COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 15

SUMMARY

Last Class:

SUMMARY

Last Class:

- · Entity embeddings (e.g., word embeddings).
- Dimensionality reduction for data not lying close to a low-dimensional subspace (non-linear dimensionality reduction).
- Approach via low-rank approximation of a graph based similarity matrix (adjacency matrix).
- · Spectral graph theory, spectral clustering, graph Laplacian.

Last Class:

- · Entity embeddings (e.g., word embeddings).
- Dimensionality reduction for data not lying close to a low-dimensional subspace (non-linear dimensionality reduction).
- Approach via low-rank approximation of a graph based similarity matrix (adjacency matrix).
- · Spectral graph theory, spectral clustering, graph Laplacian.

This Class: Finish up spectral clustering.

- Clustering non-linearly separable data via graph eigenvectors.
- Application to the stochastic block model and community detection.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Linearly separable data.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Linearly separable data.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Non-linearly separable data k-nearest neighbor graph.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Non-linearly separable data k-nearest neighbor graph.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Non-linearly separable data k-nearest neighbor graph.

Goal: Partition or cluster vertices in a graph based on 'similarity'.

Community detection in naturally occurring networks.

(a) Zachary Karate Club Graph

CUT MINIMIZATION

Main Idea: Partition clusters along a cut that:

- 1. Has few edges crossing it: $|\{(u,v) \in E : u \in S, v \in T\}|$ is small.
- 2. Separates large sections of the graph: |S|, |T| are not too small.

(a) Zachary Karate Club Graph

THE LAPLACIAN VIEW

For a graph with adjacency matrix ${\bf A}$ and degree matrix ${\bf D}$, ${\bf L}={\bf D}-{\bf A}$ is the graph Laplacian.

THE LAPLACIAN VIEW

For a graph with adjacency matrix $\bf A$ and degree matrix $\bf D$, $\bf L = \bf D - \bf A$ is the graph Laplacian.

For a cut indicator vector $\vec{v} \in \{-1,1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

2. $\vec{v}^T \vec{1} = |V| - |S|$.

Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $|\vec{v}^T \vec{1}|$ (imbalance).

SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:

$$\vec{\nabla}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1}{\operatorname{arg min}} \vec{v}^T L \vec{v}$$
with $\vec{v}^T_n L \vec{v}_n = 0$.

SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:

$$\vec{v}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1}{\arg\min} \vec{v}^T L \vec{V}$$
 with $\vec{v}_n^T L \vec{v}_n = 0$. Why? Use that $L = D - A$.

SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector of the Laplacian is:

$$\vec{\mathbf{v}}_n = \frac{1}{\sqrt{n}} \cdot \vec{\mathbf{1}} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathbf{v}}|| = 1}{\text{arg min}} \vec{\mathbf{v}}^T L \vec{\mathbf{V}}$$

with $\vec{v}_n^T L \vec{v}_n = 0$. Why? Use that L = D - A.

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{\mathsf{V}}_{n-1} = \underset{\mathsf{v} \in \mathbb{R}^n \text{ with } \|\vec{\mathsf{v}}\| = 1, \ \vec{\mathsf{v}}_n^T \vec{\mathsf{v}} = 0}{\text{arg } \min} \ \vec{\mathsf{v}}^T L \vec{\mathsf{V}}$$

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{v}_{n-1} = \underset{v \in \mathbb{R}^n \text{ with } ||\vec{v}|| = 1, |\vec{v}_n^T \vec{v}| = 0}{\text{arg min}} \vec{v}^T L \vec{V}$$

If \vec{v}_{n-1} were in $\{-1,1\}^n$ it would have:

 $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \forall cut(S, T) \text{ as small as possible given that}$ $\vec{v}_{n-1}^T \vec{1} = |T| - |S| = 0.$

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{\mathbf{v}}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\vec{\mathbf{v}}\| = 1, \ \vec{\mathbf{v}}_n^T \vec{\mathbf{v}} = 0}{\text{arg min}} \vec{\mathbf{v}}^T L \vec{\mathbf{V}}$$

If \vec{v}_{n-1} were in $\{-1,1\}^n$ it would have:

- $\vec{v}_{n-1}^T \vec{L} \vec{v}_{n-1} = cut(S, T)$ as small as possible given that $\vec{v}_{n-1}^T \vec{1} = |T| |S| = 0$.
- · I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.

