COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 13

LOGISTICS

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- Will release Problem Set 3 next week due $\sim 11 / 11$.

LOGISTICS

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- Will release Problem Set 3 next week due $\sim 11 / 11$.
- MAP Feedback:
- Going to adjust a bit how I take questions in class.
- Will try to more clearly identify important information (what will appear on exams or problem sets) v.s. motivating examples.
- Will try to use iPad more to write out proofs in class.

SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (PGA).
- Saw how to calculate the error of the approximation interpret the spectrum of $\mathbf{X}^{\top} \mathbf{X}$.

SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of $X^{\top} X$.

This Class: Low-rank approximation and connection to singular value decomposition.

SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a k-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of $X^{\top} X$.

This Class: Low-rank approximation and connection to singular value decomposition.

- Show how PCA can be interpreted in terms of the singular value decomposition (SVD) of X.
- Applications to word embeddings, graph embeddings, document classification, recommendation systems.

REVIEW

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW

Set Up: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathrm{X} \in \mathbb{R}^{n \times d}$ be the data matrix. d-dimensional space

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V V}^{\top} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $\mathrm{X} \approx \mathrm{X}\left(\mathrm{VV}^{\top}\right)$. Gives the closest approximation to X with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx \mathrm{XVV}^{\top}$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx \mathrm{XVV}^{\top}$.

- XVV^{\top} is a rank-k matrix - all its rows fall in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx \mathrm{XVV}^{\top}$.

- XVV^{\top} is a rank-k matrix - all its rows fall in \mathcal{V}.
- X's rows are approximately spanned by the columns of V .
- X's columns are approximately spanned by the columns of XV.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

DUAL VIEW OF LOW-RANK APPROXIMATION

projections onto 15
784 dimensional vectors

Column (feature) compression

Row (data point) compression

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

OPTIMAL LOW-RANK APPROXIMATION

Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

OPTIMAL LOW-RANK APPROXIMATION

Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of X) we want to find an orthonormal span $\mathrm{V} \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}).

$$
\arg \min \left\|\mathbf{X}-X V V^{\top}\right\|_{F}^{2}
$$

orthonormal $\mathrm{V} \in \mathbb{R}^{d \times k}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

OPTIMAL LOW-RANK APPROXIMATION

Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}).

$$
\underset{\text { onormal } \mathbf{v} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X V V}^{\top}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

OPTIMAL LOW-RANK APPROXIMATION

Given $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of X) we want to find an orthonormal span $V \in \mathbb{R}^{d \times k}$ (spanning a k-dimensional subspace \mathcal{V}).
$\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X V V ^ { T }}\right\|_{F}^{2}=\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathbf{X V V ^ { T }}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathbf{V V}^{\top} \vec{X}_{i}\right\|_{2}^{2}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

OPTIMAL LOW-RANK APPROXIMATION

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { honormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} X \vec{V}_{i}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \overrightarrow{\mathrm{~V}}_{\mathrm{k}}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} X \vec{V}_{i}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{v}_{k}$ greedily.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \overrightarrow{\mathrm{~V}}_{\mathrm{k}}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}{ }^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { nonormal } v \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v}_{i}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{V} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}{ }^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { honormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} X \vec{V}_{i}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} .
\end{gathered}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}{ }^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { nonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \overrightarrow{\mathrm{v}}_{i}^{\top} \mathbf{X}^{\top} \mathbf{X} \overrightarrow{\mathrm{V}}_{i}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }}{\underset{\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max }} \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} . \\
\cdots \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{V}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} .
\end{gathered}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}$ is given by:

$$
\underset{\text { honormal } \mathbf{v} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{k} \vec{v}_{i}^{\top} \mathbf{X}^{\top} X \vec{V}_{i}
$$

Surprisingly, can find the columns of $\mathrm{V}, \overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \overrightarrow{v_{i}}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} \mathbf{X} \vec{v} . \\
\cdots \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{V}, \vec{v}_{j}\right\rangle=0}{\arg \max } \vec{v}^{\top} \mathbf{X}^{\top} X \vec{V} .
\end{gathered}
$$

