COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 13

LOGISTICS

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- \cdot Will release Problem Set 3 next week due \sim 11/11.

LOGISTICS

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- \cdot Will release Problem Set 3 next week due \sim 11/11.
- MAP Feedback:
 - Going to adjust a bit how I take questions in class.
 - · Will try to more clearly identify important information (what will appear on exams or problem sets) v.s. motivating examples.
 - · Will try to use iPad more to write out proofs in class.

SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of X^TX .

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of X^TX .

This Class: Low-rank approximation and connection to singular value decomposition.

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of X^TX .

This Class: Low-rank approximation and connection to singular value decomposition.

- Show how PCA can be interpreted in terms of the singular value decomposition (SVD) of **X**.
- Applications to word embeddings, graph embeddings, document classification, recommendation systems.

Set Up: Assume that data points $\vec{x_1}, \dots, \vec{x_n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.$ $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

• $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

• $\mathbf{W}^T \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Set Up: Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for V and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- $X \approx X(VV^T)$ Gives the closest approximation to X with rows in V.

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.~\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx X \underline{V} \underline{V}^T$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx XVV^T$.

• XVV^T is a rank-k matrix – all its rows fall in V.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx XVV^T$.

- XVV^T is a rank-k matrix all its rows fall in V.
- · X's rows are approximately spanned by the columns of V.
- · X's columns are approximately spanned by the columns of XV.

DUAL VIEW OF LOW-RANK APPROXIMATION

Row (data point) compression

Column (feature) compression

10000* bathrooms+ 10* (sq. ft.) ≈ list price						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	•
home n	5	3.5	3600	3	450,000	450,000

Given $\vec{x}_1, \dots, \vec{x}_n$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace V).

Given $\vec{x}_1, \dots, \vec{x}_n$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace V).

$$\operatorname*{arg\,min}_{\text{orthonormal}\,\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}-\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$$

 $\vec{\mathbf{x}}_1,\ldots,\vec{\mathbf{x}}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k\in\mathbb{R}^d$: orthogonal basis for subspace $\mathcal{V}.\ \mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{\mathbf{v}}_1,\ldots,\vec{\mathbf{v}}_k$.

Given $\vec{x}_1, \dots, \vec{x}_n$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}).

$$\underset{\text{orthonormal V} \in \mathbb{R}^{d \times h}}{\text{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \underset{\text{orthonormal V} \in \mathbb{R}^{d \times h}}{\text{arg max}} \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2$$

Given $\vec{x}_1, \dots, \vec{x}_n$ (the rows of **X**) we want to find an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}) $\mathop{\arg\min}_{\text{orthonormal}\,\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}-\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{\mathit{F}}^{2}=$ 1 XVT 1 = 1 XV 1 = ; : (ai,aj? t(X/1/x1) = 1/X/1/2 (ATA) ii = (ai, ai> = Vaille $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for subspace \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$.

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \sum_{i=1}^k \vec{\mathbf{V}}_i^T\mathbf{X}^T\mathbf{X}\vec{\mathbf{V}}_i$$

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{k} \vec{\mathbf{V}}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{V}}_{i}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{k} \vec{\mathbf{V}}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{V}}_{i}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2}=\sum_{i=1}^{k}\vec{v}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{v}_{i}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

$$\vec{\mathbf{v}}_2 = \underset{\vec{\mathbf{v}} \text{ with } \|\mathbf{v}\|_2 = 1, \ \langle \vec{\mathbf{v}}, \vec{\mathbf{v}}_1 \rangle = 0}{\text{arg max}} \vec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{v}}.$$

