COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 13

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- \cdot Will release Problem Set 3 next week due \sim 11/11.

- Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for graduates. We will have your Problem Set 2 and midterm grades back before then.
- \cdot Will release Problem Set 3 next week due \sim 11/11.
- MAP Feedback:
 - \cdot Going to adjust a bit how I take questions in class.
 - Will try to more clearly identify important information (what will appear on exams or problem sets) v.s. motivating examples.
 - \cdot Will try to use iPad more to write out proofs in class.

- Discussed how to compress a dataset that lies close to a *k*-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of **X**^T**X**.

- Discussed how to compress a dataset that lies close to a *k*-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of X^TX.

This Class: Low-rank approximation and connection to singular value decomposition.

- Discussed how to compress a dataset that lies close to a *k*-dimensional subspace.
- Optimal compression by projecting onto the top k eigenvectors of the covariance matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ (PCA).
- Saw how to calculate the error of the approximation interpret the spectrum of X^TX.

This Class: Low-rank approximation and connection to singular value decomposition.

- Show how PCA can be interpreted in terms of the singular value decomposition (SVD) of **X**.
- Applications to word embeddings, graph embeddings, document classification, recommendation systems.

REVIEW

Set Up: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d . Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

• $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

• $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{W}^{\mathsf{T}} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V} .
- · $X \approx X(VV^T)$. Gives the closest approximation to X with rows in \mathcal{V} .

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$.

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$.

• **XVV**^T is a rank-*k* matrix – all its rows fall in \mathcal{V} .

REVIEW OF LAST TIME

Low-Rank Approximation: Approximate $X \approx XVV^{T}$.

- **XVV**^T is a rank-*k* matrix all its rows fall in \mathcal{V} .
- X's rows are approximately spanned by the columns of V.
- X's columns are approximately spanned by the columns of XV.

DUAL VIEW OF LOW-RANK APPROXIMATION

Row (data point) compression

<u> </u>			
Column	feature) compres	sion

10000* bathrooms+ 10* (sq. ft.) ≈ list price

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
nome 1	2	2	1800	2	200,000	195,000
nome 2	4	2.5	2700	1	300,000	310,000
·	·	•	·	•	·	·
·	·	•	·	•	·	•
	•	•	•	•	•	•
nome n	5	3.5	3600	3	450,000	450,000

 $\underset{\text{orthonormal} V \in \mathbb{R}^{d \times k}}{\text{arg min}} \| \textbf{X} - \textbf{X} \textbf{V} \textbf{V}^{T} \|_{\textit{F}}^{2}$

 $\underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\text{arg max}} \| X - XVV^{T} \|_{\text{F}}^{2} = \underset{\text{orthonormal } V \in \mathbb{R}^{d \times k}}{\text{arg max}} \| XVV^{T} \|_{\text{F}}^{2}$

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \sum_{i=1}^{n} \|\mathbf{V}\mathbf{V}^{\mathsf{T}}\vec{x}_{i}\|_{2}^{2}$$

SOLUTION VIA EIGENDECOMPOSITION

V minimizing the error $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2}$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{v}_{i}$$

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{v}_{i}$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2 = \sum_{i=1}^k \vec{v}_i^T \mathbf{X}^T \mathbf{X} \vec{v}_i$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{v}_{i}$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{v}_{i}$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$ec{\mathbf{v}}_k = rg\max_{ec{\mathbf{v}} ext{ with } \|\mathbf{v}\|_2 = 1, \ \langle ec{\mathbf{v}}, ec{\mathbf{v}}_j
angle = 0 \ \forall j < k} ec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} ec{\mathbf{v}}.$$

 \boldsymbol{V} minimizing the error $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{T}\|_{\text{F}}^{2}$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \| \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \sum_{i=1}^{k} \vec{v}_{i}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \vec{v}_{i}$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{V}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\text{arg max}} \vec{V}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$ec{\mathbf{v}}_k = rg\max_{ec{\mathbf{v}} ext{ with } \|\mathbf{v}\|_2 = 1, \ \langle ec{\mathbf{v}}, ec{\mathbf{v}}_j
angle = 0 \ \forall j < k} ec{\mathbf{v}}^T \mathbf{X}^T \mathbf{X} ec{\mathbf{v}}.$$

The top k eigenvectors of $X^T X$ by the Courant-Fischer Principal.

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V}\mathbf{A}\mathbf{V}^{\mathsf{T}}$, where the columns **V** are *d* orthonormal eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$.

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V}\mathbf{A}\mathbf{V}^{\mathsf{T}}$, where the columns **V** are *d* orthonormal eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$.

Typically order the eigenvalues in decreasing order: $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_d$.

Any symmetric matrix **A** can be decomposed as $\mathbf{A} = \mathbf{V}\mathbf{A}\mathbf{V}^{\mathsf{T}}$, where the columns **V** are *d* orthonormal eigenvectors $\vec{v}_1, \ldots, \vec{v}_d$.

