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LOGISTICS

- Problem Set 3 on Spectral Methods due this Friday at 8pm.
- Can turn in without penalty until Sunday at 11:59pm.



SUMMARY

Last Class:

- Intro to continuous optimization.
+ Multivariable calculus review.

- Intro to Gradient Descent.



SUMMARY

Last Class:

- Intro to continuous optimization.
+ Multivariable calculus review.

- Intro to Gradient Descent.
This Class:

- Analysis of gradient descent for optimizing convex functions.

- Analysis of projected gradient descent for optimizing under
constraints.



GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small
change to 60~ to give A1), with minimum value of f(41)).

Gradient descent step: When the step size is small, this is
approximate optimized by stepping in the opposite direction of the
gradient:

g0 = U= — . FFED).



GRADIENT DESCENT MOTIVATION

Gradient descent greedy motivation: At each step, make a small
change to 60~ to give A1), with minimum value of f(41)).

Gradient descent step: When the step size is small, this is
approximate optimized by stepping in the opposite direction of the
gradient:

F) = §U-D . G,
Psuedocode:

- Choose some initialization §(®.

s Fori=1,...,t

- g0 e”-uw((/ M)

- Return ), as an approximate minimizer off(é).

Step size iy is chosen ahead of time or adapted during the algorithm.
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CONVEXITY

Definition — Convex Function: A function f: R — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1= X)fB) + A f@) = F((1=2) - 61+ A 6)
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CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

= —n

f8:) —£81) = V@) (6, - &)
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OTHER ASSUMPTIONS

We will also assume that f(-) is ‘well-behaved’ in some way.



OTHER ASSUMPTIONS

We will also assume that f(-) is ‘well-behaved’ in some way.

- Lipschitz (size of gradient is bounded): For all § and some G,

IVA(B) < G.

- Smooth (direction/size of gradient is not changing too quickly):
For all 63,6, and some 3,

IVA(61) = VA@)2 < B+ 1167 — 622
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GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- flis convex.
- fis G-Lipschitz (i.e., |[Vf(A)|]» < G for all 4.)
- |6 — 6,2 < R where 6, is the initialization point.

Gradient Descent

=

- Choose some initialization 6 and set =
- Fori=1,...,t
: é; = 9_;4 —n- Vf(é;q)

G
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.
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R
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*“5529‘”79*‘@ + ”%2

Step 1.1: Vf(6))(6; — 6.) < \|0,70*Hz*27|7\0/+1*0*\|2 + % — Step 1.



GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*‘@;,@9‘”79*% + ”zﬁ

Step 2: 1 X f(6) — f(0.) < £ + %5
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G-
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 2: { 30, f(6) — f(6.) < 55 + 5.
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

6" = argminf(0),
0eS

where S is a convex set.
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Often want to perform convex optimization with convex constraints.

6" = argminf(0),
0eS

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
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CONSTRAINED CONVEX OPTIMIZATION

Often want to perform convex optimization with convex constraints.

6" = argminf(0),
0eS

where S is a convex set.

Definition - Convex Set: A set S C RY is convex if and only if,
for any 65,6, € S and A € [0, 1]:

(=N +r-6,€8

Eg S={0ecR?:|d], <1}
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

© Ps(y) = argming.g 16 — 715
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.

* Ps(y) =argming_s 10 — V2.
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PROJECTED GRADIENT DESCENT

For any convex set let Ps(-) denote the projection function onto S.
© Ps(y) = argming.g ||5—V|\z.

- ForS = {6 e R 6], <1} what is Ps(})?

* For S being a k dimensional subspace of RY, what is Ps(})?
Projected Gradient Descent

- Choose some initialization #, and set n= =R

G

g.

s Fori=1,...,t

: é,(OUt) = @—1 - Vf(@‘—ﬂ
- 6, = Ps(6°Y).

* Return = argming 5 f(6).
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PROJECTED GRADIENT DESCENT

Visually:
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CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!



CONVEX PROJECTIONS

Projected gradient descent can be analyzed identically to gradient
descent!

Theorem - Projection to a convex set: For any convex set S C
RY JeRY andf e s,

IPs(¥) = 6l < |IY - 6ll..




PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > szz iterations, n = %,
and starting point within radius R of 6,, outputs 8 satisfying:

f(6) < f(6.) +e= minf(9) + e
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > szz iterations, n = %,
and starting point within radius R of 6,, outputs 8 satisfying:

f(6) < f(6.) +e= minf(9) + e

\. J

Recall: 9% = 6, — - Vf(6;) and 61, = Ps(61)").
I e | e,
< Il 112 2\\77,4 Il + %

Step 1: For all i, f(6;) — f(0.)
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > szz iterations, n = %,
and starting point within radius R of 6,, outputs 8 satisfying:

f(6) < f(6.) +e= minf(9) + e

\.

Recall: 614" = 6, — - Vf(6;) and 6,41 = Ps(61%4").

13
< 16=0 15116107 —0. I 0

Step 1: For all i, f(6;) — f(0,) < i ¢

Step 1.a: For all i, f(6) — f(6+) < \\0,70*|\§—27|7\6,M76*|\§ + ’7762
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PROJECTED GRADIENT DESCENT ANALYSIS

Theorem - Projeted GD: For convex G-Lipschitz function f, and
convex set S, Projected GD run with t > &S jterations, 5 = %,

€2

and starting point within radius R of 6,, outputs 8 satisfying:

f(6) < f(6.) +e= minf(9) + e

\.

Recall: 614" = 6, — - Vf(6;) and 6,41 = Ps(61%4").

_ 2__plout) 2
Step 1: For all i, f(6)) — f(6.) < 12221 2”:“1 il #

Step 1.a: For all i, f(6) — f(6+) < He"*e*”%}lle’“*e*”% + ’7762

Step 2: %ZLW f6) —1(0.) < % + ’7762 = Theorem.
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points X1, ..., X, and labels/observations ys, ...,y solve:

n

g, = argmin L(4,X) = ZE(MQ“(Z‘)’V/)-
ferd i=1
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GRADIENT DESCENT AT SCALE

Typical Optimization Problem in Machine Learning: Given data
points X1, ..., X, and labels/observations ys, ...,y solve:

n
0. = argmin L(0,X) = > U(MzX)), ;).
GeRrd i=1
Why Is gradient descent expensive to run if you have many
data points?

n
VLX) = > VEMzX), v;)-
=

Solution: Take gradient step only taking into account one data
point (or a small ‘batch’ of data points) at a time. Online and
stochastic gradient descent.
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