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LOGISTICS

- Problem Set 3 on Spectral Methods due this Friday at 8pm.
- Can turn in without penalty until Sunday at 11:59pm.
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SUMMARY

Last Class:

- Intro to continuous optimization.
-+ Multivariable calculus review.

- Intro to Gradient Descent.



SUMMARY

Last Class:

- Intro to continuous optimization.
-+ Multivariable calculus review.

- Intro to Gradient Descent.
This Class:

+ Analysis of gradient descent for optimizing convex functions.

- Analysis of projected gradient descent for optimizing under
constraints.



GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small
change to 60~ to give A1), with minimum value of f(§1)).

Gradient descent step: When the step size is small, this is
approximate optimized by stepping in the opposite direction of the
gradient:

0 =6V — g VFOUD).
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GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small
change to 60~ to give A1), with minimum value of f(§1)).

Gradient descent step: When the step size is small, this is
approximate optimized by stepping in the opposite direction of the
gradient:

00 = gU=" — g VFOUD).

Psuedocode:

- Choose some initialization §(®.
- Fori=1,...,t
.oty — gli=1) _ ,/Tf(ﬁ)ﬂ(“”))

- Return 0, as an approximate minimizer of f(4).

Step size i is chosen ahead of time or adapted during the algorithm.
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Gradient Descent Update: () = gli=")



CONVEXITY

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

/e ool ~ ~
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CONVEXITY

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1=X) B +A- @) 2 F((1=2) - 61+ 2 &)

0 € R?




CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]:
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OTHER ASSUMPTIONS

We will also assume that f(-) is ‘well-behaved’ in some way.



OTHER ASSUMPTIONS

We will also assume that f(-) is ‘well-behaved’ in some way.

- Lipschitz (size of gradient is bounded): For all g and some G,

IR0 < 6. ) F)) <&
) . :
u _—

- Smooth (direction/size of gradient is not changing too quickly):
For all #;, 6> and some B,

Q) IVAG7) = V)l < B+ 16 = G-
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LIPSCHITZ ASSUMPTION
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GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- flis convex.
- fis G-Lipschitz (i.e, [|[Vf(0)], < G for all 4))

- |60 — 6.]]> < R where 6 is the initialization point.

Gradient Descent

- Choose some initialization 6, and set n = Giﬁ’

- Fori=1,...,t T
: @:@—1*71'Vf(§f—1)

- Return 0 = argming  ; f(0)).
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

(0)<f0.)+e By P aTymn ﬂe)
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GD ANALYSIS PROOF

)(R\M Theorem - GD on Convex Lipschitzons: For convex G-

Lipschitz function f, GD run with t % iterations, n = %,
and starting point within radius R of 6, outputs @ satisfying:

f(B) < f(0.) + .

Step 1: For alli, f(6;) — f(0.) SME=0lall0=0- I3, 06" yig a1y
) — 0 L
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(B) < f(0.) + .

Step 1: For all i, f(6;) — f(6.) < ”9’70*“572“6’“*6*”% + "TGZ Formally:

n



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G:
_Lipschitz function f, GD run with t > @ iterations, n = %,
and starting point within radius R of 6,, outputs @ satisfying:

f(6) < f(6.) + ¢

X [ step 1: For all i, f(6)) — f(6,) < 10=0- I2 2119% Oz 4 nG2 Q’L
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(6.) + ¢

QSteP 1: For all ,'f( ) — f(,) < L= 12 2,\10,+w Oz 4 7762
Step 10 VAO0 — 0.) < -t tili a8 siep m@@g
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(6.) + ¢
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For =
Lipschitz function f, GD run with t > g iterationg, n = %,
and starting point within radius R of 4, outputs @ satisfying:

f(8) < f(6.) + €

Step2: 13" f(6) — f(6.) 25,2 762
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),

-
0eS

where S is a convex set.
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),
0es

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € S and X € [0, 1]:

(1-Nf+A-6, €S




CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

0* = argminf(6),
0es

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 61,6, € S and X € [0, 1]:

(1-Nf+A-6, €S

. .z
Fg. S={0cR: |0, <1}
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

- Ps(y) = argming. |7 — 7l U
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

© Ps(y) = argminges 10— ¥l

-« For S ={f e R?: |||, <1} what is Ps(y)?

S N 3
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

" Ps(y) =arg miﬂges 16~ V2.
« ForS={f e R ||f], <1} what is Ps(¥)?

- For S being a k dimensional subspace of R?, what is Ps(V)?

\/:\/|\~"\(‘¢ \/\/\é/
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.
* Ps(y) = argmings [0 — Vl2.
- ForS={feR: 0], <1} what is Ps(V)?

- For S being a k dimensional subspace of RY, what is Ps(y)?

Projected Gradient Descent . YO
NN
) i F(6) O
- Choose some initialization 6, and set n = Gi\/f
« Fori=1,...,t

0 =G — - Vf(6i1)
1 =1

- ng((J(“”[))-

—_—————

* Return § = argming 5 f(6).
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PROJECTED GRADIENT DESCENT

Visually:

17



CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!
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CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RYJeRI andfe S,

IPs(¥) — 0], < |7 — 6]l
_—

—_—
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projé’ted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

B S FB) < f(8.) + € = minf(6) + ¢
——
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > RQf '

_ _R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: efﬂt = 0.1 Vf(6) and 41 = Ps(afﬂ”). >‘<
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > R'G jterations, n=

€2

R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 9% = 6, — - Vf(¢;) and 6,5 = Ps(61%").
—_—
< 6= 151162 —0. I

[ step 1: Foralli, f(6) — f(6.) < lo e

JE———————
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > RQf '

_ _R
R GVt
and starting point within radius R of 6,, outputs 6 satisfying:

f9) <f(6.) +e= minf(0) +

Recall: 9% = 6, — - Vf(¢;) and 6,1 = Ps(61%").

t)
116i—6. 13 £00%5" =6 113 +n62

Step 1: For all i, f(6;) — f(0.) < o

Step 1.a: For all i, f(6;) — f(0.) < 116 =6 Hn@; 0. H;+ nG2
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > £ jterations, n = G\i/,

€2

and starting point within radius R of 6,, outputs 4 satisfying:

f9) <f(6.) +e= minf(0) +

. N\ ‘At
Recall: 9% = 6, — - Vf(¢;) and 6,5 = Ps(61%"). Pj (\\’D ' gi(?s‘“ “3
_ 2 yplout) 2
Step 1: For all i, f(6;) — f(0+) < 1001 2”,:9’“ Sl "TGZ

. _ 2_ _ 2 2
Step 1.a: For all i, f(6;) — f(0,) < 19=2-1: 27‘19’” 0.l 4 L

Step 2: 1570 f(6) — f(6.) < % + T’TGZ — Theorem.
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points Xy, ...,X, and labels/observations yi, ..., y, solve:

n
0, =argminL(0.X) = M%), ).
feRrd CX 12—1:\9/\/
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points Xy, ...,X, and labels/observations yi, ..., y, solve:

g, = argmin L(,X) Zé

GeRrd

Why is gradient descent expensive to run if you have many
data points?
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points Xy, ...,X, and labels/observations yi, ..., y, solve:

g, = argmin L(,X) Zé

GeRrd

Why is gradient descent expensive to run if you have many

data points?
n
TUEX) = 3 VMHE),y
i=1
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points Xy, ...,X, and labels/observations yi, ..., y, solve:

g, = argmin L(,X) Zé
GeRrd

Why is gradient descent expensive to run if you have many

data points?

Solution: Take gradient step only taking into account one data
point (or a small ‘batch’ of data points) at a time._Online and
stochastic gradient descent.
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