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}\|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2=\sum_{i=1}^k\vec{v}_i^T\mathbf{X}^T\mathbf{X}\vec{v}_i$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } ||v||_2 = 1, \ \vec{V}_1, \vec{V}_1, \vec{V}_1 > 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{\mathbf{V}}_k = \mathop{\arg\max}_{\vec{\mathbf{V}} \text{ with } \|\mathbf{V}\|_2 = 1, \ \langle \vec{\mathbf{V}}, \vec{\mathbf{V}}_j \rangle = 0 \ \forall j < k} \vec{\mathbf{V}}^T \mathbf{X}^T \mathbf{X} \vec{\mathbf{V}}.$$

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V}\in\mathbb{R}^{d\times k}}{\arg\max} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{k} \vec{\mathbf{v}}_{i}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{v}}_{i}$$

Surprisingly, can find the columns of V, $\vec{v}_1, \dots, \vec{v}_k$ greedily.

The top k eigenvectors of X^TX by the Courant-Fischer Principal.

EIGENDECOMPOSITION

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, where the columns **V** are d orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$.

EIGENDECOMPOSITION

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, where the columns **V** are *d* orthonormal eigenvectors $\vec{v}_1, \dots, \vec{v}_d$.

Typically order the eigenvalues in decreasing order: $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$.

EIGENDECOMPOSITION

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, where the columns **V** are *d* orthonormal eigenvectors $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_d$.

Typically order the eigenvalues in decreasing order: $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$. The when $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ all eigenvalues are ≥ 0 . Why?

 $\vec{x}_1,\ldots,\vec{x}_n \in \mathbb{R}^d$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k \in \mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$$

This is principal component analysis (PCA).

 $\vec{x}_1,\ldots,\vec{x}_n\in\mathbb{R}^d$: data points, $\mathbf{X}\in\mathbb{R}^{n\times d}$: data matrix, $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: top eigenvectors of $\mathbf{X}^T\mathbf{X}$, $\mathbf{V}_k\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Upshot: Letting V_k have columns $\vec{v}_1, \dots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix X^TX , V_k is the orthogonal basis minimizing

 $(\|\mathbf{X} - \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}}\|_{F}^{2},$

This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the eigenvalues (the 'spectrum') of X^TX .

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- · **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- **V** has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- · V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r > 0$ (singular values).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- · **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- · V has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ (singular values).

The 'swiss army knife' of linear algebra.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$: $X^T X =$

Writing
$$X \in \mathbb{R}^{n \times d}$$
 in its singular value decomposition $X = U \Sigma V^T$:
$$X^T X = V \Sigma U \sqrt[T]{U \Sigma V^T}$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{\mathsf{T}}$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$: $X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma^2 V^T \text{ (the eigendecomposition)}$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\underline{\mathbf{X}^{T}\mathbf{X}} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} = \mathbf{V}\mathbf{\Sigma}^{2}\mathbf{V}^{T} \text{ (the eigendecomposition)}$$
Similarly:
$$\mathbf{X}\mathbf{X}^{T} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\mathbf{V}\mathbf{\Sigma}\mathbf{U}^{T} = \mathbf{U}\mathbf{\Sigma}^{2}\mathbf{U}^{T}.$$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = \bigcup V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we have that $\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA approximation). for $\mathbf{X} \mathbf{V}_k \mathbf{V}$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$, we have that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA approximation).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{V}\boldsymbol{\Sigma}^2\boldsymbol{V}^T \text{ (the eigendecomposition)}$$

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_k$, we have that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA approximation).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

The best low-rank approximation to X: $\mathbf{X}_k = \mathop{\arg\min}_{\mathrm{rank}-k} \mathop{\mathsf{B}}_{\in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F \text{ is given by:} \\ \mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T}$

UCRnxr VE Mdxr The best low-rank approximation to X: $X_k = \operatorname{arg\,min}_{\operatorname{rank} \, \mathbf{A}_k \, \mathbf{B} \in \mathbb{R}^{n \times d}} \| \mathbf{X} - \mathbf{B} \|_F \text{ is given by:}$

The best low-rank approximation to **X**:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\mathsf{T}} = (\mathbf{U}_{k}) \mathbf{J}_{k}^{\mathsf{T}} \mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k