By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{\mathbf{v}}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\vec{\mathbf{v}}\| = 1, \ \vec{\mathbf{v}}_n^T \vec{\mathbf{v}} = 0}{\text{arg min}} \vec{\mathbf{v}}^T L \vec{\mathbf{V}}$$

If \vec{v}_{n-1} were in $\{-1,1\}^n$ it would have:

- $\vec{v}_{n-1}^T \vec{L} \vec{v}_{n-1} = cut(S, T)$ as small as possible given that $\vec{v}_{n-1}^T \vec{1} = |T| |S| = 0$.
- · I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
- The eigenvector $\vec{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\vec{\mathsf{V}}_{n-1} = \underset{\mathsf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathsf{v}}|| = 1, \ \vec{\mathsf{v}}^T \vec{\mathsf{1}} = 0}{\mathsf{arg min}} \vec{\mathsf{v}}^T L \vec{\mathsf{V}}$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_{n-1}(i) \ge 0$.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

$$\vec{\mathbf{v}}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } ||\vec{\mathbf{v}}|| = 1, \ \vec{\mathbf{v}}^T \vec{\mathbf{1}} = 0}{\text{arg min}} \vec{\mathbf{v}}^T L \vec{\mathbf{V}}$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with

 $\vec{v}_{n-1}(i) \geq 0.$

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\bar{\mathbf{L}} = \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

· Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \dots, \vec{v}_{n-k}$ of \bar{L} .

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{\mathbf{L}} = \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

"spectral embedding"

- · Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$

whose rows are $\vec{v}_{n-1}, \dots \vec{v}_{n-k}$.

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the $L = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- · Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L} .
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose rows are $\vec{\mathbf{v}}_{n-1}, \dots \vec{\mathbf{v}}_{n-k}$. $\forall_{\mathbf{l}} \dots \forall_{\mathbf{k}}$
- Cluster these rows using k-means clustering (or really any clustering method).

The smallest eigenvectors of $\mathbf{L}=\mathbf{D}-\mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\underbrace{\vec{v}^T L \vec{v}} = \sum_{(i,j) \in E} [\vec{v}(i) - \vec{v}(j)]^2.$$

The smallest eigenvectors of $\mathbf{L}=\mathbf{D}-\mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

The smallest eigenvectors of $\mathbf{L} = \mathbf{D} - \mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\vec{\mathbf{v}}^T L \vec{\mathbf{v}} = \sum_{(i,j) \in E} [\vec{\mathbf{v}}(i) - \vec{\mathbf{v}}(j)]^2.$$

Embedding points with coordinates given by $[\vec{v}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

The smallest eigenvectors of $\mathbf{L} = \mathbf{D} - \mathbf{A}$ give the orthogonal 'functions' that are smoothest over the graph. I.e., minimize

$$\frac{\vec{v}^T L \vec{v}}{\vec{v}} = \sum_{(i,j) \in E} [\vec{v}(i) - \vec{v}(j)]^2. \qquad \frac{V_{n-1} L V_{n-1} + V_{n-2} L V_{n-2} L}{2}$$
th coordinates given by
$$\frac{\vec{v}^T L \vec{v}}{\vec{v}} = \sum_{(i,j) \in E} [\vec{v}(i) - \vec{v}(j)]^2. \qquad \frac{V_{n-1} L V_{n-1} + V_{n-2} L V_{n-2} L$$

Embedding points with coordinates given by

 $\bigvee [\vec{V}_{n-1}(j), \vec{v}_{n-2}(j), \dots, \vec{v}_{n-k}(j)]$ ensures that coordinates connected by edges have minimum total squared Euclidean distance.

- · Spectral Clustering
- · Laplacian Eigenmaps
- · Locally linear embedding
- Isomap
- · Etc...

Original Data: (not linearly separable)

k-Nearest Neighbors Graph:

Embedding with eigenvectors $\vec{v}_{n-1}, \vec{v}_{n-2}$: (linearly separable)

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces.

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces.

· Haven't given any formal guarantee on the 'quality' of the partitioning.

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces.

- · Haven't given any formal guarantee on the 'quality' of the partitioning.
- · This is difficult to do for general input graphs.

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces.

- · Haven't given any formal guarantee on the 'quality' of the partitioning.
- · This is difficult to do for general input graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

So Far: Have argued that spectral clustering partitions a graph effectively, along a small cut that separates the graph into large pieces.

- · Haven't given any formal guarantee on the 'quality' of the partitioning.
- · This is difficult to do for general input graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

· Very common in algorithm design for data analysis/machine learning (can be used to justify ℓ_2 linear regression, k-means clustering, PCA, etc.)

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_{\underline{n}}(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- Connections are independent.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.
- · Connections are independent.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

· Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G.

 $G_n(p,q)$: stochastic block model distribution. B,C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

· Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G. What is $\mathbb{E}[A]$?

EXPECTED ADJACENCY MATRIX

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. What is $\mathbb{E}[A]$? $A : j = \mathbb{E}[A]$ $A : j = \mathbb{E}[A]$

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

If we compute \vec{v}_2 then we recover the communities B and C!

If we compute \vec{v}_2 then we recover the communities B and C!

- · Can show that for $G \sim G_n(p,q)$, **A** is close to $\mathbb{E}[\mathbf{A}]$ with high probability.
- Thus, the true second eigenvector of A is close to $[1,1,1,\ldots,-1,-1]$ and gives a good estimate of the communities.

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$E[L] = E[D-A] = ED - [P|9]$$

$$[P(?)+9(?)] I - [P|9]$$

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

Questions?