The top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ by the Courant-Fischer Principal.

```
\(\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}\) : data points, \(X \in \mathbb{R}^{n \times d}\) : data matrix, \(\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}\) : orthogo-
nal basis for subspace \(\mathcal{V}\). \(V \in \mathbb{R}^{d \times k}\) : matrix with columns \(\vec{v}_{1}, \ldots, \vec{V}_{k}\).
```


EIGENDECOMPOSITION

Any symmetric matrix A can be decomposed as $\mathrm{A}={\mathrm{V} \Lambda \mathrm{V}^{\top} \text {, where the }}^{\text {, }}$ columns V are d orthonormal eigenvectors $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{d}$.

EIGENDECOMPOSITION

Any symmetric matrix A can be decomposed as $\mathrm{A}={\mathrm{V} \Lambda \mathrm{V}^{\top} \text {, where the }}^{\text {, }}$ columns V are d orthonormal eigenvectors $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{d}$.

Typically order the eigenvalues in decreasing order: $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{d}$.

EIGENDECOMPOSITION

Any symmetric matrix A can be decomposed as $\mathrm{A}={\mathrm{V} \Lambda \mathrm{V}^{\top} \text {, where the }}^{\text {, }}$ columns V are d orthonormal eigenvectors $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{d}$.

Typically order the eigenvalues in decreasing order: $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{d}$.
When $A=X^{\top} X$ all eigenvalues are ≥ 0. Why ?

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_{k} have columns $\overrightarrow{\mathrm{V}}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathrm{X}, \mathrm{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_{k} have columns $\vec{V}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}, \mathrm{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{X} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}
$$

This is principal component analysis (PCA).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_{k} have columns $\vec{V}_{1}, \ldots, \vec{V}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}, \mathrm{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathrm{X}-\mathrm{X} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}\right\|_{F}^{2}
$$

This is principal component analysis (PCA).
Last Time: Saw how to determine accuracy by looking at the eigenvalues (the 'spectrum') of $X^{\top} X$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $X^{\top} X, V_{k} \in \mathbb{R}^{d \times k}$. matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(X)=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathrm{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- V has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

The 'swiss army knife' of linear algebra.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $v \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathrm{X}^{\top} \mathrm{X}=\mathrm{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathrm{V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $v \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathrm{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $v \in \mathbb{R}^{d \times \operatorname{rank}(x)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathrm{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we have that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA approximation).
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $v \in \mathbb{R}^{d \times \operatorname{rank}(x)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we have that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA approximation).

What about $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$?
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathrm{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\top}$.
The left and right singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix XX^{\top} respectively.

So, letting $\mathrm{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we have that $\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}$ is the best rank- k approximation to X (given by PCA approximation).

What about $\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$? Gives exactly the same approximation!
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times r a n k(X)}$: positive diagonal matrix containing singular values of X.

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}
$$

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathbf{X} \mathrm{V}_{k} \mathbf{V}_{k}^{\top}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathrm{X}
$$

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k} \mathbf{B} \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{X} \mathrm{~V}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathbf{U}_{k}^{T} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of \mathbf{U}_{k}

Row (data point) compression
projections onto 15

Column (feature) compression

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k} \mathbf{B} \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathrm{XV}_{k} \mathrm{~V}_{k}^{\top}=\mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k} \mathbf{B} \in \mathbb{R}^{n \times d}\|X-B\|_{F}$ is given by:

$$
\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{\top}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{X}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :
$X_{k}=\arg \min _{\text {rank }-k B \in \mathbb{R}^{n \times d}}\|X-B\|_{F}$ is given by:

$$
\mathrm{X}_{k}=\mathbf{X} \mathrm{V}_{k} \mathrm{~V}_{k}^{T}=\mathrm{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathrm{~V}_{k}^{T}
$$

Correspond to projecting the rows (data points) onto the span of V_{k} or the columns (features) onto the span of U_{k}

$$
\mathrm{n} \times \mathrm{d} \text { (rank-k) orthonormal positive diagonal orthonormal }
$$

