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logistics

• Problem Set 3 on Spectral Methods due this Friday at 8pm.
• Can turn in without penalty until Sunday at 11:59pm.
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summary

Last Class:

• Power method for computing the top singular vector of a matrix.
• High level discussion of Krylov methods, block versions for
computing more singular vectors.

• Power method is an iterative algorithm for solving the non-convex
optimization problem:

max
v⃗:∥⃗v∥22≤1

v⃗TXTX⃗v.

This Class (and until Thanksgiving):

• More general iterative algorithms for optimization, specifically
gradient descent and its variants.

• What are they methods, when are they applied, and how do you
analyze their performance?

• Small taste of what you can find in COMPSCI 590OP or 690OP.
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discrete vs. continuous optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (not covered in core CS curriculum.
Touched on in ML/advanced algorithms, maybe.)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite
programming
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continuous optimization examples
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mathematical setup

Given some function f : Rd → R, find θ⃗⋆ with:

f(θ⃗⋆) = min
θ⃗∈Rd

f(θ⃗)

+ ϵ

Typically up to some small approximation factor.

Often under some constraints:

• ∥θ⃗∥2 ≤ 1, ∥θ⃗∥1 ≤ 1.
• Aθ⃗ ≤ b⃗, θ⃗TAθ⃗ ≥ 0.
• 1⃗Tθ⃗ =

∑d
i=1 θ⃗(i) ≤ c.
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why continuous optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.
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optimization in ml

Example 1: Linear Regression

Model: Mθ⃗ : Rd → R with Mθ⃗ (⃗x)
def
= ⟨θ⃗, x⃗⟩

= θ⃗(1) · x⃗(1) + . . .+ θ⃗(d) · x⃗(d)

.

Parameter Vector: θ⃗ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) x⃗1, . . . , x⃗n
(the rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find θ⃗∗
minimizing the loss function:

L(θ⃗, X) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

+ R(θ⃗)

where ℓ is some measurement of how far Mθ⃗ (⃗xi) is from yi.

• ℓ(Mθ⃗ (⃗xi), yi) =
(
Mθ⃗ (⃗xi)− yi

)2 (least squares regression)
• yi ∈ {−1, 1} and ℓ(Mθ⃗ (⃗xi), yi) = ln

(
1+ exp(−yiMθ⃗ (⃗xi))

)
(logistic

regression)
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optimization in ml

Example 2: Neural Networks

Model: Mθ⃗ : Rd → R.

Mθ⃗ (⃗x) = ⟨w⃗out, σ(W2σ(W1⃗x))⟩.

Parameter Vector: θ⃗ ∈ R(# edges) (the weights on every edge)

Optimization Problem: Given data points x⃗1, . . . , x⃗n and labels
y1, . . . , yn ∈ R, find θ⃗∗ minimizing the loss function:

L(θ⃗, X) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)
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optimization in ml

L(θ⃗, X) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

• Supervised means we have labels y1, . . . , yn for the training points.

• Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

• Continuous optimization is also very common in unsupervised
learning.

(PCA, spectral clustering, etc.)

• Generalization tries to explain why minimizing the loss L(θ⃗, X) on
the training points minimizes the loss on future test points. I.e.,
makes us have good predictions on future inputs.
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optimization algorithms

Choice of optimization algorithm for minimizing f(θ⃗) will depend on
many things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on θ⃗ (e.g., ∥θ⃗∥ < c).

• Other constraints, such as memory constraints.

L(θ⃗, X) =
n∑
i=1

ℓ(Mθ⃗ (⃗xi), yi)

What are some popular optimization algorithms?
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gradient descent

This class: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

• Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

• At each step, tries to move towards the lowest nearby point in the
function that is can – in the direction of the gradient.
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multivariate calculus review

Let e⃗i ∈ Rd denote the ith standard basis vector,
e⃗i = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸

1 at position i

.

