COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 16

Last Class:

- \cdot Spectral clustering and embeddings
- Started application to stochastic block model.

Last Class:

- Spectral clustering and embeddings
- Started application to stochastic block model.

This Class:

- Finish up stochastic block model.
- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.

Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.

Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- · Connections are independent.

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

 $G_n(p,q)$: stochastic block model distribution. *B*, *C*: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What is the rank of **E**[A] and how can you see this quickly?

 $G_n(p,q)$: stochastic block model distribution. *B*, *C*: groups with n/2 nodes each. Connections are independent with probability *p* between nodes in the same group, and probability *q* between nodes not in the same group.

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What is the rank of **E**[A] and how can you see this quickly? How many nonzero eigenvalues does **E**[A] have?

 $G_n(p,q)$: stochastic block model distribution. *B*, *C*: groups with n/2 nodes each. Connections are independent with probability *p* between nodes in the same group, and probability *q* between nodes not in the same group.

EXPECTED ADJACENCY SPECTRUM

EXPECTED ADJACENCY SPECTRUM

- $\vec{v}_1 = \vec{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\vec{v}_2 = \chi_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.
- $\chi_{B,C}(i) = 1$ if $i \in B$ and $\chi_{B,C}(i) = -1$ for $i \in C$.

EXPECTED ADJACENCY SPECTRUM

- $\vec{v}_1 = \vec{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\vec{v}_2 = \chi_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.
- $\chi_{B,C}(i) = 1$ if $i \in B$ and $\chi_{B,C}(i) = -1$ for $i \in C$.

If we compute \vec{v}_2 then we recover the communities B and C!

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

How do we show that a matrix (e.g., **A**) is close to its expectation? Matrix concentration inequalities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Exercise: Show that $||\mathbf{X}||_2$ is equal to the largest singular value of **X**. For symmetric **X** (like $\mathbf{A} - \mathbb{E}[\mathbf{A}]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

 $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Exercise: Show that $||\mathbf{X}||_2$ is equal to the largest singular value of **X**. For symmetric **X** (like $\mathbf{A} - \mathbb{E}[\mathbf{A}]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second eigenvectors of **A** and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A} - \overline{\mathbf{A}}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i , for all i:

$$\sin[heta(\mathsf{v}_i, ar{\mathsf{v}}_i)] \leq rac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of \overline{A} .

The errors get large if there are eigenvalues with similar magnitudes.

EIGENVECTOR PERTURBATION

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

 $\sin\theta(\mathbf{v}_2, \bar{\mathbf{v}}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(\mathbf{v}_2, \overline{\mathbf{v}}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(\mathbf{v}_2, \bar{\mathbf{v}}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right)$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i-\lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right)$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

So Far:
$$\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$
.

So Far: $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

• Can show that this implies $\|v_2 - \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).

So Far: $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^{2n}}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

So Far: $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^{2n}}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

• Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 - \bar{v}_2||_2^2$.

So Far: $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^{2n}}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 \bar{v}_2||_2^2$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

• Why does the error increase as q gets close to p?

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

- Why does the error increase as q gets close to p?
- Even when $p q = O(1/\sqrt{n})$, assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.

Questions on spectral partitioning?

We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?

COMPUTING THE SVD

To compute the SVD of $A \in \mathbb{R}^{n \times d}$, $A = U\Sigma V^T$, first compute V. Then compute $U\Sigma = AV$.

COMPUTING THE SVD

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, first compute V. Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{A} \mathbf{V}$.

• Compute $\mathbf{A}^T \mathbf{A} - O(nd^2)$ runtime.

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, first compute V. Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^T \mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $A^T A = V \Lambda V^T O(d^3)$ runtime.

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$, first compute V. Then compute $\mathbf{U} \boldsymbol{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^T \mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$, first compute V. Then compute $\mathbf{U} \boldsymbol{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^{\mathsf{T}}\mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3)$

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$, first compute V. Then compute $\mathbf{U} \boldsymbol{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^T \mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$, first compute \mathbf{V} . Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^{\mathsf{T}}\mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)

• If we have n = 10 million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$, first compute \mathbf{V} . Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^{\mathsf{T}}\mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{T}} O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)

- If we have n = 10 million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!
- The worlds fastest super computers compute at \approx 100 petaFLOPS = 10¹⁷ FLOPS (floating point operations per second).

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$, first compute \mathbf{V} . Then compute $\mathbf{U} \mathbf{\Sigma} = \mathbf{A} \mathbf{V}$.

- Compute $\mathbf{A}^{\mathsf{T}}\mathbf{A} O(nd^2)$ runtime.
- Find eigendecomposition $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T O(d^3)$ runtime.
- Compute L = AV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$. $O(nd^2)$ runtime.

Total runtime: $O(nd^2 + d^3) = O(nd^2)$ (assume w.l.o.g. $n \ge d$)

- If we have n = 10 million images with $200 \times 200 \times 3 = 120,000$ pixel values each, runtime is 1.5×10^{17} operations!
- The worlds fastest super computers compute at \approx 100 petaFLOPS = 10¹⁷ FLOPS (floating point operations per second).
- This is an easy task for them but no one else.

• Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an *iterative algorithm* to compute an *approximation* to the top k singular vectors V_k .

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an *iterative algorithm* to compute an *approximation* to the top k singular vectors V_k .
- Runtime will be roughly O(ndk) instead of $O(nd^2)$.

