COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 19

LOGISTICS

- · Problem Set 3 on Spectral Methods due this Friday at 8pm.
- · Can turn in without penalty until Sunday at 11:59pm.

SUMMARY

Last Class:

- · Intro to continuous optimization.
- · Multivariable calculus review.
- · Intro to Gradient Descent.

Last Class:

- · Intro to continuous optimization.
- · Multivariable calculus review.
- · Intro to Gradient Descent.

This Class:

- · Analysis of gradient descent for optimizing convex functions.
- Analysis of projected gradient descent for optimizing under constraints.

GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small change to $\vec{\theta}^{(i-1)}$ to give $\vec{\theta}^{(i)}$, with minimum value of $f(\vec{\theta}^{(i)})$.

Gradient descent step: When the step size is small, this is approximate optimized by stepping in the opposite direction of the gradient:

$$\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \cdot \vec{\nabla} f(\vec{\theta}^{(i-1)}).$$

GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small change to $\vec{\theta}^{(i-1)}$ to give $\vec{\theta}^{(i)}$, with minimum value of $f(\vec{\theta}^{(i)})$.

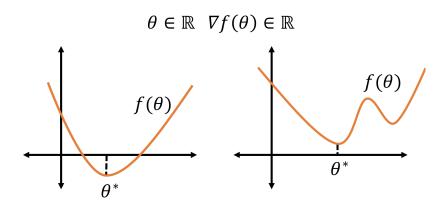
Gradient descent step: When the step size is small, this is approximate optimized by stepping in the opposite direction of the gradient:

$$\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \cdot \vec{\nabla} f(\vec{\theta}^{(i-1)}).$$

Psuedocode:

- Choose some initialization $\vec{\theta}^{(0)}$.
- For $i = 1, \ldots, t$
 - $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} \eta \nabla f(\vec{\theta}^{(i-1)})$
- Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm.

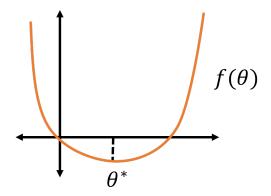


Gradient Descent Update: $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \nabla f(\vec{\theta}^{(i-1)})$

CONVEXITY

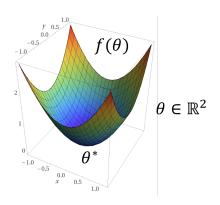
Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$



Definition – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0, 1]$:

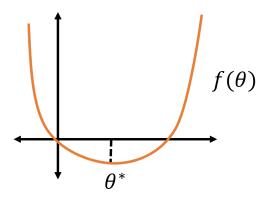
$$(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \ge f((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2)$$



CONVEXITY

Corollary – Convex Function: A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathbb{R}^d$ and $\lambda \in [0,1]$:

$$f(\vec{\theta}_2) - f(\vec{\theta}_1) \ge \vec{\nabla} f(\vec{\theta}_1)^T \left(\vec{\theta}_2 - \vec{\theta}_1\right)$$



OTHER ASSUMPTIONS

We will also assume that $f(\cdot)$ is 'well-behaved' in some way.

OTHER ASSUMPTIONS

We will also assume that $f(\cdot)$ is 'well-behaved' in some way.

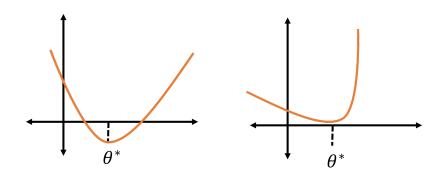
· Lipschitz (size of gradient is bounded): For all $\vec{\theta}$ and some G,

$$\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G.$$

• Smooth (direction/size of gradient is not changing too quickly): For all $\vec{\theta}_1, \vec{\theta}_2$ and some β ,

$$\|\vec{\nabla}f(\vec{\theta}_1) - \vec{\nabla}f(\vec{\theta}_2)\|_2 \le \beta \cdot \|\vec{\theta}_1 - \vec{\theta}_2\|_2.$$

LIPSCHITZ ASSUMPTION



GD ANALYSIS - CONVEX FUNCTIONS

Assume that:

- f is convex.
- f is G-Lipschitz (i.e., $\|\vec{\nabla}f(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}_0 \vec{\theta}_*\|_2 \le R$ where θ_0 is the initialization point.

