## COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 16

## SUMMARY

## Last Class:

- Spectral clustering and embeddings
- Started application to stochastic block model.


## SUMMARY

## Last Class:

- Spectral clustering and embeddings
- Started application to stochastic block model.


## This Class:

- Finish up stochastic block model.
- Efficient algorithms for SVD/eigendecomposition.
- Iterative methods: power method, Krylov subspace methods.


## STOCHASTIC BLOCK MODEL

Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.

## STOCHASTIC BLOCK MODEL

Goal: Argue the effectiveness of spectral clustering in a natural, if oversimplified, generative model.
Stochastic Block Model (Planted Partition Model): Let $G_{n}(p, q)$ be a distribution over graphs on $n$ nodes, split equally into two groups $B$ and $C$, each with $n / 2$ nodes.

- Any two nodes in the same group are connected with probability p (including self-loops).
- Any two nodes in different groups are connected with prob. $q<p$.
- Connections are independent.




## EXPECTED ADJACENCY SPECTRUM

Letting $G$ be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i, j}=p$ for $i, j$ in same group, $(\mathbb{E}[A])_{i, j}=q$ otherwise.

$G_{n}(p, q)$ : stochastic block model distribution. $B, C$ : groups with $n / 2$ nodes each. Connections are independent with probability $p$ between nodes in the same group, and probability $q$ between nodes not in the same group.

## EXPECTED ADJACENCY SPECTRUM

Letting $G$ be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i, j}=p$ for $i, j$ in same group, $(\mathbb{E}[A])_{i, j}=q$ otherwise.

$G_{n}(p, q)$ : stochastic block model distribution. B, C: groups with $n / 2$ nodes each. Connections are independent with probability $p$ between nodes in the same group, and probability $q$ between nodes not in the same group.

## EXPECTED ADJACENCY SPECTRUM

Letting $G$ be a stochastic block model graph drawn from $G_{n}(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i, j}=p$ for $i, j$ in same group, $(\mathbb{E}[A])_{i, j}=q$ otherwise.


> What is the rank of $\mathbb{E}[A]$ and how can you see this quickly?
> How many nonzero
> eigenvalues does $\mathbb{E}[A]$ have?

$G_{n}(p, q)$ : stochastic block model distribution. B, C: groups with $n / 2$ nodes each. Connections are independent with probability $p$ between nodes in the same group, and probability $q$ between nodes not in the same group.

## EXPECTED ADJACENCY SPECTRUM



## EXPECTED ADJACENCY SPECTRUM



- $\vec{v}_{1}=\overrightarrow{1}$ with eigenvalue $\lambda_{1}=\frac{(p+q) n}{2}$.
- $\vec{v}_{2}=\chi_{B, C}$ with eigenvalue $\lambda_{2}=\frac{(p-q) n}{2}$.
- $\chi_{B, C}(i)=1$ if $i \in B$ and $\chi_{B, C}(i)=-1$ for $i \in C$.


## EXPECTED ADJACENCY SPECTRUM



- $\vec{v}_{1}=\overrightarrow{1}$ with eigenvalue $\lambda_{1}=\frac{(p+q) n}{2}$.
- $\vec{v}_{2}=\chi_{B, C}$ with eigenvalue $\lambda_{2}=\frac{(p-q) n}{2}$.
- $\chi_{B, C}(i)=1$ if $i \in B$ and $\chi_{B, C}(i)=-1$ for $i \in C$.

If we compute $\vec{V}_{2}$ then we recover the communities $B$ and $C$ !

## EXPECTED LAPLACIAN SPECTRUM

Letting $G$ be a stochastic block model graph drawn from
$G_{n}(p, q), A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$ ?

## EXPECTED LAPLACIAN SPECTRUM

Letting $G$ be a stochastic block model graph drawn from
$G_{n}(p, q), A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$ ?

## EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

## EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the random graph $G$ (equivilantly $A$ and $L$ ) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities $B$ and $C$.


## EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the random graph $G$ (equivilantly $A$ and $L$ ) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities $B$ and $C$.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

## EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the random graph $G$ (equivilantly $A$ and $L$ ) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities $B$ and $C$.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.


## EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the random graph $G$ (equivilantly $A$ and $L$ ) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover the two communities $B$ and $C$.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.


## MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \geq O\left(\frac{\log ^{4} n}{n}\right)$, then with high probability

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

where $\|\cdot\|_{2}$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d},\|\mathrm{X}\|_{2}=\max _{z \in \mathbb{R}^{d}:\|z\|_{2}=1}\|X z\|_{2}$.

## MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \geq O\left(\frac{\log ^{4} n}{n}\right)$, then with high probability

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

where $\|\cdot\|_{2}$ is the matrix spectral norm (operator norm).

For any $\mathrm{X} \in \mathbb{R}^{n \times d},\|\mathrm{X}\|_{2}=\max _{z \in \mathbb{R}^{d}:\|z\|_{2}=1}\|\mathrm{XZ}\|_{2}$.
Exercise: Show that $\|X\|_{2}$ is equal to the largest singular value of $X$. For symmetric $X$ (like $A-\mathbb{E}[A]$ ) show that it is equal to the magnitude of the largest magnitude eigenvalue.

## MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \geq O\left(\frac{\log ^{4} n}{n}\right)$, then with high probability

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

where $\|\cdot\|_{2}$ is the matrix spectral norm (operator norm).

For any $\mathrm{X} \in \mathbb{R}^{n \times d},\|\mathrm{X}\|_{2}=\max _{z \in \mathbb{R}^{d}:\|z\|_{2}=1}\|\mathrm{Xz}\|_{2}$.
Exercise: Show that $\|X\|_{2}$ is equal to the largest singular value of $X$. For symmetric $X$ (like $A-\mathbb{E}[A]$ ) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second eigenvectors of $A$ and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

## EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathrm{A}, \overline{\mathrm{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathrm{A}-\overline{\mathrm{A}}\|_{2} \leq \epsilon$ and eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$ and $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{d}$. Letting $\theta\left(v_{i}, \bar{v}_{i}\right)$ denote the angle between $v_{i}$ and $\bar{v}_{i}$, for all $i$ :

$$
\sin \left[\theta\left(v_{i}, \bar{v}_{i}\right)\right] \leq \frac{\epsilon}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

where $\lambda_{1}, \ldots, \lambda_{d}$ are the eigenvalues of $\overline{\mathrm{A}}$.

The errors get large if there are eigenvalues with similar magnitudes.

## EIGENVECTOR PERTURBATION



## APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathrm{A}]$, has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathrm{A}]$, has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathrm{A}]$, has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

Typically, $\frac{(p-q) n}{2}$ will be the minimum of these two gaps.
A adjacency matrix of random stochastic block model graph. $p$ : connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|A-\mathbb{E}[A]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq 0\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|} \leq \frac{O(\sqrt{p n})}{(p-q) n / 2}=O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)
$$

Recall: $\mathbb{E}[\mathcal{A}]$, has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

Typically, $\frac{(p-q) n}{2}$ will be the minimum of these two gaps.
A adjacency matrix of random stochastic block model graph. $p$ : connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{\bar{p}}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|\mathrm{V}_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- $\bar{v}_{2}$ is $\frac{1}{\sqrt{n}} \chi_{B, C}$ : the community indicator vector.

$\bar{v}_{2}$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|\mathrm{V}_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- $\bar{v}_{2}$ is $\frac{1}{\sqrt{n}} \chi_{B, C}$ : the community indicator vector.

$\overline{\boldsymbol{v}}_{2}$
- Every $i$ where $v_{2}(i), \bar{v}_{2}(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2}$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|\mathrm{V}_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- $\bar{v}_{2}$ is $\frac{1}{\sqrt{n}} \chi_{B, C}$ : the community indicator vector.

$\overline{\boldsymbol{v}}_{2}$
- Every $i$ where $v_{2}(i), \bar{v}_{2}(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2}$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^{2}}\right)$ positions.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$ : connection probability between clusters. $n$ : number of nodes. $v_{2}, \bar{v}_{2}$ : second eigenvectors of $A$ and $\mathbb{E}[A]$ respectively.

## APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If $G$ is a stochastic block model graph with adjacency matrix A , if we compute its second large eigenvector $\mathrm{V}_{2}$ and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^{2}}\right)$ nodes.

$v_{2}$


## APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If $G$ is a stochastic block model graph with adjacency matrix A , if we compute its second large eigenvector $\mathrm{V}_{2}$ and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^{2}}\right)$ nodes.

$v_{2}$

-Why does the error increase as q gets close to p?

## APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If $G$ is a stochastic block model graph with adjacency matrix A , if we compute its second large eigenvector $\mathrm{V}_{2}$ and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^{2}}\right)$ nodes.

$v_{2}$

-Why does the error increase as q gets close to $p$ ?

- Even when $p-q=O(1 / \sqrt{n})$, assign all but an $O(n)$ fraction of nodes correctly. E.g., assign 99\% of nodes correctly.

Questions on spectral partitioning?

## EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?

## COMPUTING THE SVD

## To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

## COMPUTING THE SVD

To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.


## COMPUTING THE SVD

To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute V . Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{\top}-O\left(d^{3}\right)$ runtime.


## COMPUTING THE SVD

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathrm{V} \boldsymbol{\wedge} \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathbf{L}_{i}\right\|_{2}$ and $\mathbf{U}_{i}=\mathrm{L}_{i} /\left\|\mathbf{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.


## COMPUTING THE SVD

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathrm{V} \boldsymbol{\wedge} \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathbf{L}_{i}\right\|_{2}$ and $\mathbf{U}_{i}=\mathrm{L}_{i} /\left\|\mathbf{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)$

## COMPUTING THE SVD

To compute the SVD of $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathrm{V} \boldsymbol{\wedge} \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathbf{L}_{i}\right\|_{2}$ and $\mathbf{U}_{i}=\mathrm{L}_{i} /\left\|\mathbf{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)=O\left(n d^{2}\right)$ (assume w.l.o.g. $\left.n \geq d\right)$

## COMPUTING THE SVD

To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute V . Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathrm{L}_{i}\right\|_{2}$ and $\mathrm{U}_{i}=\mathrm{L}_{i} /\left\|\mathrm{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)=O\left(n d^{2}\right)$ (assume w.l.o.g. $\left.n \geq d\right)$

- If we have $n=10$ million images with $200 \times 200 \times 3=120,000$ pixel values each, runtime is $1.5 \times 10^{17}$ operations!


## COMPUTING THE SVD

To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute $\mathbf{V}$. Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathrm{V} \boldsymbol{\wedge} \mathrm{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathrm{L}_{i}\right\|_{2}$ and $\mathrm{U}_{i}=\mathrm{L}_{i} /\left\|\mathrm{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)=O\left(n d^{2}\right)$ (assume w.l.o.g. $\left.n \geq d\right)$

- If we have $n=10$ million images with $200 \times 200 \times 3=120,000$ pixel values each, runtime is $1.5 \times 10^{17}$ operations!
- The worlds fastest super computers compute at $\approx 100$ petaFLOPS $=10^{17}$ FLOPS (floating point operations per second).


## COMPUTING THE SVD

To compute the SVD of $\mathrm{A} \in \mathbb{R}^{n \times d}, \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$, first compute V . Then compute $\boldsymbol{U} \boldsymbol{\Sigma}=\mathrm{AV}$.

- Compute $\mathrm{A}^{\top} \mathrm{A}-\mathrm{O}\left(n d^{2}\right)$ runtime.
- Find eigendecomposition $\mathrm{A}^{\top} \mathrm{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{\top}-O\left(d^{3}\right)$ runtime.
- Compute $\mathbf{L}=\mathrm{AV}$. Set $\sigma_{i}=\left\|\mathrm{L}_{i}\right\|_{2}$ and $\mathrm{U}_{i}=\mathrm{L}_{i} /\left\|\mathrm{L}_{i}\right\|_{2} .-O\left(n d^{2}\right)$ runtime.

