COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco

University of Massachusetts Amherst. Fall 2019.
Lecture 18

LOGISTICS

- Problem Set 3 on Spectral Methods due this Friday at 8pm.
- Can turn in without penalty until Sunday at 11:59pm.

SUMMARY

Last Class:

+ Power method for computing the top singular vector of a matrix.

- High level discussion of Krylov methods, block versions for
computing more singular vectors.

SUMMARY

Last Class:

+ Power method for computing the top singular vector of a matrix.
- High level discussion of Krylov methods, block versions for
computing more singular vectors.

- Power method is an iterative algorithm for solving the non-convex
optimization problem: L
max V' X'Xv.

v[7I3<

This Class (and until Thanksgiving):
- More general iterative algorithms for optimization, specifically

gradient descent and its variants.

- What are they methods, when are they applied, and how do you
analyze their performance?

- Small taste of what you can find in COMPSCI 5900P or 6900P. ?

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
-+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
-+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
-+ Graph Problems: min-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

- Problems with discrete constraints or outputs: bin-packing,
scheduling, sequence alignment, submodular maximization

- Generally searching over a finite but exponentially large set of
possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (not covered in core CS curriculum.
Touched on in ML/advanced algorithms, maybe.)
+ Unconstrained convex and non-convex optimization.

- Linear programming, quadratic programming, semidefinite
programming

CONTINUOUS OPTIMIZATION EXAMPLES

6 eR

f0eR

9*

9*

CONTINUOUS OPTIMIZATION EXAMPLES

AN O eR = 6 € R

6 € R?

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

f(6,) = min f(6)

GeRrd

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

f(6,) = minf(6) + ¢
geRrd

Typically up to some small approximation factor.

MATHEMATICAL SETUP

Given some function f: RY — R, find 6, with:

f(6,) = minf(6) + ¢
geRrd

Typically up to some small approximation factor.
Often under some constraints:

C (16l <1 18] <1

- AG<b, 0TA6>0.

STE=%29 6() < c.

WHY CONTINUOUS OPTIMIZATION?

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

+ Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

+ Have a model, which is a function mapping inputs to predictions
(neural network, linear function, low-degree polynomial etc).

- The model is parameterized by a parameter vector (weights in a
neural network, coefficients in a linear function or polynomial)

- Want to train this model on input data, by picking a parameter
vector such that the model does a good job mapping inputs to
predictions on your training data.

This training step is typically formulated as a continuous
optimization problem.

OPTIMIZATION IN ML

Example 1: Linear Regression

OPTIMIZATION IN ML

Example 1: Linear Regression

Model: My : RY — R with Mz(X) %' (6, %)

OPTIMIZATION IN ML

Example 1: Linear Regression

Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).

Parameter Vector: § € R? (the regression coefficients)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).
Parameter Vector: § € R? (the regression coefficients)

Optimization Problem: Given data points (training points) X1, ...,
(the rows of data matrix X € R"*9) and labels y1,...,y, € R, find
minimizing the loss function:

Xn
0.

L(6,X) = Z UMz(%), y1)

where ¢ is some measurement of how far M(X;) is from y;.

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).
Parameter Vector: § € R? (the regression coefficients)

Optimization Problem: Given data points (training points) X1, ..
(the rows of data matrix X € R"<9) and labels y1,...,y, € R, ﬁnd
minimizing the loss function:

X) = Zg(MG(XI) yl)

where ¢ is some measurement of how far M(X;) is from y;.

UMy(%),yi) = (Mg
- yi € {=1,1} and £(Mz(X}),yi) = In (1 + exp(—yiMz(X;))) (logistic
regression)

- Xn
0.

(X;) — y,-) (least squares regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).
Parameter Vector: § € R? (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..
(the rows of data matrix X € R"<9) and labels y1,...,y, € R, ﬁnd
minimizing the loss function:

Zé) + R(6)

where ¢ is some measurement of how far M(X;) is from y;.

UMy(%),yi) = (Mg
- yi € {=1,1} and £(Mz(X}),yi) = In (1 + exp(—yiMz(X;))) (logistic
regression)

- Xn
0.

(X;) — y,-) (least squares regression)

OPTIMIZATION IN ML

Example 1: Linear Regression
Model: M, : RY — R with M(X) % (6,%) = 6(1) - X(1) + + 6(d) - X(d).
Parameter Vector: § € R? (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..
(the rows of data matrix X € R"<9) and labels y1,...,y, € R, ﬁnd
minimizing the loss function:

Zﬂ
where ¢ is some measurement of how far M(X;) is from y;.