Gradient Descent

- · Choose some initialization $\vec{\theta}_0$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For $i = 1, \ldots, t$
 - $\cdot \vec{\theta_i} = \vec{\theta_{i-1}} \eta \cdot \nabla f(\vec{\theta_{i-1}})$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_0, \dots, \vec{\theta}_t} f(\vec{\theta}_i)$.

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Visually:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$. Formally:

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 1.1:
$$\nabla f(\theta_i)(\theta_i - \theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.1:
$$\nabla f(\theta_i)(\theta_i - \theta_*) \leq \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies \text{Step 1.}$$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

$$f(\hat{\theta}) \leq f(\theta_*) + \epsilon.$$

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2}$$
.

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \underset{\theta \in \mathcal{S}}{\arg\min} f(\theta),$$

where S is a convex set.

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \arg\min_{\theta \in \mathcal{S}} f(\theta),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

$$\theta^* = \arg\min_{\theta \in \mathcal{S}} f(\theta),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$:

$$(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$$

E.g.
$$S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$$
.

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

•
$$P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_2.$$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = \{\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1\}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} .

- $P_{\mathcal{S}}(\vec{y}) = \operatorname{arg\,min}_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} \vec{y}\|_{2}.$
- For $S = {\vec{\theta} \in \mathbb{R}^d : ||\vec{\theta}||_2 \le 1}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

Projected Gradient Descent

- · Choose some initialization $\vec{\theta_0}$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t
 - $\cdot \vec{\theta_{i}}^{(out)} = \vec{\theta_{i-1}} \eta \cdot \nabla f(\vec{\theta_{i-1}})$
 - $\cdot \vec{\theta_i} = P_{\mathcal{S}}(\vec{\theta_i}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta}_0, \dots, \vec{\theta}_t} f(\vec{\theta}_i)$.

Visually:

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient descent!

Theorem – Projection to a convex set: For any convex set $S \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in S$,

$$||P_{\mathcal{S}}(\vec{y}) - \vec{\theta}||_2 \le ||\vec{y} - \vec{\theta}||_2.$$

Theorem – Projeted GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Theorem – Projeted GD: For convex *G*-Lipschitz function f, and convex set \mathcal{S} , Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Theorem – Projeted GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projeted GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \ge \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Theorem – Projeted GD: For convex *G*-Lipschitz function f, and convex set S, Projected GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within radius R of θ_* , outputs $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \le f(\theta_*) + \epsilon = \min_{\theta \in \mathcal{S}} f(\theta) + \epsilon$$

Recall:
$$\theta_{i+1}^{(out)} = \theta_i - \eta \cdot \nabla f(\theta_i)$$
 and $\theta_{i+1} = P_{\mathcal{S}}(\theta_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1}^{(out)} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i, f(\theta_i) - f(\theta_*) \le \frac{\|\theta_i - \theta_*\|_2^2 - \|\theta_{i+1} - \theta_*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$
.

Step 2:
$$\frac{1}{t} \sum_{i=1}^{t} f(\theta_i) - f(\theta_*) \le \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.

$$\vec{\theta}_* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

$$\vec{\theta}_* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

Why is gradient descent expensive to run if you have many data points?

$$\vec{\theta}_* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

Why is gradient descent expensive to run if you have many data points?

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

$$\vec{\theta}_* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathbb{R}^d} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^n \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

Why is gradient descent expensive to run if you have many data points?

$$\vec{\nabla} L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \vec{\nabla} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i).$$

Solution: Take gradient step only taking into account one data point (or a small 'batch' of data points) at a time. Online and stochastic gradient descent.