
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 13

0



logistics

• Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for
graduates. We will have your Problem Set 2 and midterm
grades back before then.

• Will release Problem Set 3 next week due ∼ 11/11.

• MAP Feedback:
• Going to adjust a bit how I take questions in class.
• Will try to more clearly identify important information (what will
appear on exams or problem sets) v.s. motivating examples.

• Will try to use iPad more to write out proofs in class.

1



logistics

• Pass/Fail Deadline is 10/29 for undergraduates and 10/31 for
graduates. We will have your Problem Set 2 and midterm
grades back before then.

• Will release Problem Set 3 next week due ∼ 11/11.

• MAP Feedback:
• Going to adjust a bit how I take questions in class.
• Will try to more clearly identify important information (what will
appear on exams or problem sets) v.s. motivating examples.

• Will try to use iPad more to write out proofs in class.

1



summary

Last Few Classes: Low-Rank Approximation and PCA

• Discussed how to compress a dataset that lies close to a
k-dimensional subspace.

• Optimal compression by projecting onto the top k
eigenvectors of the covariance matrix XTX (PCA).

• Saw how to calculate the error of the approximation –
interpret the spectrum of XTX.

This Class: Low-rank approximation and connection to
singular value decomposition.

• Show how PCA can be interpreted in terms of the singular
value decomposition (SVD) of X.

• Applications to word embeddings, graph embeddings,
document classification, recommendation systems.

2



summary

Last Few Classes: Low-Rank Approximation and PCA

• Discussed how to compress a dataset that lies close to a
k-dimensional subspace.

• Optimal compression by projecting onto the top k
eigenvectors of the covariance matrix XTX (PCA).

• Saw how to calculate the error of the approximation –
interpret the spectrum of XTX.

This Class: Low-rank approximation and connection to
singular value decomposition.

• Show how PCA can be interpreted in terms of the singular
value decomposition (SVD) of X.

• Applications to word embeddings, graph embeddings,
document classification, recommendation systems.

2



summary

Last Few Classes: Low-Rank Approximation and PCA

• Discussed how to compress a dataset that lies close to a
k-dimensional subspace.

• Optimal compression by projecting onto the top k
eigenvectors of the covariance matrix XTX (PCA).

• Saw how to calculate the error of the approximation –
interpret the spectrum of XTX.

This Class: Low-rank approximation and connection to
singular value decomposition.

• Show how PCA can be interpreted in terms of the singular
value decomposition (SVD) of X.

• Applications to word embeddings, graph embeddings,
document classification, recommendation systems.

2



summary

Last Few Classes: Low-Rank Approximation and PCA

• Discussed how to compress a dataset that lies close to a
k-dimensional subspace.

• Optimal compression by projecting onto the top k
eigenvectors of the covariance matrix XTX (PCA).

• Saw how to calculate the error of the approximation –
interpret the spectrum of XTX.

This Class: Low-rank approximation and connection to
singular value decomposition.

• Show how PCA can be interpreted in terms of the singular
value decomposition (SVD) of X.

• Applications to word embeddings, graph embeddings,
document classification, recommendation systems.

2



review

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .
• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



review

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .
• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



review

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .

• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



review

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .

• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



review

Set Up: Assume that data points x⃗1, . . . , x⃗n lie close to any
k-dimensional subspace V of Rd. Let X ∈ Rn×d be the data matrix.

Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns.

• VVT ∈ Rd×d is the projection matrix onto V .
• X ≈ X(VVT). Gives the closest approximation to X with rows in V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 3



review of last time

Low-Rank Approximation: Approximate X ≈ XVVT.

• XVVT is a rank-k matrix – all its rows fall in V .

• X’s rows are approximately spanned by the columns of V.
• X’s columns are approximately spanned by the columns of XV.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

4



review of last time

Low-Rank Approximation: Approximate X ≈ XVVT.

• XVVT is a rank-k matrix – all its rows fall in V .

• X’s rows are approximately spanned by the columns of V.
• X’s columns are approximately spanned by the columns of XV.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

4



review of last time

Low-Rank Approximation: Approximate X ≈ XVVT.