UMy(%),yi) = (Mg
- yi € {=1,1} and £(Mz(X}),yi) = In (1 + exp(—yiMz(X;))) (logistic
regression)

- Xn
0.

(X;) — y,-) (least squares regression)

OPTIMIZATION IN ML

Example 2: Neural Networks

Input Layer Layer 1 Layer 2 Layer

OPTIMIZATION IN ML

Example 2: Neural Networks

Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R.

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

OPTIMIZATION IN ML

Example 2: Neural Networks

Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wour, o (Woo(W1X))).

Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

OPTIMIZATION IN ML

Example 2: Neural Networks

Input Layer Layer 1 Layer 2 Layer

Model: My : RY — R. Mz(X) = (Wour, o (Woo(W1X))).
Parameter Vector: § € R(# €d9¢s) (the weights on every edge)

Optimization Problem: Given data points Xi,...,X, and labels
Vi,....Vn € R find 6, minimizing the loss function:

L(F,X) = Zé(/\/‘g()?«')vyi)

OPTIMIZATION IN ML

L(O,X) = > (M), v;)

i=1

- Supervised means we have labels y4,...,y, for the training points.

OPTIMIZATION IN ML

L(O,X) = > (M), v;)

i=1

- Supervised means we have labels y4,...,y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

OPTIMIZATION IN ML

n

L(O,X) = > (M), v;)

i=1

- Supervised means we have labels y4,...,y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning.

OPTIMIZATION IN ML

L(6,X) = Z UMa(X3), i)

- Supervised means we have labels y4,...,y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

OPTIMIZATION IN ML

L(6,X) = Z UMa(X3), i)

- Supervised means we have labels y4,...,y, for the training points.

- Solving the final optimization problem has many different names:
likelihood maximization, empirical risk minimization, minimizing
training loss, etc.

- Continuous optimization is also very common in unsupervised
learning. (PCA, spectral clustering, etc.)

* Generalization tries to explain why minimizing the loss L(@,X) on
the training points minimizes the loss on future test points. l.e,
makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

=

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).

- Any constraints on 6 (e.g, ||4]| < c).

- Other constraints, such as memory constraints.

OPTIMIZATION ALGORITHMS

=

Choice of optimization algorithm for minimizing f(#) will depend on
many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on 6 (e.g, ||4]| < c).

- Other constraints, such as memory constraints.
n
L(O.X) = eMz(X), vi)
i=1

What are some popular optimization algorithms?

GRADIENT DESCENT

This class: Gradient descent (and some important variants)

1

GRADIENT DESCENT

This class: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

1

GRADIENT DESCENT

This class: Gradient descent (and some important variants)
- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

1

GRADIENT DESCENT

This class: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in the
function that is can - in the direction of the gradient.

1

GRADIENT DESCENT

This class: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied
to almost any continuous function we care about optimizing.

- Often not the ‘best’ choice for any given function, but it is the
approach of choice in ML since it is simple, general, and often
works very well.

- At each step, tries to move towards the lowest nearby point in the
function that is can - in the direction of the gradient.

1

MULTIVARIATE CALCULUS REVIEW

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0]

1at position i

MULTIVARIATE CALCULUS REVIEW

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0]

1at position i

Partial Derivative:

Of _ i fl+c&)-(6)

i

89() e—0 €

MULTIVARIATE CALCULUS REVIEW

Let & € R? denote the it standard basis vector,
& =10,0,1,0,0,...,0]

1at position i

Partial Derivative:

of i [0+ &) —f6)
|

89() e—0 €
Directional Derivative:

Dy f(8) = lim
e—0

A6+ &) — f(6)

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
7

v1(8) = |

o
a6(d)

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
o)

—

vie) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

Dy f(6) = lim f(0 + V) — £(6)

e—0

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
o)

—

vie) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

i FO+ €@ (1) + & - V(2) + ...+ & - () — f(0)

e—0 €

=,

Dy f(0)

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
o)

—

vie) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

iy T+ (B V(1) + & -¥(2) + ... + &9 - ¥(d)) — f()

e—0 €

=,

Dy f(0)

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
o)

Vo) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

im O+ €@ V() +8& - V(2)+...+84-V(d)) —f(6)
e—0 €

of

90(1)

=,

Dy f(0)

Q

7(1)

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
7

—

vie) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

03 00) = lim fO+ (@ 7(1) + &)+ 48 W) ~f9)
oy, O o Of v Of
~v) 20(1) 2 o) va) 00(d)

13

MULTIVARIATE CALCULUS REVIEW

Gradient: Just a ‘list’ of the partial derivatives.
of
a0(1
7

—

vie) = | 7
o
00(d)

Directional Derivative in Terms of the Gradient:

va(q):[mf(me(a-V(1)+éz-V(26)+...+éd-9(d))—f(*)
~7. Y gy T id) -
~ V(1) 85(1)+V(2) a9_,(2)4—...—s—v(d) 23(d)
= (V, Vf(0)).

