability is extremely small when k≪ n!

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i.
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tighter tolerances

Provisioning each server with twice the expected necessary
capacity ( 2nk vs. nk ) is really expensive.

If we give each server the capacity to serve (1+ δ) · nk requests
for δ ∈ (0, 1), what is the probability that a server exceeds its
capacity?

E[Ri] =
n
k and Var[Ri] ≤

n
k .

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ ϵ) ≤ Var[X]
ϵ2

.

Bonus: What if requests are assigned to servers with a 2-universal
hash function? With a pairwise independent hash function?

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. δ, ϵ any values.

25



tighter tolerances

If we give each server the capacity to serve (1+ δ) · nk requests for
δ ∈ (0, 1), what is the probability that a server exceeds its capacity?

E[Ri] =
n
k and Var[Ri] ≤

n
k .

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ ϵ) ≤ Var[X]
ϵ2

.

Pr
(
Ri ≥ (1+ δ) · nk

)
≤ Pr

(
|Ri − E[Ri]| ≥ δ · nk

)
≤ Var[Ri]

δ2 · n2/k2

=
k
δ2n .

Can set δ = O
(√

k
n

)
and still have a pretty good probability that a

server won’t be overloaded.

n: total number of requests, k: number of servers randomly assigned requests,
Ri : number of requests assigned to server i. 26



assignment with efficient hash functions

Bonus: What if requests are assigned to servers with a
2-universal hash function? With a pairwise independent hash
function?

• To apply Chebyshev’s need to bound

Var[Ri] = E[R2i ]− E[Ri]2 ≤ E[R2i ].

• With pairwise independence can apply a similar technique
as we did to bounding the expected second level table size
for two level hashing, showing Var[Ri] = O

(n
k
)
.

• Will see that 2-universal hashing is not strong enough here!
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next time

Chebyshev’s Inequality: A quantitative version of the law of
large numbers. The average of many independent random
variables concentrates around its mean.

Chernoff Type Bounds: A quantitative version of the central
limit theorem. The average of many independent random
variables is distributed like a Gaussian.
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Questions?
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