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graduates. We will have your Problem Set 2 and midterm

grades back before then.
- Will release Problem Set 3 next week due ~ 11/11.

- MAP Feedback:
- Going to adjust a bit how | take questions in class.
- Will try to more clearly identify important information (what will
appear on exams or problem sets) v.s. motivating examples.
- Will try to use iPad more to write out proofs in class.
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SUMMARY

Last Few Classes: Low-Rank Approximation and PCA

- Discussed how to compress a dataset that lies close to a
k-dimensional subspace.

- Optimal compression by projecting onto the top k
eigenvectors of the covariance matrix X'X (PCA).

- Saw how to calculate the error of the approximation -
interpret the spectrum of X'X.

This Class: Low-rank approximation and connection to
singular value decomposition.

- Show how PCA can be interpreted in terms of the singular
value decomposition (SVD) of X.

- Applications to word embeddings, graph embeddings,
document classification, recommendation systems.



REVIEW

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




REVIEW

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




REVIEW

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W’ e R4 s the projection matrix onto V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




REVIEW

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W’ e R4 s the projection matrix onto V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3




REVIEW

Set Up: Assume that data points X, ..., X, lie close to any

k-dimensional subspace V of R?. Let X € R"*? be the data matrix.
d-dimensional space

k-dim. subspace V

Let V4, ...,V be an orthonormal basis for V and V € R%** be the
matrix with these vectors as its columns.

- W’ e R4 s the projection matrix onto V.

- X = X(WT). Gives the closest approximation to X with rows in V.

X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., v, € R%: orthogo-
nal basis for subspace V. V € RY*k: matrix with columns ¥, .. . , V. 3
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REVIEW OF LAST TIME

Low-Rank Approximation: Approximate X ~ XVV'.

d dimensions  k dimensions
| L
r 1 r 1

vT
n data points X =l XV
X; b8 % =Vx;
- XW'is a - all its rows fall in V.

+ X's rows are approximately spanned by the columns of V.

+ X's columns are approximately spanned by the columns of XV.

X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9>k: matrix with columns V4, .. ., V.




DUAL VIEW OF LOW-RANK APPROXIMATION
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OPTIMAL LOW-RANK APPROXIMATION

Given Xi,...,X, (the rows of X) we want to find an orthonormal span
V € R (spanning a k-dimensional subspace V).
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X1,...,% € RY: data points, X € R"%%: data matrix, ¥, . .., V, € RY: orthogo- ]
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X1,...,%n € R% data points, X € R"*9: data matrix, V4, ..., V, € R% orthogo-
nal basis for subspace V. V e R9%k: matrix with columns V4, .. ., V. 7
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V minimizing the error ||X — XWV'||2 is given by:

R
argmax [IXWT|2 =Y VXXV,
orthonormal VERYx* i

Surprisingly, can find the columns of V, V4, ...V}, greedily.

vy = argmax V' X'XV.
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v, = arg max VIXTXV.
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P with [[V][,=1, (7.7)=0 Vj<k

The top k eigenvectors of X'X by the Courant-Fischer Principal.
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Any symmetric matrix A can be decomposed as A = VAV, where the

columns V are d orthonormal eigenvectors Vi, ..., Vy.
dxd orthonormal diagonal orthonormal
£
%
A =| nv, V vy A \a
Aot
A

Typically order the eigenvalues in decreasing order: Ay > X, > ... \q.

When A = XX all eigenvalues are > 0.



LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

dxd

XX =[% 5|V A \

Ad-1
Aa

6 d-dimensional space

k-dim. subspace V

eigenvectors of XX, V, € RY>k: matrix with columns V4, ..., V.

Xi,..., % € RY data points, X € R">9: data matrix, v4,...,V, € R top ]
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LOW-RANK APPROXIMATION VIA EIGENDECOMPOSITION

Upshot: Letting V, have columns Vi, ..., V, corresponding to
the top k eigenvectors of the covariance matrix X'X, Vy, is the
orthogonal basis minimizing

IX = XV, V|7,
This is principal component analysis (PCA).