- Suffices to compute $V_k \in \mathbb{R}^{d \times k}$ and then compute $U_k \Sigma_k = AV_k$.
- Use an *iterative algorithm* to compute an *approximation* to the top k singular vectors V_k .
- Runtime will be roughly O(ndk) instead of $O(nd^2)$.

Won't cover: randomized methods, which can be much faster in some cases.

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

• Directly manipulate the entries of the input matrix **A**. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

• Directly manipulate the entries of the input matrix **A**. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

 Generally only access A via a sequence of matrix vector multiplications. Ax₁, Ax₂,..., Ax_t.

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

• Directly manipulate the entries of the input matrix **A**. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. Ax_1, Ax_2, \ldots, Ax_t .
- Runtime is # iterations $t \times$ matrix vector multiplication time = $O(nnz(A) \cdot t) = O(ndt)$ where nnz(A) is the number of nonzero entries in A.

Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

• Directly manipulate the entries of the input matrix **A**. Typically run in $O(n^3)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. Ax_1, Ax_2, \ldots, Ax_t .
- Runtime is # iterations $t \times$ matrix vector multiplication time = $O(nnz(A) \cdot t) = O(ndt)$ where nnz(A) is the number of nonzero entries in A.
- Not just for sparse matrices!

Matlab:

svd and eig vs. svds and eigs

SciPy (Python):

scipy.linalg.svd vs. scipy.sparse.linalg.svds

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing k = 1 singular vectors.

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing k = 1 singular vectors. **Goal:** Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, with SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$, find $\vec{z} \approx \vec{v}_1$. **Power Method:** The most fundamental iterative method for approximate SVD. Applies to computing k = 1 singular vectors. **Goal:** Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, with SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$, find $\vec{z} \approx \vec{v}_1$.

- Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For i = 1, ..., t
 - $\cdot \vec{z}^{(i)} = \mathbf{A}^{\mathrm{T}} \cdot (\mathbf{A} \vec{z}^{(i-1)})$
 - $n_i = \|\vec{z}^{(i)}\|_2$
 - $\cdot \ \vec{z}^{(i)} = \vec{z}^{(i)}/n_i$

Return $ec{z}_t$

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing k = 1 singular vectors. **Goal:** Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, with SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$, find $\vec{z} \approx \vec{v}_1$.

- Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0, 1)$.
- For i = 1, ..., t• $\vec{z}^{(i)} = \mathbf{A}^T \cdot (\mathbf{A} \vec{z}^{(i-1)})$ Runtime: $2 \cdot nd$ • $n_i = \|\vec{z}^{(i)}\|_2$ Runtime: d• $\vec{z}^{(i)} = \vec{z}^{(i)}/n_i$ Runtime: dReturn \vec{z}_t

Total Runtime: O(ndt)

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + \vec{c}_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$$

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + \vec{c}_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$$

Update step: $\vec{z}^{(i)} = \mathbf{A}^T \cdot (\mathbf{A}\vec{z}^{(i-1)}) = \mathbf{V}\mathbf{\Sigma}^2 \mathbf{V}^T \vec{z}^{(i-1)}$ (then normalize)

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$\vec{z}^{(0)} = c_1 \vec{v}_1 + \vec{c}_2 \vec{v}_2 + \ldots + c_d \vec{v}_d$$

Update step: $\vec{z}^{(i)} = A^T \cdot (A\vec{z}^{(i-1)}) = V \Sigma^2 V^T \vec{z}^{(i-1)}$ (then normalize) Claim:

$$\vec{z}^{(1)} = \frac{1}{n_1} \left[c_1 \cdot \sigma_1^2 \vec{v}_1 + \mathbf{c}_2 \cdot \sigma_2^2 \vec{v}_2 + \ldots + c_d \cdot \sigma_d^2 \vec{v}_d \right]$$

POWER METHOD INTUITION

Claim:

$$\vec{z}^{(t)} = \frac{1}{\prod_{i=1}^{t} n_i} \left[c_1 \cdot \sigma_1^{2t} \vec{v}_1 + \mathbf{c}_2 \cdot \sigma_2^{2t} \vec{v}_2 + \ldots + c_d \cdot \sigma_d^{2t} \vec{v}_d \right]$$

After t iterations, you have 'powered' up the singular values, making the component in the direction of v_1 much larger, relative to the other components.

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps:

$$\|\vec{\mathbf{v}}_1 - \vec{\mathbf{z}}^{(t)}\|_2 \le \epsilon.$$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps:

$$\|\vec{\mathsf{V}}_1 - \vec{\mathsf{Z}}^{(t)}\|_2 \le \epsilon.$$

Total runtime: $O\left(\operatorname{nnz}(\mathsf{A}) \cdot \frac{\log d/\epsilon}{\gamma} \cdot\right) = O\left(nd \cdot \frac{\log d/\epsilon}{\gamma} \cdot\right).$

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps:

$$\|\vec{v}_1 - \vec{z}^{(t)}\|_2 \le \epsilon.$$

Total runtime: $O\left(\operatorname{nnz}(\mathsf{A}) \cdot \frac{\log d/\epsilon}{\gamma}\right) = O\left(nd \cdot \frac{\log d/\epsilon}{\gamma}\right)$. Next Time: Will analyze this method formally.