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This Class: Finish up spectral clustering.

- Clustering non-linearly separable data via graph

eigenvectors.
- Application to the stochastic block model and community

detection.
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SPECTRAL CLUSTERING

Goal: Partition or cluster vertices in a graph based on
‘similarity’.

Community detection in naturally occurring networks.

(a) Zachary Karate Club Graph



CUT MINIMIZATION

Main Idea: Partition clusters along a cut that:

1. Has few edges crossing it: |[{(u,v) € E:u € S,ve T} issmall.

2. Separates large sections of the graph: |S|, |T| are not too small.

N El—\—)b\lli\j

(a) Zachary Karate Club Graph



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.
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THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,L=D — A is
the graph Laplacian.

X4 D A
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For a cut indicator vector V € {—1,1}" with V(i) = —1fori € S and
v(iiy=1forieT:
=
(3 710 = 5y esl(0) = V()2 = 4 - cut(S, T).

2. 7T = V| - |S].

Want to minimize both V'LV (cut size) and’VTT](imbalance).



SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:
3. I‘ vV LI argmin V'LV
- n—=—-—F7—" =
" \ vn VERN with [[7]]=1"

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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SMALLEST LAPLACIAN EIGENVECTOR

The smwor of the Laplacian is:

S o
Vp = 1= argmin V'LV
_i veR" with ||V||=1

with VI LV, = 0. Why? Use that L =D — A,
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

Vi Yy Vs @

By Courant-Fischer, the second smallest eigenvector is given by:

Vnq1 = argmin VLV
B R N
veRn with [[7]]=1, i=0 = gG) 7 O

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.
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By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = argmin VLV

. N R =
VERM with Hv||:1,®

If Vo1 were in {—1,1}" it would have:

- VI LVp_q =Mcut(S,T) as small as possible given that

7T =T/~ s| =o.

% 2
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.
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Vn_1 = argmin VLV
veR" with ||V||=1, V,v=0
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different sides of cut.




SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, the second smallest eigenvector is given by:

Vn_1 = argmin \77LV7
veR" with ||V||=1, V,v=0

If Vo1 were in {—1,1}" it would have:
LI SILI
VI LVy—q = cut(S, T) as small as possible
- l.e, Vo1 would indicate the smallest perfectly balanced cut.

- The eigenvector V,_1 € R" is not generally binary, but still
satisfies a ‘relaxed’ version of this property.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing
\(t Vg = argmin VLV
veR" with ||7]|=1, VT1=0
Set S to be all nodes with V,_4(i) < 0, T to be all with
Vo_1(i) > 0. ~

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.
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n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on
different sides of cut.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

1
\’K‘j Vnq = argmin VN
T veRwith |7]=1, 7{=0 | \
Set S to be all nodes Wi 0, Tto be all with
V(i) = O. ?&LB \,0)]

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D. S, T: vertex sets on

different sides of cut. 7




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"*": Laplacian matrix L = A — D.
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degree matrix, L € R"*": Laplacian matrix L = A — D.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering: ! S\y_&f‘«/? uvjaalli«ﬁ "

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p Of L.

e

. Represe{]t each node by its corresponding row in V € R7*k
Uilumn g . .
whose rofis are Vp_1,...V,_g.

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most

commonly used variants of this approach, using the (- D

normalized Laplacian L = D~/2LD~"/2, (s Td “A
—_—— —

Important Consideration: What to do when we want to split
the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors Vy_1, ..., V,_p Of L.
- Represent each node by its corresponding row in V € R7*k
whose rows are Vo_1, ...V _p. ViV Vg

- Cluster these rows using k-means clustering (or really any
clustering method).

n: number of nodes in graph, A € R"*": adjacency matrix, D € R"*": diagonal
degree matrix, L € R"%": Laplacian matrix L = A — D. 8




LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize
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__ Embedding points with coordinates given by

)_ [Va—1(), Va—2(j). - . .. Vy_r(J)] ensures that coordinates connected by
edges have minimum total squared Euclidean distance.
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The smallest eigenvectors of L = D — A give the orthogonal
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LAPLACIAN EMBEDDING

The smallest eigenvectors of L = D — A give the orthogonal
‘functions’ that are smoothest over the graph. l.e, minimize

VL
VLV = Z [\7(,) _ \7(})]2 Vo) (Nat ¥ Na-a

(e —— R VORS) 'S
Embedding points with coordinates given by (ideE
7(L\-[vn 1), Va—2()j), - - -, Va_r(j)] ensures that coordinates connected by

edges mtotal squared Euclidean distance.

- Spectral Clustering
- Laplacian Eigenmaps
+ Locally linear embedding

- Isomap

- Etc...



LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:

10



LAPLACIAN EMBEDDING

Embedding with eigenvectors V,_+, V,_,: (linearly separable)

Nwd =

10
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GENERATIVE MODELS

So Far: Have argued that spectral clustering partitions a graph
effectively, along a small cut that separates the graph into
large pieces.

- Haven't given any formal guarantee on the ‘quality’ of the
partitioning.
- This is difficult to do for general input graphs.

Common Approach: Give a natural generative model for
random inputs and analyze how the algorithm performs on
inputs drawn from this model.

- Very common in algorithm design for data analysis/machine
learning (can be used to justify ¢, linear regression, k-means
clustering, PCA, etc.)
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distribution over graphs on n nodes, split equally into two groups B
and C, each with n/2 nodes.
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Stochastic Block Model (Planted Partition Model): Let G,(p,q) be a

distribution over graphs on n nodes, split equally into two groups B
and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability p
(including self-loops).

+ Any two nodes in different groups are connected with prob. g < p.
- Connections are independent.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p, q).

Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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Let G be a stochastic block model graph drawn from Gn(p, q).

- Let A € R"*" be the adjacency matrix of G.
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Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p, q).

- Let A € R"™" be the adjacency matrix of G. What Is E[A]?

— >

B C
(n/2 nodes)  (n/2 nodes)

B -
(n/2 nodes)

c ©
(n/2nodes) | «

Gn(p, q): stochastic block model distribution. B,C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY MATRIX

Letting G be a stochastic block model graph drawn from <
Gn(p,q) and A € R"™" be its adjacency matrix. What is E[A]?
c

p—
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Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from

Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for

I,j in same group, (E[A]);; = g otherwise.

B

(n/2 nodes)

C

(n/2 nodes)

B —

(n/2 nodes) p
C

(n/2 nodes) q

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group.




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)

[ What are the
(n/2 rllaodes) 7 p q eigenvectors and
L E[A] eigenvalues of E[A]”
\_/—\J
C
(n/2 nodes) 7 q ]

Gn(p, q): stochastic block model distribution. B, C: groups with n/2 nodes
each. Connections are independent with probability p between nodes in the
same group, and probability g between nodes not in the same group. 15




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the

eigenvectors and eigenvalues of E[A]?
T
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?

17



EXPECTED ADJACENCY SPECTRUM
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If we compute v, then we recover the communities B and C!
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EXPECTED ADJACENCY SPECTRUM

B C
(n/2 nodes)  (n/2 nodes) V 11 vT
—

wro 11111111
wofl1111-1-1-1-1

- a

E[A] R
4
4
4

JEE G I QY

If we compute v, then we recover the communities B and C!

- Can show that for G ~ Gp(p, q), A is close to E[A] with high

probability.
+ Thus, the true second eigenvector of A is close to
[1,1,1,...,=1,—1,-1] and gives a good estimate of the

communities.
18



EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?

EL1 * E[D-A]- ED %(_ﬁﬂ
- ) (7l M(“) ( TLJ
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EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?

20



Questions?
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