Total runtime: $O\left(n d^{2}+d^{3}\right)=O\left(n d^{2}\right)$ (assume w.l.o.g. $\left.n \geq d\right)$

- If we have $n=10$ million images with $200 \times 200 \times 3=120,000$ pixel values each, runtime is $1.5 \times 10^{17}$ operations!
- The worlds fastest super computers compute at $\approx 100$ petaFLOPS $=10^{17}$ FLOPS (floating point operations per second).
- This is an easy task for them - but no one else.


## FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) $k$ singular vectors for $k \ll d$.

## FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) $k$ singular vectors for $k \ll d$.

- Suffices to compute $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ and then compute $\mathrm{U}_{\mathrm{k}} \boldsymbol{\Sigma}_{k}=\mathrm{AV}_{k}$.


## FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) $k$ singular vectors for $k \ll d$.

- Suffices to compute $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ and then compute $\mathrm{U}_{k} \boldsymbol{\Sigma}_{k}=\mathrm{AV}_{k}$.
- Use an iterative algorithm to compute an approximation to the top $k$ singular vectors $V_{k}$.


## FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) $k$ singular vectors for $k \ll d$.

- Suffices to compute $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ and then compute $\mathbf{U}_{k} \boldsymbol{\Sigma}_{k}=\mathrm{AV}_{k}$.
- Use an iterative algorithm to compute an approximation to the top $k$ singular vectors $\mathrm{V}_{k}$.
- Runtime will be roughly $O(n d k)$ instead of $O\left(n d^{2}\right)$.


## FASTER ALGORITHMS

To speed up SVD computation we will take advantage of the fact that we typically only care about computing the top (or bottom) $k$ singular vectors for $k \ll d$.

- Suffices to compute $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ and then compute

$$
\mathrm{U}_{k} \boldsymbol{\Sigma}_{k}=\mathrm{AV}_{k} .
$$

- Use an iterative algorithm to compute an approximation to the top $k$ singular vectors $\mathrm{V}_{k}$.
- Runtime will be roughly $O(n d k)$ instead of $O\left(n d^{2}\right)$.

Won't cover: randomized methods, which can be much faster in some cases.

## SPARSE VS. DIRECT

In numerical linear algebra, two main types of methods:
Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O\left(n^{3}\right)$ time for an $n \times n$ matrix.


## SPARSE VS. DIRECT

In numerical linear algebra, two main types of methods:
Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O\left(n^{3}\right)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. $\mathrm{Ax}_{1}, \mathrm{Ax}_{2}, \ldots, \mathrm{Ax}_{\mathrm{t}}$.


## SPARSE VS. DIRECT

In numerical linear algebra, two main types of methods:
Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O\left(n^{3}\right)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. $\mathrm{Ax}_{1}, A \mathrm{x}_{2}, \ldots, A \mathrm{x}_{t}$.
- Runtime is \# iterations $t \times$ matrix vector multiplication time $=$ $O(n n z(A) \cdot t)=O(n d t)$ where $n n z(A)$ is the number of nonzero entries in A.


## SPARSE VS. DIRECT

In numerical linear algebra, two main types of methods:
Direct Methods: Gaussian elimination, QR decomposition, Cholesky decomposition, etc.

- Directly manipulate the entries of the input matrix A. Typically run in $O\left(n^{3}\right)$ time for an $n \times n$ matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov subspace methods, Lanczos, gradient descent.

- Generally only access A via a sequence of matrix vector multiplications. $\mathrm{Ax}_{1}, \mathrm{Ax}_{2}, \ldots, A \mathrm{x}_{t}$.
- Runtime is \# iterations $t \times$ matrix vector multiplication time $=$ $O(n n z(A) \cdot t)=O(n d t)$ where $n n z(A)$ is the number of nonzero entries in A.
- Not just for sparse matrices!


## SPARSE VS. DIRECT

Matlab:

## svd and eig vs. svds and eigs

SciPy (Python):
scipy.linalg.svdvs. scipy.sparse.linalg.svds

## POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k=1$ singular vectors.

## POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k=1$ singular vectors.

Goal: Given $A \in \mathbb{R}^{n \times d}$, with SVD $A=U \Sigma V$, find $\vec{z} \approx \vec{V}_{1}$.

## POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k=1$ singular vectors.

Goal: Given $A \in \mathbb{R}^{n \times d}$, with SVD $A=U \Sigma V$, find $\vec{z} \approx \vec{V}_{1}$.

- Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i=1, \ldots, t$
- $\vec{z}^{(i)}=A^{\top} \cdot\left(A \vec{z}^{(i-1)}\right)$
- $n_{i}=\left\|\vec{z}^{(i)}\right\|_{2}$
- $z^{(i)}=\vec{z}^{(i)} / n_{i}$

Return $\vec{Z}_{t}$

## POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD. Applies to computing $k=1$ singular vectors.

Goal: Given $A \in \mathbb{R}^{n \times d}$, with SVD $A=U \Sigma V$, find $\vec{z} \approx \vec{V}_{1}$.

- Choose $\vec{z}^{(0)}$ randomly. E.g. $\vec{z}^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i=1, \ldots, t$
- $\vec{z}^{(i)}=A^{T} \cdot\left(A \vec{z}^{(i-1)}\right) \quad$ Runtime: $2 \cdot n d$
- $n_{i}=\left\|\vec{z}^{(i)}\right\|_{2}$
- $\vec{z}^{(i)}=\vec{z}^{(i)} / n_{i}$

Return $\vec{z}_{t}$
Total Runtime: $O(n d t)$

## POWER METHOD INTUITION

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+\vec{c}_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}
$$

## POWER METHOD INTUITION

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+\vec{c}_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}
$$

Update step: $\vec{z}^{(i)}=\mathbf{A}^{\top} \cdot\left(\mathbf{A} \vec{z}^{(i-1)}\right)=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \vec{Z}^{(i-1)}$ (then normalize)

## POWER METHOD INTUITION

Write $\vec{z}^{(0)}$ in the right singular vector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+\vec{c}_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}
$$

Update step: $\vec{z}^{(i)}=\mathbf{A}^{\top} \cdot\left(\mathbf{A} \vec{z}^{(i-1)}\right)=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \vec{z}^{(i-1)}$ (then normalize)
Claim:

$$
\vec{z}^{(1)}=\frac{1}{n_{1}}\left[c_{1} \cdot \sigma_{1}^{2} \vec{v}_{1}+c_{2} \cdot \sigma_{2}^{2} \vec{v}_{2}+\ldots+c_{d} \cdot \sigma_{d}^{2} \vec{v}_{d}\right]
$$

## POWER METHOD INTUITION

Claim:

$$
\vec{z}^{(t)}=\frac{1}{\prod_{i=1}^{t} n_{i}}\left[c_{1} \cdot \sigma_{1}^{2 t} \vec{v}_{1}+c_{2} \cdot \sigma_{2}^{2 t} \vec{v}_{2}+\ldots+c_{d} \cdot \sigma_{d}^{2 t} \vec{v}_{d}\right]
$$

After $t$ iterations, you have 'powered' up the singular values, making the component in the direction of $v_{1}$ much larger, relative to the other components.

## POWER METHOD CONVERGENCE

Theorem (Basic Power Method Convergence)
Let $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ steps:

$$
\left\|\vec{v}_{1}-\vec{z}^{(t)}\right\|_{2} \leq \epsilon .
$$

## POWER METHOD CONVERGENCE

Theorem (Basic Power Method Convergence)
Let $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ steps:

$$
\left\|\vec{v}_{1}-\vec{z}^{(t)}\right\|_{2} \leq \epsilon .
$$

Total runtime: $O\left(n n z(A) \cdot \frac{\log d / \epsilon}{\gamma} \cdot\right)=O\left(n d \cdot \frac{\log d / \epsilon}{\gamma}.\right)$.

## POWER METHOD CONVERGENCE

Theorem (Basic Power Method Convergence)
Let $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $t=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ steps:

$$
\left\|\vec{v}_{1}-\vec{z}^{(t)}\right\|_{2} \leq \epsilon .
$$

Total runtime: $O\left(n n z(A) \cdot \frac{\log d / \epsilon}{\gamma} \cdot\right)=O\left(n d \cdot \frac{\log d / \epsilon}{\gamma}\right.$. $)$.
Next Time: Will analyze this method formally.

