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LOGISTICS

- Problem Set 3 on Spectral Methods due this Friday at 8pm.
- Can turn in without penalty until Sunday at 11:59pm.



SUMMARY

Last Class:
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* High level discussion of Krylov methods, block versions for
computing more singular vectors.



SUMMARY

Last Class:

- Power method for computing the top singular vector of a matrix.
* High level discussion of Krylov methods, block versions for
computing more singular vectors.

- Power method is an iterative algorithm for solving the non-convex
optimization problem: o
max V' X'XV.

vVIE<T

This Class (and until Thanksgiving):

+ More general iterative algorithms for optimization, specifically
gradient descent and its variants.

- What are they methods, when are they applied, and how do you
analyze their performance?

-+ Small taste of what you can find in COMPSCI 5900P or 6900P. 5



DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.
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DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (not covered in core CS curriculum.
Touched on in ML/advanced algorithms, maybe.)
- Unconstrained convex and non-convex optimization.

+ Linear programming, quadratic programming, semidefinite
programming
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MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:
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Given some function f: RY — R, find 6, with:

Typically up to some small approximation factor.



MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

Typically up to some small approximation factor.

Often under some constraints:

—

gl <1, 6] <.
<b, 67A6> 0.
-TTé‘: 9.0()<c

%1



WHY CONTINUOUS OPTIMIZATION?



WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.



WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.



WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

* Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.
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Example 1: Linear Regression
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Parameter Vector: § € RY (the regression coefﬁcients)
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Example 1: Linear Regression
Model: M, : RY — R with My(X) % (4,%) = 6(1) - X(1) + . . . + 6(d) - X(d).
Parameter Vector: § € RY (the regression coefﬁcients)

Optimization Problem: Given data points (training points) Xi, ..., X,
(the rows of data matrix X € R"*9) and labels yi,...,y, € R, find 6.
minimizing the loss function:

[ Zf AZ), i) + 0]

where ¢ is some measurement of how far Mz(X;) is from y;.

“UMHX), i) = (Mz(%5) — y,-)2 (least squares regression)

Cyie {—1,1} and é(Mg()?f),y,) =In (1 + exp(—yiM(;()?,»))) (logistic
regression)
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Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer
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Model: My : R? — R. Mz(X) = (Wour, o (Wag (W:X))).

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)



OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wout, o (Woo (W1X))).
Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

Optimization Problem: Given data points X;,..., X, and labels
Vi,...,¥Yn € R, find g, minimizing the loss function:

L(6,X) = Z UMg(%:), y1)
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+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)



. n
=1

+ Supervised means we have labels yy, ..., y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

- Generalization tries to explain why minimizing the loss L(§, X) on
the training points minimizes the loss on future test points. l.e,,
makes us have good predictions on future inputs.



OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing f(¢ ) [l depend on
many things: =

+ The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e, [|4]| < o).

- Other constraints, such as memory constraints.
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OPTIMIZATION ALGORITHMS

-

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

+ The form of f (in ML, depends on the model & loss function).

- Any constraints on 6 (e, [|4]| < o).

- Other constraints, such as memory constraints.

L(6,X) = Z UMg(X1), i)

What are some popular optimization algorithms? ) \
6/‘«9}@!\3( Lsent  |BFes NMD\/\g g\fﬁﬁm
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GRADIENT DESCENT

This class: Gradient descent (and some important variants)
- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

function that is can — in the direction

- At each step, tries to move towards th@lowest nearby point in the

the gradjent.
L |\GPP°j
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MULTIVARIATE CALCULUS REVIEW

Let &; € RY denote the it" standard basis vector,
& =[0,0,1,0,0,...,0].

1at position i
Partial Derivative:
of _ . fB+ec-8)—f(6)

—

a0(i) =0 €

Directional Derivative:
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Gradient: Just a ‘list’ of the partial derivatives.
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MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of

B%SJ)

—

V(o) = |

of

a0(d)

Directional Derivative in Terms of the Gradient:
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Gradient: Just a ‘list’ of the partial derivatives.
of
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MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
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MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
26(1)

00 0() oy |
o
a6(d)

Directional Derivative in Terms of the Gradient:
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FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(#) for any 6.

Gradient Evaluation: Can compute V£(6) for any 6.
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FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(#) for any 6.

Gradient Evaluation: Can compute V£(6) for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).

14



GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:

VLERX) 0= (7% )
i=1 -
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Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
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GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
— _ 2 - —
LX) =3 (0% — i) = X0 = 7.

i=1

By Chain rule:
oL e_"x n . d ()TX)J‘ Vi
(_" ) :Zz (éTXi_yi) U
00()) i—1 20())
\ 0 (% - ) %aw%)
() 00(j)



GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
— _ 2 g -,
LX) =3 (0% — i) = X0 = 7.

i=1

By Chain rule:
aLG.X) _ v N 0 ((FX? yf>
oy~ TR
3(9 Xj — V/) _00R) i ﬁee, Tx> 9777 O "'CQ)X'
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GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
" . 2 I
LX) =3 (0% — i) = X0 = 7.
i=1

By Chain rule:

oL(A,X) & B 9 ((ﬁx} y>
5_'(]‘) = ;2- (Q_TXi —yi) . W
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Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
" . 2 I
LX) =3 (0% — i) = X0 = 7.
i=1