Partial Derivative:

∂f
∂θ⃗(i)

= lim
ϵ→0

f(θ⃗ + ϵ · e⃗i)− f(θ⃗)
ϵ

.

Directional Derivative:

Dv⃗ f(θ⃗) = lim
ϵ→0

f(θ⃗ + ϵ⃗v)− f(θ⃗)
ϵ

.
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multivariate calculus review

Gradient: Just a ‘list’ of the partial derivatives.
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∂f
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...
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∂θ⃗(d)



Directional Derivative in Terms of the Gradient:

D⃗v f(θ⃗) = lim
ϵ→0

f(θ⃗ + ϵ⃗v)− f(θ⃗)
ϵ

≈ v⃗(1) · ∂f
∂θ⃗(1)

+ v⃗(2) · ∂f
∂θ⃗(2)

+ . . .+ v⃗(d) · ∂f
∂θ⃗(d)

= ⟨⃗v, ∇⃗f(θ⃗)⟩.
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function access

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(θ⃗) for any θ⃗.

Gradient Evaluation: Can compute ∇⃗f(θ⃗) for any θ⃗.

In neural networks:

• Function evaluation is called a forward pass (propogate an
input through the network).

• Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).
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gradient example

Running Example: Least squares regression.

Given input points x⃗1, . . . x⃗n (the rows of data matrix X ∈ Rn×d) and
labels y1, . . . , yn (the entries of y⃗ ∈ Rn) , find θ⃗∗ minimizing:

L(θ⃗, X) =
n∑
i=1

(
θ⃗Tx⃗i − yi

)2

= ∥Xθ⃗ − y⃗∥22.

By Chain rule:

∂L(θ⃗, X)
∂θ⃗(j)

=
n∑
i=1

2 ·
(
θ⃗Tx⃗i − yi

)
·
∂
(
θ⃗Tx⃗i − yi

)
∂θ⃗(j)

=
n∑
i=1

2 ·
(
θ⃗Tx⃗i − yi

)
x⃗i(j)

∂
(
θ⃗Tx⃗i − yi

)
∂θ⃗(j)

=
∂(θTx⃗i)
∂θ⃗(j)

= lim
ϵ→0

θTx⃗i − (θ + ϵ⃗ej)Tx⃗i
ϵ

= lim
ϵ→0

ϵ⃗eTj x⃗i
ϵ

= x⃗i(j).
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gradient example

Partial derivative for least squares regression:

∂L(θ⃗, X)
∂θ⃗(j)

=
n∑
i=1

2 ·
(
θ⃗Tx⃗i − yi

)
x⃗i(j).

∇⃗L(θ⃗, X) =
n∑
i=1

2 ·
(
θ⃗Tx⃗i − yi

)
x⃗i

= XT(Xθ⃗ − y⃗).
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gradient example

Gradient for least squares regression via linear algebraic approach:

∇L(θ⃗, X) = ∇∥Xθ⃗ − y⃗∥22

17



gradient descent greedy approach

Gradient descent is a greedy iterative optimization algorithm:
Starting at θ⃗(0), in each iteration let θ⃗(i) = θ⃗(i−1) + ηv⃗, where η is a
(small) ‘step size’ and v⃗ is a direction chosen to minimize
f(θ⃗(i−1) + ηv⃗).

D⃗v f(θ⃗) = lim
ϵ→0

f(θ⃗ + ϵ⃗v)− f(θ⃗)
ϵ

.

So for small η:

f(θ⃗(i))− f(θ⃗(i−1)) = f(θ⃗(i−1) + ηv⃗)− f(θ⃗(i−1))

≈ η · D⃗vf(θ⃗(i−1))

= η · ⟨⃗v, ∇⃗f(θ⃗(i−1))⟩.