 $V_i = X^T X \qquad V_i \qquad XX^T \qquad \text{eigenvalues of } X^T X$ The best low-rank approximation to X: $X_i = \text{arg min} \qquad X_i = \text{arg mi$

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k \ \mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F \text{ is given by:}$$

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

The best low-rank approximation to **X**:

$$\mathbf{X}_k = \mathop{\mathrm{arg\,min}}_{\mathop{\mathrm{rank}} - k} \mathop{\mathrm{B}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \| \mathbf{X} - \mathbf{B} \|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^\mathsf{T} = \mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^\mathsf{T}$$

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

 Used for many reasons other than dimensionality reduction/data compression.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

X		Movies								
	5			1	4					
Users		3					5			
					4					
		5							5	
	1			2						
			$\ \times \ $	- [3 ()	F				
Solve: $Y = \underset{\text{rank} - k \ B}{\text{arg min}} \sum_{\text{observed}}$,	[X	$X_{j,k}$	- I	$B_{j,k}$]2				
observed	(j,k)	_	_						

Consider a matrix $X \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve:
$$Y = \underset{\text{rank}-k}{\text{arg min}} \sum_{\text{observed } (j,k)} [X_{j,k} - B_{j,k}]^2$$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into d' dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into d' dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- · Words (to identify synonyms, translations, etc.)
- · Nodes in a social network

Classical approach is to convert each item into a high-dimensional feature vector and then apply low-rank approximation

 $\left\langle \langle \vec{y}_i, \vec{z}_a \rangle \approx 1 \text{ when } \underline{doc_i} \text{ contains } \underline{word_a}. \right.$ $\cdot \text{ If } \underline{doc_i} \text{ and } \underline{doc_j} \text{ both contain } \underline{word_a}, \langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle \lessapprox 1.$

- $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_i both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$.

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if $word_i$ and $word_j$ appear in many of the same documents. $\vec{z}_i \cdot \vec{z}_j$
- **Z** corresponds to the top k right singular vectors: the eigenvectors of \mathbf{XX}^T .

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if $word_i$ and $word_j$ appear in many of the same documents.
- **Z** corresponds to the top k right singular vectors: the eigenvectors of XX^T . Intuitively, what is XX^T ?

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if $word_i$ and $word_j$ appear in many of the same documents.
- **Z** corresponds to the top *k* right singular vectors: the eigenvectors of **XX**^T. Intuitively, what is **XX**^T?
- $(XX^T)_{i,j} = \#$ documents that $word_i$ and $word_j$ co-occur in.

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if $word_i$ and $word_j$ appear in many of the same documents.
- **Z** corresponds to the top *k* right singular vectors: the eigenvectors of **XX**^T. Intuitively, what is **XX**^T?
- $(XX^T)_{i,j} = \#$ documents that $word_i$ and $word_j$ co-occur in.
- A document based similarity matrix.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix \mathbf{X} corresponds to eigendecomposition of document based similarity matrix $\mathbf{X}\mathbf{X}^T$.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix X corresponds to eigendecomposition of document based similarity matrix XX^T.
- Many alternative similarities: how often do word_i, word_j appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix \mathbf{X} corresponds to eigendecomposition of document based similarity matrix $\mathbf{X}\mathbf{X}^T$.
- Many alternative similarities: how often do word_i, word_j appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing XX^T with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix \mathbf{X} corresponds to eigendecomposition of document based similarity matrix $\mathbf{X}\mathbf{X}^T$.
- Many alternative similarities: how often do word_i, word_j appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing XX^T with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.
- · Perform low-rank approximation of similarity matrix directly.

word2vec was originally described as a neural-network method, but Levy and Goldberg show that it is simply low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization.*

Next Time: Build on the idea of low-rank approximation of similarity matrix low-rank approximation to perform non-linear dimensionality reduction for data that is not close to a low-dimensional linear subspace.

Questions?