13

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(f) for any 6.

Gradient Evaluation: Can compute V£(4) for any 6.

14

FUNCTION ACCESS

Often the functions we are trying to optimize are very complex
(e.g., a neural network). We will assume access to:

Function Evaluation: Can compute f(f) for any 6.

Gradient Evaluation: Can compute V£(4) for any 6.

In neural networks:

- Function evaluation is called a forward pass (propogate an
input through the network).

- Gradient evaluation is called a backward pass (compute the
gradient via chain rule, using backpropagation).

14

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

LX) =Y (7%)

i=1

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:

—‘]—_, = — - 4
0 <9 Xi— y,) 0% im 0X; — (0 + €€))'X;

=3

06()) 96(j) =0 ¢

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:
— n o (_70)? — Vi
OL0.%) _ 32 (éTX/ y/) , (!)
26()j) — 00())
e - B L ~
0 <9 Xi — yi) _ a(@TX,') —lim HTX,' — (9 + Gej)TX,‘ _lim €e]TXI
o)) oh) =0 ‘ e

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:
. n (7% —v;
oL0.%) _ 2 (0% - vi) - U
90()) i=1 060)
o) . L ;
o (0% i) _ AR _ RO e@)T_ EK
290) o) " ‘ e

15

GRADIENT EXAMPLE

Running Example: Least squares regression.

Given input points X, ... X, (the rows of data matrix X € R"*4) and
labels ya, ..., v, (the entries of § € R") , find 6, minimizing:

n
LEX) =3 (7%) = X071

i=1

By Chain rule:
oL X B o(07% —y
(0):Zz'(éTX’_y’) ()
96()) i=1 080)
n
= Zz . (9_7)?, —y/) Xl(j)
=1
%) o), 050 @)% <@ = %))
00(j) o0(j) =0 ‘ e

15

GRADIENT EXAMPLE

Partial derivative for least squares regression:

g Zz (0% = 1) %).

16

GRADIENT EXAMPLE

Partial derivative for least squares regression:

g Zz (0% = 1) %).

22”22. (5%—)//)%/
i=1

16

GRADIENT EXAMPLE

Partial derivative for least squares regression:

g Zz (0% = 1) %).

22”22. (5%—)//)%/
i=1

=X'(X0 — V).

16

GRADIENT EXAMPLE

Gradient for least squares regression via linear algebraic approach:

VL(0,X) = VX8 - 3

17

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

U= 4).

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize
A +),
. =0
Dy f(6) = lim JM

e—0 €

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

D +).

) H(i—1) I 1)
Dy F(@-) = 1im O+ V) ~f(F

e—0 €

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

D +).

Dy f(O1~ 1))*llm) 4 €) — f(B')

e—0 €

So for small »:

F80) — V) = F@)+ 7) — £V)

18

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

D +).

Dy f(O1~ 1))*llm) 4 €) — f(B')

e—0 €

So for small »:

fBV) — FBUD) = fOU + @) — f(BU7) ~ - DA(V)

18

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

D +).

Dy f(O1~ 1))*llm) 4 €) — f(B')

e—0 €

So for small »:

fBV) — FBUD) = fOU + @) — f(BU7) ~ - DA(V)
=1 (7, V')

18

GRADIENT DESCENT GREEDY APPROACH

Gradient descent is a greedy iterative optimization algorithm:
Starting at 6(9, in each iteration let 80 = 4U=" + 5 where n is a
(small) ‘step size’ and V is a direction chosen to minimize

D +).

Dy f(O1~ 1))*llm) 4 €) — f(B')

e—0 €

So for small »:

fBV) — FBUD) = fOU + @) — f(BU7) ~ - DA(V)
=1 (7, V')

We want to choose v minimizing (v, VAAU=M)) - i.e, pointing in the
direction of Vf(~") but with the opposite sign.

18

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 6.
- Fori=1,...,t

.

- g0 = gu=1 — Ul

- Return 61, as an approximate minimizer off(g).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

19

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 6.
- Fori=1,...,t
. é’(/‘) _ 5(/'71) _ nvf((_f(c—'\))

- Return 61, as an approximate minimizer off(g).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

19

GRADIENT DESCENT PSUEDOCODE

Gradient Descent

- Choose some initialization 6.
- Fori=1,...,t
. é’(/‘) _ 5(/'71) _ nvf((_f(c—'\))

- Return 61, as an approximate minimizer off(g).