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to X :

$$
\begin{aligned}
& \mathbf{X}_{k}=\arg \min _{\text {rank }-k} \mathbf{B \in \mathbb { R } ^ { n \times d }}\|\mathbf{X}-\mathbf{B}\|_{F} \text { is given by: } \\
& \qquad X_{k}=\mathrm{XV}_{k} \mathbf{V}_{k}^{\top}=\mathbf{U}_{k} \mathbf{U}_{k}^{\top} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{\top}
\end{aligned}
$$

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(\mathrm{X})}$: positive diagonal matrix containing singular values of X.

THE SVD AND LINEAR REGRESSION

SVD is a 'swiss army knife'.

THE SVD AND LINEAR REGRESSION

SVD is a 'swiss army knife'.
Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|X \vec{c}-\vec{y}\|_{2}$.

THE SVD AND LINEAR REGRESSION

SVD is a 'swiss army knife'.
Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|\mathrm{X} \vec{c}-\vec{y}\|_{2}$.

THE SVD AND LINEAR REGRESSION

SVD is a 'swiss army knife'.
Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|\mathrm{X} \vec{c}-\vec{y}\|_{2}$.

E.g., $c_{1} \cdot(\#$ baths $)+c_{2} \cdot(s q . f t)+.c_{3} \cdot(\#$ floors $)+\ldots \approx$ home price

THE SVD AND LINEAR REGRESSION

Classic Linear Regression: Given $\mathrm{X} \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters) and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|X \vec{c}-\vec{y}\|_{2}$.

THE SVD AND LINEAR REGRESSION

Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters) and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|X \vec{c}-\vec{y}\|_{2}$.

Optimal solution is to chose \vec{c} so that $X \vec{C}=\mathrm{P}_{X} \vec{y}$ - the projection of \vec{y} onto the column span of X.

THE SVD AND LINEAR REGRESSION

Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters) and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|X \vec{c}-\vec{y}\|_{2}$.

Optimal solution is to chose \vec{c} so that $X \vec{C}=\mathrm{P}_{X} \vec{y}$ - the projection of \vec{y} onto the column span of X.

THE SVD AND LINEAR REGRESSION

Classic Linear Regression: Given $X \in \mathbb{R}^{n \times d}$ where $n>d$ (we have more data points than parameters) and response vector $\vec{y} \in \mathbb{R}^{d}$, want to find $\vec{c} \in \mathbb{R}^{d}$ minimizing $\|X \vec{c}-\vec{y}\|_{2}$.

Optimal solution is to chose \vec{c} so that $X \vec{C}=\mathrm{P}_{X} \vec{y}$ - the projection of \vec{y} onto the column span of X.

Writing the SVD $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ we have:
$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

THE SVD AND LINEAR REGRESSION

$X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times \operatorname{rank}(X)}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathrm{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathrm{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(X) \times \operatorname{rank}(X)}$: positive diagonal matrix containing singular values of X.

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

- Used for many reasons other than dimensionality reduction/data compression.

MATRIX COMPLETION

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix).

MATRIX COMPLETION

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Movies

MATRIX COMPLETION

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Solve: $Y=\underset{\operatorname{rank}-k B \mathbf{B}}{\arg \min } \sum_{\text {observed }(j, k)}\left[\mathrm{X}_{j, k}-\mathrm{B}_{j, k}\right]^{2}$

MATRIX COMPLETION

Consider a matrix $\mathrm{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Users	4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6
	3.6	3	3	1.2	3.8	4.2	5	3.4	4.8
	2.8	3	3	2.3	3	3	3	3	3.2
	3.4	3	3	4	4.1	4.1	4.2	3	3
	2.8	3	3	2.3	3	3	3	3	3.4
	2.2	5	3	4	4.2	3.9	4.4	4	5.3
	1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8