• XVVT is a rank-k matrix – all its rows fall in V .

• X’s rows are approximately spanned by the columns of V.
• X’s columns are approximately spanned by the columns of XV.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

4



dual view of low-rank approximation

5



optimal low-rank approximation

Given x⃗1, . . . , x⃗n (the rows of X) we want to find an orthonormal span
V ∈ Rd×k (spanning a k-dimensional subspace V).

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F

= argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



optimal low-rank approximation

Given x⃗1, . . . , x⃗n (the rows of X) we want to find an orthonormal span
V ∈ Rd×k (spanning a k-dimensional subspace V).

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F

= argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



optimal low-rank approximation

Given x⃗1, . . . , x⃗n (the rows of X) we want to find an orthonormal span
V ∈ Rd×k (spanning a k-dimensional subspace V).

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F

=
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



optimal low-rank approximation

Given x⃗1, . . . , x⃗n (the rows of X) we want to find an orthonormal span
V ∈ Rd×k (spanning a k-dimensional subspace V).

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
n∑
i=1

∥VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 6



optimal low-rank approximation

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 7



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



solution via eigendecomposition

V minimizing the error ∥X− XVVT∥2F is given by:

argmax
orthonormal V∈Rd×k

∥XVVT∥2F =
k∑
i=1

v⃗Ti XTX⃗vi

Surprisingly, can find the columns of V, v⃗1, . . . , v⃗k greedily.

v⃗1 = argmax
v⃗ with ∥v∥2=1

v⃗TXTX⃗v.

v⃗2 = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗v1⟩=0

v⃗TXTX⃗v.

. . .

v⃗k = argmax
v⃗ with ∥v∥2=1, ⟨⃗v,⃗vj⟩=0 ∀j<k

v⃗TXTX⃗v.

The top k eigenvectors of XTX by the Courant-Fischer Principal.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8



eigendecomposition

Any symmetric matrix A can be decomposed as A = VΛVT, where the
columns V are d orthonormal eigenvectors v⃗1, . . . , v⃗d.

Typically order the eigenvalues in decreasing order: λ1 ≥ λ2 ≥ . . . λd.

When A = XTX all eigenvalues are ≥ 0. Why?

9



eigendecomposition

Any symmetric matrix A can be decomposed as A = VΛVT, where the
columns V are d orthonormal eigenvectors v⃗1, . . . , v⃗d.

Typically order the eigenvalues in decreasing order: λ1 ≥ λ2 ≥ . . . λd.

When A = XTX all eigenvalues are ≥ 0. Why?

9



eigendecomposition

Any symmetric matrix A can be decomposed as A = VΛVT, where the
columns V are d orthonormal eigenvectors v⃗1, . . . , v⃗d.

Typically order the eigenvalues in decreasing order: λ1 ≥ λ2 ≥ . . . λd.

When A = XTX all eigenvalues are ≥ 0. Why?

9



low-rank approximation via eigendecomposition

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

10



low-rank approximation via eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F,

This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the
eigenvalues (the ‘spectrum’) of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

11



low-rank approximation via eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F,

This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the
eigenvalues (the ‘spectrum’) of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

11



low-rank approximation via eigendecomposition

Upshot: Letting Vk have columns v⃗1, . . . , v⃗k corresponding to
the top k eigenvectors of the covariance matrix XTX, Vk is the
orthogonal basis minimizing

∥X− XVkVTk∥2F,

This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the
eigenvalues (the ‘spectrum’) of XTX.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : top
eigenvectors of XTX, Vk ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .

11



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices.

Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of linear algebra.

12



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of linear algebra.

12



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of linear algebra.

12



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X ∈ Rn×d with rank(X) = r can be written as X = UΣVT.

• U has orthonormal columns u⃗1, . . . , u⃗r ∈ Rn (left singular vectors).
• V has orthonormal columns v⃗1, . . . , v⃗r ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular
values).

The ‘swiss army knife’ of linear algebra. 12



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX =

VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT

= VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT

(the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?

Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT:

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT.

The left and right singular vectors are the eigenvectors of the
covariance matrix XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to v⃗1, . . . , v⃗k, we have that
XVkVTk is the best rank-k approximation to X (given by PCA
approximation).