Typically order the eigenvalues in decreasing order: $\lambda_1 \ge \lambda_2 \ge \dots \lambda_d$. When $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ all eigenvalues are ≥ 0 . Why?

LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $X^T X$, V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2,$$

Upshot: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $X^T X$, V_k is the orthogonal basis minimizing

 $\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2,$

This is principal component analysis (PCA).

Upshot: Letting V_k have columns $\vec{v}_1, \ldots, \vec{v}_k$ corresponding to the top k eigenvectors of the covariance matrix $X^T X$, V_k is the orthogonal basis minimizing

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2,$$

This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the eigenvalues (the 'spectrum') of $\mathbf{X}^T \mathbf{X}$.

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$.

- U has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ (singular values).
SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$.

- **U** has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ (singular values).

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$.

- **U** has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- V has orthonormal columns $\vec{v}_1, \ldots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ (singular values).

The 'swiss army knife' of linear algebra.

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$: $X^T X =$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U \Sigma V^T$: $X^T X = V \Sigma U^T U \Sigma V^T$

Writing $X \in \mathbb{R}^{n \times d}$ in its singular value decomposition $X = U\Sigma V^{T}$: $X^{T}X = V\Sigma U^{T}U\Sigma V^{T} = V\Sigma^{2}V^{T}$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$: $\mathbf{X}^{\mathsf{T}} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{\mathsf{T}}$ (the eigendecomposition)

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$: $\mathbf{X}^{\mathsf{T}} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{\mathsf{T}}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{\mathsf{T}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{\mathsf{T}}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we have that $\mathbf{XV}_k \mathbf{V}_k^{\mathsf{T}}$ is the best rank-*k* approximation to **X** (given by PCA approximation).

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we have that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-*k* approximation to **X** (given by PCA approximation).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \ldots, \vec{u}_k$?

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$: $\mathbf{X}^{T} \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} = \mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T}$ (the eigendecomposition) Similarly: $\mathbf{X} \mathbf{X}^{T} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T} \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{T} = \mathbf{U} \mathbf{\Sigma}^{2} \mathbf{U}^{T}$.

The left and right singular vectors are the eigenvectors of the covariance matrix $X^T X$ and the gram matrix XX^T respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \ldots, \vec{v}_k$, we have that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-*k* approximation to **X** (given by PCA approximation).

What about $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$? Gives exactly the same approximation!

The best low-rank approximation to X: $\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by: $\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T$ The best low-rank approximation to X: $\mathbf{X}_{k} = \arg\min_{\operatorname{rank} - k} {}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_{F} \text{ is given by:}$ $\mathbf{X}_{k} = \mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T} = \mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$

The best low-rank approximation to X:

$$\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:
 $\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$

Row (data point) compression

10000* bathrooms+ 10* (sq. ft.) ≈ list price												
	bedrooms	bathrooms	sq.ft. floors		list price	sale price						
home 1	2	2	1800	2	200,000	195,000						
home 2	4	2.5	2700	1	300,000	310,000						
	•		•	•	•	•						
•	•	•	•	·	•	•						
•	•	•	•	•	•	•						
home n	5	3.5	3600	3	450,000	450,000						

The best low-rank approximation to X:

$$\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:
 $\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$

The best low-rank approximation to X:

$$\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}}_{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:
 $\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X}$

The best low-rank approximation to X:

$$\mathbf{X}_k = \arg\min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$$
 is given by:
 $\mathbf{X}_k = \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T = \mathbf{U}_k\mathbf{U}_k^T\mathbf{X} = \mathbf{U}_k\mathbf{\Sigma}_k\mathbf{V}_k^T$

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to **X**: $\mathbf{X}_k = \arg \min_{\operatorname{rank} - k} \mathop{\mathbf{B} \in \mathbb{R}^{n \times d}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_{k} = \mathbf{X}\mathbf{V}_{k}\mathbf{V}_{k}^{\mathsf{T}} = \mathbf{U}_{k}\mathbf{U}_{k}^{\mathsf{T}}\mathbf{X} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathsf{T}}$$

 $X \in \mathbb{R}^{n \times d}$: data matrix, $U \in \mathbb{R}^{n \times rank(X)}$: matrix with orthonormal columns $\vec{u}_1, \vec{u}_2, \ldots$ (left singular vectors), $V \in \mathbb{R}^{d \times rank(X)}$: matrix with orthonormal columns $\vec{v}_1, \vec{v}_2, \ldots$ (right singular vectors), $\Sigma \in \mathbb{R}^{rank(X) \times rank(X)}$: positive diagonal matrix containing singular values of X.

Classic Linear Regression: Given $\mathbf{X} \in \mathbb{R}^{n \times d}$ where n > d (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^d$, want to find $\vec{c} \in \mathbb{R}^d$ minimizing $\|\mathbf{X}\vec{c} - \vec{y}\|_2$.

Classic Linear Regression: Given $\mathbf{X} \in \mathbb{R}^{n \times d}$ where n > d (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^d$, want to find $\vec{c} \in \mathbb{R}^d$ minimizing $\|\mathbf{X}\vec{c} - \vec{y}\|_2$.