We want to choose v⃗ minimizing ⟨⃗v, ∇⃗f(θ⃗(i−1))⟩ – i.e., pointing in the
direction of ∇⃗f(θ⃗(i−1)) but with the opposite sign.
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gradient descent greedy approach

Gradient descent is a greedy iterative optimization algorithm:
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gradient descent psuedocode

Gradient Descent

• Choose some initialization θ⃗(0).
• For i = 1, . . . , t
• θ⃗(i) = θ⃗(i−1) − η∇f(θ⃗(i−1))

• Return θ⃗(t), as an approximate minimizer of f(θ⃗).

Step size η is chosen ahead of time or adapted during the
algorithm (details to come.)

• For now assume η stays the same in each iteration.

When will this algorithm work well?
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Gradient Descent Update: θ⃗(i) = θ⃗(i−1) − η∇f(θ⃗(i−1))
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conditions for gradient descent convergence

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer θ̂ with:

f(θ̂) ≤ f(θ∗) + ϵ

= min
θ
f(θ) + ϵ.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point θ̂ with:

∥∇f(θ̂)∥2 ≤ ϵ.

Examples: neural networks, clustering, mixture models.
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stationary point vs. local minimum

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?
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well-behaved functions

Gradient Descent Update: θ⃗(i) = θ⃗(i−1) − η∇f(θ⃗(i−1))

23



well-behaved functions

Gradient Descent Update: θ⃗(i) = θ⃗(i−1) − η∇f(θ⃗(i−1))

24



well-behaved functions

Both Convex and Non-convex: Need to assume the function is
well behaved in some way.

• Lipschitz (size of gradient is bounded): For all θ⃗ and some G,

∥∇⃗f(θ⃗)∥2 ≤ G.

• Smooth (direction/size of gradient is not changing too
quickly): For all θ⃗1, θ⃗2 and some β,

∥∇⃗f(θ⃗1)− ∇⃗f(θ⃗2)∥2 ≤ β · ∥θ⃗1 − θ⃗2∥2.
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Gradient Descent analysis for convex functions.
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convexity

Definition – Convex Function: A function f : Rd → R is convex
if and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f(θ⃗1) + λ · f(θ⃗2) ≥ f
(
(1− λ) · θ⃗1 + λ · θ⃗2

)
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convexity

Corollary – Convex Function: A function f : Rd → R is convex if
and only if, for any θ⃗1, θ⃗2 ∈ Rd and λ ∈ [0, 1]:

f(θ⃗2)− f(θ⃗1) ≥ ∇⃗f(θ⃗1)T
(
θ⃗2 − θ⃗1

)
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gd analysis – convex functions

Assume that:

• f is convex.
• f is G Lipschitz (i.e., ∥∇⃗f(θ⃗)∥2 ≤ G for all θ⃗.
• ∥θ⃗0 − θ⃗∗∥2 ≤ R where θ0 is the initialization point.

Gradient Descent

• Choose some initialization θ⃗0 and set η = R
G
√
t .

• For i = 1, . . . , t
• θ⃗i = θ⃗i−1 − η∇f(θ⃗i−1)

• Return θ̂ = argmin
θ⃗0,...θ⃗t

f(θ⃗i).
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gd analysis proof

Theorem – GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t ≥ R2G2

ϵ2 iterations, η = R
G
√
t ,

and starting point within radius R of θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(θ∗) + ϵ.

Step 1: For all i, f(θi)− f(θ∗) ≤ ∥θi−θ∗∥22−∥θi+1−θ∗∥22
2η + ηG2

2 . Visually:
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gd analysis proof

Theorem – GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t ≥ R2G2

ϵ2 iterations, η = R
G
√
t ,

and starting point within radius R of θ∗, outputs θ̂ satisfying:

f(θ̂) ≤ f(θ∗) + ϵ.

Step 1: For all i, f(θi)− f(θ∗) ≤ ∥θi−θ∗∥22−∥θi+1−θ∗∥22
2η + ηG2

2 .

Step 1.1: ∇f(θi)(θi − θ∗) ≤ ∥θi−θ∗∥22−∥θi+1−θ∗∥22
2η + ηG2

2

=⇒ Step 1.
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Questions on Gradient Descent?
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