
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 16

0

summary

Last Class:

• Spectral clustering and embeddings
• Started application to stochastic block model.

This Class:

• Finish up stochastic block model.
• Efficient algorithms for SVD/eigendecomposition.
• Iterative methods: power method, Krylov subspace methods.

1

summary

Last Class:

• Spectral clustering and embeddings
• Started application to stochastic block model.

This Class:

• Finish up stochastic block model.
• Efficient algorithms for SVD/eigendecomposition.
• Iterative methods: power method, Krylov subspace methods.

1

stochastic block model

Goal: Argue the effectiveness of spectral clustering in a natural, if
oversimplified, generative model.

Stochastic Block Model (Planted Partition Model): Let Gn(p,q) be a
distribution over graphs on n nodes, split equally into two groups B
and C, each with n/2 nodes.

• Any two nodes in the same group are connected with probability p
(including self-loops).

• Any two nodes in different groups are connected with prob. q < p.
• Connections are independent.

2

stochastic block model

Goal: Argue the effectiveness of spectral clustering in a natural, if
oversimplified, generative model.

Stochastic Block Model (Planted Partition Model): Let Gn(p,q) be a
distribution over graphs on n nodes, split equally into two groups B
and C, each with n/2 nodes.

• Any two nodes in the same group are connected with probability p
(including self-loops).

• Any two nodes in different groups are connected with prob. q < p.
• Connections are independent.

2

expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What is the rank of E[A]
and how can you see
this quickly?
How many nonzero
eigenvalues does E[A]
have?

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group. 3

expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What is the rank of E[A]
and how can you see
this quickly?

How many nonzero
eigenvalues does E[A]
have?

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group. 3

expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What is the rank of E[A]
and how can you see
this quickly?
How many nonzero
eigenvalues does E[A]
have?

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability q between nodes not in the same group. 3

expected adjacency spectrum

• v⃗1 = 1⃗ with eigenvalue λ1 =
(p+q)n

2 .
• v⃗2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v⃗2 then we recover the communities B and C!

4

expected adjacency spectrum

• v⃗1 = 1⃗ with eigenvalue λ1 =
(p+q)n

2 .
• v⃗2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v⃗2 then we recover the communities B and C!

4

expected adjacency spectrum

• v⃗1 = 1⃗ with eigenvalue λ1 =
(p+q)n

2 .
• v⃗2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v⃗2 then we recover the communities B and C!
4

expected laplacian spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q), A ∈ Rn×n be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?

5

expected laplacian spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q), A ∈ Rn×n be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?

6

expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

7

expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

7

expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

7

expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

7

expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this eigenvector
would exactly recover the two communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,
Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and ML.

7

matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then with

high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For any X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value of X.
For symmetric X (like A− E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?

8

matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then with

high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For any X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value of X.
For symmetric X (like A− E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?

8

matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then with

high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For any X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value of X.
For symmetric X (like A− E[A]) show that it is equal to the magnitude
of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the
second eigenvectors of A and E[A] are close. How does this relate to
their difference in spectral norm?

8

eigenvector perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ϵ

minj ̸=i |λi − λj|

where λ1, . . . , λd are the eigenvalues of A.

The errors get large if there are eigenvalues with similar
magnitudes.

9

eigenvector perturbation

10

application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj ̸=i |λi − λj|

≤ O(√pn)
(p− q)n/2 = O

(√p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for

i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively.

11

application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj ̸=i |λi − λj|

≤ O(√pn)
(p− q)n/2 = O

(√p
(p− q)

√
n

)

Recall: E[A], has eigenvalues λ1 = (p+q)n
2 , λ2 = (p−q)n

2 , λi = 0 for
i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively.

11

application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj ̸=i |λi − λj|

≤ O(√pn)
(p− q)n/2 = O

(√p
(p− q)

√
n

)

Recall: E[A], has eigenvalues λ1 = (p+q)n
2 , λ2 = (p−q)n

2 , λi = 0 for
i ≥ 3.

min
j ̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively.

11

application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj ̸=i |λi − λj|

≤ O(√pn)
(p− q)n/2 = O

(√p
(p− q)

√
n

)

Recall: E[A], has eigenvalues λ1 = (p+q)n
2 , λ2 = (p−q)n

2 , λi = 0 for
i ≥ 3.

min
j ̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively.

11

application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj ̸=i |λi − λj|
≤ O(√pn)

(p− q)n/2 = O
(√p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for

i ≥ 3.

min
j ̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively.

11

application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
(√p

(p−q)
√
n

)
.