Last Time: Saw how to determine accuracy by looking at the
eigenvalues (the ‘spectrum’) of X'X.

Xi,...,% € RY data points, X € R"*9: data matrix, v4,...,v, € R top
eigenvectors of XX, V, € RY>%k: matrix with columns V4, .. ., V.

1
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The Singular Value Decomposition (SVD) generalizes the
eigendecomposition to asymmetric (even rectangular) matrices. Any
matrix X € R"™9 with rank(X) = r can be written as X = UXV".

- U has orthonormal columns i, ..., U, € R" (left singular vectors).
-V has orthonormal columns V4, ..., V, € RY (right singular vectors).
- X is diagonal with elements o4y > 0, > ... > o, > 0 (singular
values).
nxd orthonormal  positive diagonal ~ orthonormal
b3 VT
X =|u*% U Ur Ory .

The ‘swiss army knife’ of linear algebra.
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The best low-rank approximation to X:
Xp = arg min o —k sernxo ||[X — B||¢ is given by:
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THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

X € R4 data matrix, U € R"*MankX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e Rdxrank(X); matrix with orthonormal
columns v, v, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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SVD is a ‘swiss army knife’.

Classic Linear Regression: Given X € R"*9 where n > d (we
have more data points than parameters), and response vector
y € RY, want to find ¢ € RY minimizing ||XC — ¥/||,.

parameter response

d features vector vector

Q

n data points

E.g, ¢1- (# baths) + ¢, - (sq.ft.) + c3 - (# floors) + ... =~ home price
17
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THE SVD AND LINEAR REGRESSION

Classic Linear Regression: Given X € R"*94 where n > d (we have
more data points than parameters) and response vector y € RY, want
to find ¢ € R minimizing ||IXC — ¥|,.

Optimal solution is to chose € so that X¢ = Pxy - the projection of y
onto the column span of X.

Writing the SVD X = UXV' we have:

X € R4 data matrix, U € R"*"nkX): matrix with orthonormal columns
Uh, Uy, ... (left singular vectors), V. e RdI*mank(X). matrix with orthonormal
columns V4, %, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X. 18




THE SVD AND LINEAR REGRESSION

X € R4 data matrix, U € R"*MankX): matrix with orthonormal columns
Uh, U, ... (left singular vectors), V. e Rdxrank(X); matrix with orthonormal
columns v, v, ... (right singular vectors), £ e RrankX)xrank(X). positive di-
agonal matrix containing singular values of X.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is
applied in a variety of data science applications.

- Used for many reasons other than dimensionality
reduction/data compression.
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
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X Movies

5 1|4

Users

1 2

Solve: Y = argmin Z X — Bj,k]z
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MATRIX COMPLETION

Consider a matrix X € R"*4 which we cannot fully observe but
believe is close to rank-k (i.e., well approximated by a rank k matrix).
Classic example: the Netflix prize problem.

Y Movies

49 (31 11(3.8(41(41(3.4|46

3.6 12(38(42( 5 (3448

2.8 2313 |3 (3 3.2

Users

3.4 41|41 (42

28 2313 |3 (3 3.4

v |lw|w|w|w

S lww|w

22 4 |42(39|44 53

wlw|lw|lw|lw|lw|w
IS

22(31(29(32|15|18

Solve: Y=argmin Y [Xx By’
rank =R B ;p oo rved (j,k)

Under certain assumptions, can show that Y well approximates X on

both the observed and (most importantly) unobserved entries. ’



ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into
d’ dimensions. But what about when you want to embed
objects other than vectors?
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ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into
d’ dimensions. But what about when you want to embed
objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)

- Nodes in a social network

Classical approach is to convert each item into a
high-dimensional feature vector and then apply low-rank
approximation

22



EXAMPLE: LATENT SEMANTIC ANALYSIS

Corpus of Documents Term Document Matrix X
N %, o
— aoe[oTo oo o[22 ]e
AN ‘w}noaxaxono
EE% s e e o [ [3]o
“ oo o o efo]o]]x
doenf] 00|00 o o]a]r

Low-Rank Approximation via
SVD

zI
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Corpus of Documents Term Document Matrix X
l Low-Rank Approximation via

o 1

TR
[ ol o [o [0

- a[-[u °

N %, o
— doc_1
EE% _—)
s
SVD

o= [ e
- z

- (Vi,Z,) =~ 1when doc; contains word,.