Solve: $Y=\underset{\text { rank }-k \mathbf{B}}{\arg \min } \sum_{\text {observed }(j, k)}\left[\mathrm{X}_{j, k}-\mathrm{B}_{j, k}\right]^{2}$
Under certain assumptions, can show that \mathbf{Y} well approximates X on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into d^{\prime} dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into d^{\prime} dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into d^{\prime} dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Classical approach is to convert each item into a high-dimensional feature vector and then apply low-rank approximation

EXAMPLE: LATENT SEMANTIC ANALYSIS

Corpus of Documents

Term Document Matrix X

EXAMPLE: LATENT SEMANTIC ANALYSIS

- If doci i_{i} and doc c_{i} both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle=1$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

- $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc $_{i}{\text { contains } \text { word }_{a} \text {. }}_{\text {. }}$
- If doci i_{i} and doc c_{i} both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle=1$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
-	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

Low-Rank Approximation via SVD

- The columns $\vec{z}_{1}, \vec{z}_{2}, \ldots$ give representations of words, with \vec{z}_{i} and \vec{z}_{j} tending to have high dot product if word $_{i}$ and word j appear in many of the same documents.
- Z corresponds to the top k right singular vectors: the eigenvectors of X^{\top}.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- The columns $\vec{z}_{1}, \vec{z}_{2}, \ldots$ give representations of words, with \vec{z}_{i} and \vec{z}_{j} tending to have high dot product if word $_{i}$ and word j appear in many of the same documents.
- Z corresponds to the top k right singular vectors: the eigenvectors of X^{\top}. Intuitively, what is $X X^{\top}$?

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix \mathbf{X}

Low-Rank Approximation via SVD

\square

- The columns $\vec{z}_{1}, \vec{z}_{2}, \ldots$ give representations of words, with \vec{z}_{i} and \vec{z}_{j} tending to have high dot product if word $_{i}$ and word j appear in many of the same documents.
- Z corresponds to the top k right singular vectors: the eigenvectors of X^{\top}. Intuitively, what is ${X X^{\top} \text { ? }}^{\top}$
- $\left(X X X^{\top}\right)_{i, j}=\#$ documents that word $_{i}$ and word $_{j}$ co-occur in.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix \mathbf{X}

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- The columns $\vec{z}_{1}, \vec{z}_{2}, \ldots$ give representations of words, with \vec{z}_{i} and \vec{z}_{j} tending to have high dot product if word ${ }_{i}$ and word $_{j}$ appear in many of the same documents.
- Z corresponds to the top k right singular vectors: the eigenvectors of XX^{\top}. Intuitively, what is XX^{\top} ?
- $\left(X X X^{\top}\right)_{i, j}=\#$ documents that word $_{i}$ and word $_{j}$ co-occur in.
- A document based similarity matrix.

EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that captures the meaning of that word.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix X corresponds to eigendecomposition of document based similarity matrix $\mathbf{X X}^{\top}$.

EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that captures the meaning of that word.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix X corresponds to eigendecomposition of document based similarity matrix $\mathbf{X X}^{\top}$.
- Many alternative similarities: how often do word $_{i}$, word $_{j}$ appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.

EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that captures the meaning of that word.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix X corresponds to eigendecomposition of document based similarity matrix $\mathbf{X X}^{\top}$.
- Many alternative similarities: how often do word ${ }_{i}$, word $_{j}$ appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing XX ${ }^{\top}$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.

EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that captures the meaning of that word.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix X corresponds to eigendecomposition of document based similarity matrix $\mathbf{X X}^{\top}$.
- Many alternative similarities: how often do word ${ }_{i}$, word $_{j}$ appear in the same sentence, in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing XX ${ }^{\top}$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.
- Perform low-rank approximation of similarity matrix directly.

EXAMPLE: WORD EMBEDDING

EXAMPLE: WORD EMBEDDING

word2vec was originally described as a neural-network method, but Levy and Goldberg show that it is simply low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization.

Next Time: Build on the idea of low-rank approximation of similarity matrix low-rank approximation to perform non-linear dimensionality reduction for data that is not close to a low-dimensional linear subspace.

Questions?