What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to ∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively. 12

application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
(√p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to ∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively. 12

application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
(√p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to ∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively. 12

application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
(√p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to ∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively. 12

application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
(√p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to ∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection
probability within clusters. q < p: connection probability between clusters. n:
number of nodes. v2, v̄2 : second eigenvectors of A and E[A] respectively. 12

application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p− q = O(1/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.

13

application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?

• Even when p− q = O(1/
√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.

13

application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p− q = O(1/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
13

Questions on spectral partitioning?

14

efficient eigendecomposition and svd

We have talked about the eigendecomposition and SVD as
ways to compress data, to embed entities like words and
documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on
massive datasets?

15

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3)

= O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.

• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3)

= O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.

• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3)

= O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3)

= O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3)

= O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

computing the svd

To compute the SVD of A ∈ Rn×d, A = UΣVT, first compute V. Then
compute UΣ = AV.

• Compute ATA – O(nd2) runtime.
• Find eigendecomposition ATA = VΛVT – O(d3) runtime.
• Compute L = AV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2. – O(nd2)
runtime.

Total runtime: O(nd2 + d3) = O(nd2) (assume w.l.o.g. n ≥ d)

• If we have n = 10 million images with 200× 200× 3 = 120, 000
pixel values each, runtime is 1.5× 1017 operations!

• The worlds fastest super computers compute at ≈ 100 petaFLOPS
= 1017 FLOPS (floating point operations per second).

• This is an easy task for them – but no one else.

16

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = AVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Won’t cover: randomized methods, which can be much faster
in some cases.

17

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = AVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Won’t cover: randomized methods, which can be much faster
in some cases.

17

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = AVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Won’t cover: randomized methods, which can be much faster
in some cases.

17

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = AVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Won’t cover: randomized methods, which can be much faster
in some cases.

17

faster algorithms

To speed up SVD computation we will take advantage of the
fact that we typically only care about computing the top (or
bottom) k singular vectors for k≪ d.

• Suffices to compute Vk ∈ Rd×k and then compute
UkΣk = AVk.

• Use an iterative algorithm to compute an approximation to
the top k singular vectors Vk.

• Runtime will be roughly O(ndk) instead of O(nd2).

Won’t cover: randomized methods, which can be much faster
in some cases.

17

sparse vs. direct

In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky
decomposition, etc.

• Directly manipulate the entries of the input matrix A. Typically run
in O(n3) time for an n× n matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov
subspace methods, Lanczos, gradient descent.

• Generally only access A via a sequence of matrix vector
multiplications. Ax1,Ax2, . . . ,Axt.

• Runtime is # iterations t× matrix vector multiplication time =

O(nnz(A) · t) = O(ndt) where nnz(A) is the number of nonzero
entries in A.

• Not just for sparse matrices!

18

sparse vs. direct

In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky
decomposition, etc.

• Directly manipulate the entries of the input matrix A. Typically run
in O(n3) time for an n× n matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov
subspace methods, Lanczos, gradient descent.

• Generally only access A via a sequence of matrix vector
multiplications. Ax1,Ax2, . . . ,Axt.

• Runtime is # iterations t× matrix vector multiplication time =

O(nnz(A) · t) = O(ndt) where nnz(A) is the number of nonzero
entries in A.

• Not just for sparse matrices!

18

sparse vs. direct

In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky
decomposition, etc.

• Directly manipulate the entries of the input matrix A. Typically run
in O(n3) time for an n× n matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov
subspace methods, Lanczos, gradient descent.

• Generally only access A via a sequence of matrix vector
multiplications. Ax1,Ax2, . . . ,Axt.

• Runtime is # iterations t× matrix vector multiplication time =

O(nnz(A) · t) = O(ndt) where nnz(A) is the number of nonzero
entries in A.

• Not just for sparse matrices!

18

sparse vs. direct

In numerical linear algebra, two main types of methods:

Direct Methods: Gaussian elimination, QR decomposition, Cholesky
decomposition, etc.

• Directly manipulate the entries of the input matrix A. Typically run
in O(n3) time for an n× n matrix.

Sparse (Iterative) Methods: Conjugate gradient, Gauss-Seidel, Krylov
subspace methods, Lanczos, gradient descent.

• Generally only access A via a sequence of matrix vector
multiplications. Ax1,Ax2, . . . ,Axt.

• Runtime is # iterations t× matrix vector multiplication time =

O(nnz(A) · t) = O(ndt) where nnz(A) is the number of nonzero
entries in A.

• Not just for sparse matrices!
18

sparse vs. direct

Matlab:

svd and eig vs. svds and eigs

SciPy (Python):

scipy.linalg.svd vs. scipy.sparse.linalg.svds

19

power method

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors.

Goal: Given A ∈ Rn×d, with SVD A = UΣV, find z⃗ ≈ v⃗1.

• Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) = AT · (A⃗z(i−1))

Runtime: 2 · nd

• ni = ∥⃗z(i)∥2

Runtime: d

• z⃗(i) = z⃗(i)/ni

Runtime: d

Return z⃗t

Total Runtime: O(ndt)

20

power method

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors.

Goal: Given A ∈ Rn×d, with SVD A = UΣV, find z⃗ ≈ v⃗1.

• Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) = AT · (A⃗z(i−1))

Runtime: 2 · nd

• ni = ∥⃗z(i)∥2

Runtime: d

• z⃗(i) = z⃗(i)/ni

Runtime: d

Return z⃗t

Total Runtime: O(ndt)

20

power method

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors.

Goal: Given A ∈ Rn×d, with SVD A = UΣV, find z⃗ ≈ v⃗1.

• Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) = AT · (A⃗z(i−1))

Runtime: 2 · nd

• ni = ∥⃗z(i)∥2

Runtime: d

• z⃗(i) = z⃗(i)/ni

Runtime: d

Return z⃗t

Total Runtime: O(ndt)

20

power method

Power Method: The most fundamental iterative method for
approximate SVD. Applies to computing k = 1 singular vectors.

Goal: Given A ∈ Rn×d, with SVD A = UΣV, find z⃗ ≈ v⃗1.

• Choose z⃗(0) randomly. E.g. z⃗(0)(i) ∼ N (0, 1).
• For i = 1, . . . , t
• z⃗(i) = AT · (A⃗z(i−1)) Runtime: 2 · nd
• ni = ∥⃗z(i)∥2 Runtime: d
• z⃗(i) = z⃗(i)/ni Runtime: d

Return z⃗t

Total Runtime: O(ndt)

20

power method intuition

Write z⃗(0) in the right singular vector basis:

z⃗(0) = c1⃗v1 + c⃗2v⃗2 + . . .+ cdv⃗d

Update step: z⃗(i) = AT · (A⃗z(i−1)) = VΣ2VT⃗z(i−1) (then normalize)

Claim:

z⃗(1) = 1
n1

[
c1 · σ21 v⃗1 + c2 · σ22 v⃗2 + . . .+ cd · σ2dv⃗d

]

21

power method intuition

Write z⃗(0) in the right singular vector basis:

z⃗(0) = c1⃗v1 + c⃗2v⃗2 + . . .+ cdv⃗d

Update step: z⃗(i) = AT · (A⃗z(i−1)) = VΣ2VT⃗z(i−1) (then normalize)

Claim:

z⃗(1) = 1
n1

[
c1 · σ21 v⃗1 + c2 · σ22 v⃗2 + . . .+ cd · σ2dv⃗d

]

21

power method intuition

Write z⃗(0) in the right singular vector basis:

z⃗(0) = c1⃗v1 + c⃗2v⃗2 + . . .+ cdv⃗d

Update step: z⃗(i) = AT · (A⃗z(i−1)) = VΣ2VT⃗z(i−1) (then normalize)

Claim:

z⃗(1) = 1
n1

[
c1 · σ21 v⃗1 + c2 · σ22 v⃗2 + . . .+ cd · σ2dv⃗d

]

21

power method intuition

Claim:

z⃗(t) = 1∏t
i=1 ni

[
c1 · σ2t1 v⃗1 + c2 · σ2t2 v⃗2 + . . .+ cd · σ2td v⃗d

]
After t iterations, you have ‘powered’ up the singular values,
making the component in the direction of v1 much larger,
relative to the other components.

22

power method convergence

Theorem (Basic Power Method Convergence)

Let γ = σ1−σ2
σ1

be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after t = O

(
log d/ϵ

γ

)
steps:

∥⃗v1 − z⃗(t)∥2 ≤ ϵ.

Total runtime: O
(
nnz(A) · log d/ϵγ ·

)
= O

(
nd · log d/ϵγ ·

)
.

Next Time: Will analyze this method formally.

23

power method convergence

Theorem (Basic Power Method Convergence)

Let γ = σ1−σ2
σ1

be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after t = O

(
log d/ϵ

γ

)
steps:

∥⃗v1 − z⃗(t)∥2 ≤ ϵ.

Total runtime: O
(
nnz(A) · log d/ϵγ ·

)
= O

(
nd · log d/ϵγ ·

)
.

Next Time: Will analyze this method formally.

23

power method convergence

Theorem (Basic Power Method Convergence)

Let γ = σ1−σ2
σ1

be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after t = O

(
log d/ϵ

γ

)
steps:

∥⃗v1 − z⃗(t)∥2 ≤ ϵ.

Total runtime: O
(
nnz(A) · log d/ϵγ ·

)
= O

(
nd · log d/ϵγ ·

)
.

Next Time: Will analyze this method formally.

23