What about UkUTkX where Uk ∈ Rn×k has columns equal to u⃗1, . . . , u⃗k?
Gives exactly the same approximation!

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

13



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk

= UkUTkX = UkΣkVTk
Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX

= UkΣkVTk
Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX

= UkΣkVTk

Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX

= UkΣkVTk

Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX

= UkΣkVTk

Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX = UkΣkVTk
Correspond to projecting the rows (data points) onto the span
of Vk or the columns (features) onto the span of Uk

14



the svd and optimal low-rank approximation

The best low-rank approximation to X:
Xk = argminrank−k B∈Rn×d ∥X− B∥F is given by:

Xk = XVkVTk = UkUTkX = UkΣkVTk

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

15



the svd and optimal low-rank approximation

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X. 16



the svd and linear regression

SVD is a ‘swiss army knife’.

Classic Linear Regression: Given X ∈ Rn×d where n > d (we
have more data points than parameters), and response vector
y⃗ ∈ Rd, want to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

E.g., c1 · (# baths) + c2 · (sq.ft.) + c3 · (# floors) + . . . ≈ home price

17



the svd and linear regression

SVD is a ‘swiss army knife’.

Classic Linear Regression: Given X ∈ Rn×d where n > d (we
have more data points than parameters), and response vector
y⃗ ∈ Rd, want to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

E.g., c1 · (# baths) + c2 · (sq.ft.) + c3 · (# floors) + . . . ≈ home price

17



the svd and linear regression

SVD is a ‘swiss army knife’.

Classic Linear Regression: Given X ∈ Rn×d where n > d (we
have more data points than parameters), and response vector
y⃗ ∈ Rd, want to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

E.g., c1 · (# baths) + c2 · (sq.ft.) + c3 · (# floors) + . . . ≈ home price

17



the svd and linear regression

SVD is a ‘swiss army knife’.

Classic Linear Regression: Given X ∈ Rn×d where n > d (we
have more data points than parameters), and response vector
y⃗ ∈ Rd, want to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

E.g., c1 · (# baths) + c2 · (sq.ft.) + c3 · (# floors) + . . . ≈ home price
17



the svd and linear regression

Classic Linear Regression: Given X ∈ Rn×d where n > d (we have
more data points than parameters) and response vector y⃗ ∈ Rd, want
to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

Optimal solution is to chose c⃗ so that X⃗c = PXy⃗ – the projection of y⃗
onto the column span of X.

Writing the SVD X = UΣVT we have:

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

18



the svd and linear regression

Classic Linear Regression: Given X ∈ Rn×d where n > d (we have
more data points than parameters) and response vector y⃗ ∈ Rd, want
to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

Optimal solution is to chose c⃗ so that X⃗c = PXy⃗ – the projection of y⃗
onto the column span of X.

Writing the SVD X = UΣVT we have:

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

18



the svd and linear regression

Classic Linear Regression: Given X ∈ Rn×d where n > d (we have
more data points than parameters) and response vector y⃗ ∈ Rd, want
to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

Optimal solution is to chose c⃗ so that X⃗c = PXy⃗ – the projection of y⃗
onto the column span of X.

Writing the SVD X = UΣVT we have:

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X.

18



the svd and linear regression

Classic Linear Regression: Given X ∈ Rn×d where n > d (we have
more data points than parameters) and response vector y⃗ ∈ Rd, want
to find c⃗ ∈ Rd minimizing ∥X⃗c− y⃗∥2.

Optimal solution is to chose c⃗ so that X⃗c = PXy⃗ – the projection of y⃗
onto the column span of X.

Writing the SVD X = UΣVT we have:

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X. 18



the svd and linear regression

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X) : matrix with orthonormal columns
u⃗1, u⃗2, . . . (left singular vectors), V ∈ Rd×rank(X) : matrix with orthonormal
columns v⃗1, v⃗2, . . . (right singular vectors), Σ ∈ Rrank(X)×rank(X) : positive di-
agonal matrix containing singular values of X. 19



applications of low-rank approximation

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

• Used for many reasons other than dimensionality
reduction/data compression.