Step size n is chosen ahead of time or adapted during the
algorithm (details to come.)

- For now assume 7 stays the same in each iteration.

When will this algorithm work well?

19

BeER Vf(B)ER

I

f(6)

f(8)

N 9*

Gradient Descent Update: () = gli—")

9*

20

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer with:

f(0) < f(6.) + €

21

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer with:

fB) < f(8.) + € = minf(0) +e.

21

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer with:

fB) < f(8.) + € = minf(0) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

21

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer with:

fB) < f(8.) + € = minf(0) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVFO)I2 < e.

21

CONDITIONS FOR GRADIENT DESCENT CONVERGENCE

Convex Functions: After sufficient iterations, gradient descent will
converge to a approximate minimizer with:

fB) < f(8.) + € = minf(0) +e.

Examples: least squares regression, logistic regression, sparse
regression (lasso), regularized regression, SVMS,...

Non-Convex Functions: After sufficient iterations, gradient descent
will converge to a approximate stationary point 8 with:

IVFO)I2 < e.

Examples: neural networks, clustering, mixture models.

21

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?

22

STATIONARY POINT VS. LOCAL MINIMUM

Why for non-convex functions do we only guarantee
convergence to a approximate stationary point rather than an
approximate local minimum?

' r

N £(6) £(6)

s
A
y

o 6"

22

WELL-BEHAVED FUNCTIONS

0ER Vf(O) ER
\"

f(6)

9*
Gradient Descent Update: () = gU=" — ;) vf(pl-1)

23

WELL-BEHAVED FUNCTIONS

t f(9)

Gradient Descent Update: () = gU=1 — ,vf(l-1)

2%

WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well behaved in some way.

25

WELL-BEHAVED FUNCTIONS

Both Convex and Non-convex: Need to assume the function is
well behaved in some way.

- Lipschitz (size of gradient is bounded): For all and some G,
IVAO). < 6.

- Smooth (direction/size of gradient is not changing too
quickly): For all 63,6, and some 8,

IVA(G:) = VAG)ll2 < 8- 1167 — 2.

25

Gradient Descent analysis for convex functions.

26

CONVEXITY

Definition — Convex Function: A function f: R — R is convex
if and only if, for any 6,6, € RY and X € [0,1]:

(1= X)fB) + A f@) = F((1=2) - 61+ A 6)

f(6)

A

|

CONVEXITY

Corollary - Convex Function: A function f: R? — R is convex if
and only if, for any 6,6, € R? and X € [0,1]:

= —n

f8:) —£81) = V@) (6, - &)

f(6)

A

|

GD ANALYSIS — CONVEX FUNCTIONS

Assume that:

- fis convex.
- fis G Lipschitz (i.e, |[Vf()|, < G for all 4.
- |6 — 6,2 < R where 6y is the initialization point.

Gradient Descent

- Choose some initialization # and set n = —&-.

GVt
- Fori=1,...,t
: é; = 97‘4 —ﬂvf(/;sfw)

29

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

30

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 1: For alli, f(6;) — f(0.) < 10=Clicl0wi=0ull | 6 yjgy 51y,

30

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 1: For all i, f(6;) — f(6«) < ”‘9’79*“5727‘19‘”79*“5 + ”%7 Formally:

31

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*“5529‘”79*‘@ + ”%2

Step 11: V(0)(0) — 0.) < L=telilontell | u

32

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*“5529‘”79*‘@ + ”%2

Step 1.1: Vf(6))(6; — 6.) < \|0,70*Hz*27|7\0/+1*0*\|2 + % — Step 1.

32

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

Step 1: For all i, f(6;) — f(0.) < ”0’79*‘@;,@9‘”79*% + ”zﬁ

33

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
~ G\/7y
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f(6.) +e.

. _ 2_ _ 2 2
Step 1: For all i, f(0)) — fi9.) < 1=l l0m=0-b 4 nG

Step 2: 1 5L, f(6)) — f(6.) < £+ + 1<

33

GD ANALYSIS PROOF

Theorem — GD on Convex Lipschitz Functions: For convex G
Lipschitz function f, GD run with t > g iterations, n =

R
R GVt
and starting point within radius R of 6., outputs 6 satisfying:

f(0) <f0.) +e.

Step 2: 1 5L f(6)) — f(6.) < £+ + 1<

34

Questions on Gradient Descent?

35