By Chain rule:
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GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*9) and
labels ya, ..., yn (the entries of j € R") , find §, minimizing:
n
" . 2 I
LX) =3 (0% — i) = X0 = 7.
i=1

By Chain rule:

—

o0 S o))
=32 (% —v) %0)
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GRADIENT EXAMPLE

Partial derivative for least squares regression: X - Xa

;. 22 (9 X — YI) Xi())-
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GRADIENT EXAMPLE

Partial derivative for least squares regression:

al OL(7,X) “0)
3'9‘(.\) 0—» : Zz (0 Xj — y% ‘,
: KLJB
AL :
S&0) VLA X) =2 (6% - ) %
i=1

—_
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GRADIENT EXAMPLE

Partial derivative for least squares regression:

;, 22 (9 Xi— y,) Xi())-

n
X)=> 2. (57)_(',-—)/
i=1

X[ (X0 - §).
ox. g

r
6%

[
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GRADIENT EXAMPLE

Gradient for least squares regression via linear algebraic approach:
f(eTx; Wi } VLX) = VIXd 73
| (xs-)" (x@ -@
Ix'x0 - .,wx )é
&)U NG JO’LX\J <9 A \d>
T = Zankl)
&Cﬂ X8 -2y {T¥e
aA (7(0 j>
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GRADIENT DESCENT GREEDY APPROACH

-\ N
o — o'
Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize

f! 60— 4 V).
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Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and V is a direction chosen to mmimize

A6V 4 0.
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Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
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Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:
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Gradient descent is a greedy iterative optimization algorithm:
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Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
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e—0 €

So for small n:

f(BV) = (V) = f(8U) +nv) — 8V ) ~

18



GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 69, in each iteration let §) = 9U=" 4 ¥ where n is a
(small) ‘step size’ and Vis a direction chosen to minimize
O + ).

e

Dy f#-1) = fim TE " V) — B0

e—0 €

So for small n:

FOV) — ED) = OV @) — (VD) ~ oy DA(U)
=1 (7, V')

We want to choose V minimizing (v, VA(U=")) - i.e, pointing in the
direction of V(#U=") but with the opposite sign.

18



GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 69,
- Fori=1,...,t
=G0 = gu=1 — Ui )

- Return 61, as an approximate minimizer of f(6).

Step size i is chosen ahead of time or adapted during the
algorithm (details to come.)
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GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 69,
- Fori=1,...,t
- g0 = gu=1 — el

- Return 61, as an approximate minimizer of f(6).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

When will this algorithm work well?

19
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CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer 4 with:

f(0) < f(0,) + ¢

—_—
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Non-Convex Functions: After sufficient iterations, gradient descent
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CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer 4 with:

f0) < f(6.) + € = minf(0) + .

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVf@)ll2 < e.

Examples: neural networks, clustering, mixture models.

21



STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?
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STATIONARY POINT VS.

LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an

approximate local minimum?

A

N\

f(6)

\
\8

9*
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Gradient Descent Update: ()
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WELL-BEHAVED FUNCTIONS

' £®)

N

— . — .

Gradient Descent Update: 91) = gl=1) — ,,vf(9l-1)
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WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well behaved in some way.
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WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well behaved in some way.

- Lipschitz (size of gradient is bounded): For all 6 and some G,
IVF@)Il, < G.

- Smooth (direction/size of gradient is not changing too
quickly): For all 67,6, and some 8,

IVAGY) — VA2 < B - (161 — 652

25



Gradient Descent analysis for convex functions.
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CONVEXITY

Definition — Convex Function: A function f: RY — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1=X) B +A- @) 2 F((1=2) - 61+ 2 &)

f(6)




CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € RY and X € [0,1]:

f8:) — f81) = VA@) (6. - )

f(6)




GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- fis convex.
- fis G Lipschitz (i.e, |[Vf(A)|l» < G for all 6.
- |6 — 6.2 < R where 6, is the initialization point.

Gradient Descent

- Choose some initialization 6, and setn = —£.

GVt
- Fori=1,...,t

C 0 =0 — V)

* Return § = argmin;
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GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.
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GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

Step 1: For all i, f(8;) — f(0,) < W=0elizlOwi=0-l | nG" yjig o]y

n
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GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

Step 1: For all i, f(6;) — f(6.) < ”9’70*“572“6’“*6*”% + "TGZ Formally:

n
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ

2n

—0,.]2— _ 2 nG2
Step 1.1: VA(0,)(0; — 6.) < [16i—0.I5 2J7|0r+1 0|15 + %
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ

2n

Step 10: Vf(6;)(6; — 6.) < 1=l 0 —0ull 0@ . spep 1,
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

2 2
Step 1: For all i, f(6;) — f(6,) < 10i=0 15— 116i1—0 115 + WTGZ

2n
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GD ANALYSIS PROOF

Theorem - GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
’ oVF
and starting point within radius R of 0., outputs 6 satisfying:

f(6) < f(8.) +e.

Step 1: For all i, f(6;) — f(6.) < 10— Jo— 116 =0-1 | "TGZ —

2n

2 2
Step 2: 1 330, f(6) — f(6.) < 557 + 5

33



GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > @ iterations, n =

R
> o
and starting point within radius R of 6., outputs 6 satisfying:

f(0) < f(6.) + e.

2 2
Step 2: + L, f(0) — f(6.) < o5 + %5
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Questions on Gradient Descent?
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