20



applications of low-rank approximation

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

• Used for many reasons other than dimensionality
reduction/data compression.

20



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.

21



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.

21



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2

Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries.

21



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Solve: Y = argmin
rank−k B

∑
observed (j,k)

[
Xj,k − Bj,k

]2
Under certain assumptions, can show that Y well approximates X on
both the observed and (most importantly) unobserved entries. 21



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into
d′ dimensions. But what about when you want to embed
objects other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classical approach is to convert each item into a
high-dimensional feature vector and then apply low-rank
approximation

22



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into
d′ dimensions. But what about when you want to embed
objects other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classical approach is to convert each item into a
high-dimensional feature vector and then apply low-rank
approximation

22



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into
d′ dimensions. But what about when you want to embed
objects other than vectors?

• Documents (for topic-based search and classification)
• Words (to identify synonyms, translations, etc.)
• Nodes in a social network

Classical approach is to convert each item into a
high-dimensional feature vector and then apply low-rank
approximation

22



example: latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

23



example: latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

23



example: latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.

23



example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with z⃗i and z⃗j
tending to have high dot product if wordi and wordj appear in
many of the same documents.

• Z corresponds to the top k right singular vectors: the eigenvectors
of XXT. Intuitively, what is XXT?

• (XXT)i,j = # documents that wordi and wordj co-occur in.

• A document based similarity matrix.

24



example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with z⃗i and z⃗j
tending to have high dot product if wordi and wordj appear in
many of the same documents.

• Z corresponds to the top k right singular vectors: the eigenvectors
of XXT.

Intuitively, what is XXT?

• (XXT)i,j = # documents that wordi and wordj co-occur in.

• A document based similarity matrix.

24



example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with z⃗i and z⃗j
tending to have high dot product if wordi and wordj appear in
many of the same documents.

• Z corresponds to the top k right singular vectors: the eigenvectors
of XXT. Intuitively, what is XXT?

• (XXT)i,j = # documents that wordi and wordj co-occur in.

• A document based similarity matrix.

24



example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with z⃗i and z⃗j
tending to have high dot product if wordi and wordj appear in
many of the same documents.

• Z corresponds to the top k right singular vectors: the eigenvectors
of XXT. Intuitively, what is XXT?

• (XXT)i,j = # documents that wordi and wordj co-occur in.

• A document based similarity matrix.

24



example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with z⃗i and z⃗j
tending to have high dot product if wordi and wordj appear in
many of the same documents.

• Z corresponds to the top k right singular vectors: the eigenvectors
of XXT. Intuitively, what is XXT?

• (XXT)i,j = # documents that wordi and wordj co-occur in.

• A document based similarity matrix.

24



example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.

• In LSA, feature vector is the set of documents that word appears in.

• SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XXT.

• Many alternative similarities: how often do wordi,wordj appear in
the same sentence, in the same window of w words, in similar
positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

• Perform low-rank approximation of similarity matrix directly.

25



example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.

• In LSA, feature vector is the set of documents that word appears in.

• SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XXT.

• Many alternative similarities: how often do wordi,wordj appear in
the same sentence, in the same window of w words, in similar
positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

• Perform low-rank approximation of similarity matrix directly.

25



example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.

• In LSA, feature vector is the set of documents that word appears in.

• SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XXT.

• Many alternative similarities: how often do wordi,wordj appear in
the same sentence, in the same window of w words, in similar
positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

• Perform low-rank approximation of similarity matrix directly.

25



example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.

• In LSA, feature vector is the set of documents that word appears in.

• SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XXT.

• Many alternative similarities: how often do wordi,wordj appear in
the same sentence, in the same window of w words, in similar
positions of documents in different languages, etc.

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

• Perform low-rank approximation of similarity matrix directly.

25



example: word embedding

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word
embedding as implicit matrix factorization.

26



example: word embedding

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word
embedding as implicit matrix factorization. 26



Next Time: Build on the idea of low-rank approximation of
similarity matrix low-rank approximation to perform
non-linear dimensionality reduction for data that is not close
to a low-dimensional linear subspace.

Questions?

27