* If doc; and doc; both contain wordy, (Vi,Za) =~ (Jj,Za) = 1.
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Corpus of Documents Term Document Matrix X
l Low-Rank Approximation via
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TR
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- a[-[u °
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— doc_1
EE% _—)
s
SVD

o= [ e
- z

- (Vi,Z,) =~ 1when doc; contains word,.

* If doc; and doc; both contain wordy, (Vi,Za) =~ (Jj,Za) = 1.
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Yj
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
S oy e %, o
doc1lo|of|2|o|o|2|1]|0]|0
f e [ o o [o [a]o | ) .
A oBoann X ~ |y
docnli1fofojofofo|0o|1f|1
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
o )%, %, %

doc_1

doc_2 0 1|0 0

ofo oo | ) X ~
~

: Y

.

0 1

0
)
o]
)
D

o
0
0
o
0

o
0 0 1

* The columns 7,2, ... give representations of words, with Z; and 7
tending to have high dot product if word; and word; appear in
many of the same documents.

- Z corresponds to the top k right singular vectors: the eigenvectors
of XX.
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- Z corresponds to the top k right singular vectors: the eigenvectors
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* The columns 7,2, ... give representations of words, with Z; and 7
tending to have high dot product if word; and word; appear in
many of the same documents.

- Z corresponds to the top k right singular vectors: the eigenvectors
of XX'. Intuitively, what is XX?

- (XXT);; = # documents that word; and word; co-occur in.
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EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
o )%, %, %

doc_1

. TTG E
o [o [l o | m—p ~

: S =Y

:

0
doc_2 0
o]
)
D

0 1

o
0
0
o
0

o
0 0 1

* The columns 7,2, ... give representations of words, with Z; and 7
tending to have high dot product if word; and word; appear in
many of the same documents.

- Z corresponds to the top k right singular vectors: the eigenvectors
of XX'. Intuitively, what is XX?

- (XXT);; = # documents that word; and word; co-occur in.

- A document based similarity matrix.
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EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.

- In LSA, feature vector is the set of documents that word appears in.

- SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XX'.
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EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that
captures the meaning of that word.
- In LSA, feature vector is the set of documents that word appears in.

- SVD of term-document matrix X corresponds to
eigendecomposition of document based similarity matrix XX'.

* Many alternative similarities: how often do word;, word; appear in
the same sentence, in the same window of w words, in similar
positions of documents in different languages, etc.

- Replacing XX” with these different metrics (sometimes
appropriately transformed) leads to popular word embedding
algorithms: word2vec, GloVe, fastTest, etc.

- Perform low-rank approximation of similarity matrix directly.
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EXAMPLE: WORD EMBEDDING

woman girl

man \ slower
\ father <‘ son slow
cat king Ueen boy
slowest
dog \ mother <‘ faster
cats daughter fast
France

dogs / England longer
he fastest
Paris / Italy \ she long
London \
/ himself longest

herself
Rome ersel
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EXAMPLE: WORD EMBEDDING

woman gll’l

slower
\ father slow
cat King queen

slowest
dog mother faster

\ cats daughter fast
dogs France
England longer
/ / he fastest
Paris Italy long
Londo%

hlmself longest

h If
Rome ersel

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word

embedding as implicit matrix factorization. %



Next Time: Build on the idea of low-rank approximation of
similarity matrix low-rank approximation to perform

dimensionality reduction for data that is not close
to a low-dimensional linear subspace.
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