Classic Linear Regression: Given $\mathbf{X} \in \mathbb{R}^{n \times d}$ where n > d (we have more data points than parameters), and response vector $\vec{y} \in \mathbb{R}^d$, want to find $\vec{c} \in \mathbb{R}^d$ minimizing $\|\mathbf{X}\vec{c} - \vec{y}\|_2$.

E.g., $c_1 \cdot (\# \text{ baths}) + c_2 \cdot (\text{sq.ft.}) + c_3 \cdot (\# \text{ floors}) + \ldots \approx \text{home price}$

Optimal solution is to chose \vec{c} so that $\mathbf{X}\vec{c} = \mathbf{P}_{X}\vec{y}$ – the projection of \vec{y} onto the column span of **X**.

Optimal solution is to chose \vec{c} so that $X\vec{c} = P_X\vec{y}$ – the projection of \vec{y} onto the column span of **X**.

Optimal solution is to chose \vec{c} so that $\mathbf{X}\vec{c} = \mathbf{P}_{X}\vec{y}$ – the projection of \vec{y} onto the column span of **X**.

Writing the SVD $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ we have:

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

• Used for many reasons other than dimensionality reduction/data compression.

MATRIX COMPLETION

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-*k* (i.e., well approximated by a rank *k* matrix). Classic example: the Netflix prize problem.

Y	Movies									
Users	4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6	
	3.6	3	3	1.2	3.8	4.2	5	3.4	4.8	
	2.8	3	3	2.3	3	3	3	3	3.2	
	3.4	3	3	4	4.1	4.1	4.2	3	3	
	2.8	3	3	2.3	3	3	3	3	3.4	
	2.2	5	3	4	4.2	3.9	4.4	4	5.3	
	1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8	

Solve:
$$\mathbf{Y} = \underset{\text{rank} - k \ \mathbf{B}}{\text{arg min}} \sum_{\text{observed } (j,k)} \left[\mathbf{X}_{j,k} - \mathbf{B}_{j,k} \right]^2$$

Under certain assumptions, can show that **Y** well approximates **X** on both the observed and (most importantly) unobserved entries.

Dimensionality reduction embeds d-dimensional vectors into d' dimensions. But what about when you want to embed objects other than vectors?

Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- \cdot Nodes in a social network
Dimensionality reduction embeds *d*-dimensional vectors into *d'* dimensions. But what about when you want to embed objects other than vectors?

- · Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- \cdot Nodes in a social network

Classical approach is to convert each item into a high-dimensional feature vector and then apply low-rank approximation

- $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_i both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_j, \vec{z}_a \rangle = 1$.

- $\langle \vec{y}_i, \vec{z}_a \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_i both contain $word_a$, $\langle \vec{y}_i, \vec{z}_a \rangle \approx \langle \vec{y}_i, \vec{z}_a \rangle = 1$.

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- **Z** corresponds to the top k right singular vectors: the eigenvectors of XX^{T} .

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- Z corresponds to the top *k* right singular vectors: the eigenvectors of XX^T. Intuitively, what is XX^T?

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- Z corresponds to the top *k* right singular vectors: the eigenvectors of XX^T. Intuitively, what is XX^T?
- $(XX^T)_{i,j} = \#$ documents that word_i and word_j co-occur in.

- The columns $\vec{z}_1, \vec{z}_2, \ldots$ give representations of words, with \vec{z}_i and \vec{z}_j tending to have high dot product if *word*_i and *word*_j appear in many of the same documents.
- Z corresponds to the top *k* right singular vectors: the eigenvectors of XX^T. Intuitively, what is XX^T?
- $(XX^{T})_{i,j} = #$ documents that word_i and word_j co-occur in.
- A document based similarity matrix.

- $\cdot\,$ In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix **X** corresponds to eigendecomposition of document based similarity matrix **XX**^T.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix **X** corresponds to eigendecomposition of document based similarity matrix **XX**^T.
- Many alternative similarities: how often do *word*_i, *word*_j appear in the same sentence, in the same window of *w* words, in similar positions of documents in different languages, etc.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix **X** corresponds to eigendecomposition of document based similarity matrix **XX**^T.
- Many alternative similarities: how often do *word*_i, *word*_j appear in the same sentence, in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing **XX**^T with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.

- In LSA, feature vector is the set of documents that word appears in.
- SVD of term-document matrix **X** corresponds to eigendecomposition of document based similarity matrix **XX**^T.
- Many alternative similarities: how often do *word*_i, *word*_j appear in the same sentence, in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing **XX**^T with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastTest, etc.
- Perform low-rank approximation of similarity matrix directly.

EXAMPLE: WORD EMBEDDING

EXAMPLE: WORD EMBEDDING

word2vec was originally described as a neural-network method, but Levy and Goldberg show that it is simply low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization.* **Next Time:** Build on the idea of low-rank approximation of similarity matrix low-rank approximation to perform non-linear dimensionality reduction for data that is not close to a low-dimensional linear subspace.

Questions?