COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 11

- Problem Set 2 is due this Friday 10/11. Will allow submissions until Sunday 10/13 at midnight with no penalty.
- Midterm next Thursday 10/17.

Problem Set 2:

- Mean was a 32.74/40 = 81%.
- $\cdot\,$ Mostly seem to have mastered Markov's, Chebyshev, etc.
- Some difficulties with exponential tail bounds (Chernoff and Bernstein). Will give some review exercises before midterm.

Last Two Classes: Randomized Dimensionality Reduction

- The Johnson-Lindenstrauss Lemma
- Reduce *n* data points in any dimension *d* to $O\left(\frac{\log n/\delta}{\epsilon^2}\right)$ dimensions and preserve (with probability $\geq 1 \delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and principal component analysis.

- · Compression is still linear by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- · Can give better compression than random projection.

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_1, \ldots, \vec{x}_n$ lie in any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Recall: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

- $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.
- · An actual projection, analogous to a JL random projection $\mathbf{\Pi}$.

Main Focus of Today: Assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find ${\cal V}$ and V?
- How good is the embedding?

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

Claim: $\vec{x_1}, \dots, \vec{x_n}$ lie in a *k*-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- X can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1, \ldots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : *k*-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}}$.

What is this coefficient matrix C?

- $\cdot \ \mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \implies \mathbf{X} \mathbf{V} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \mathbf{V}$
- $V^T V = I$, the identity (since V is orthonormal) $\implies XV = C$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}}$.

What is this coefficient matrix C?

- $\cdot \ \mathbf{X} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \implies \mathbf{X} \mathbf{V} = \mathbf{C} \mathbf{V}^{\mathsf{T}} \mathbf{V}$
- $V^T V = I$, the identity (since V is orthonormal) $\implies XV = C$.

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$.

What is this coefficient matrix C?

$$\cdot X = CV^T \implies XV = CV^TV$$

• $V^T V = I$, the identity (since V is orthonormal) $\implies XV = C$.

PROJECTION VIEW

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}(\mathbf{V}\mathbf{V}^{\mathsf{T}}).$

• $\mathbf{W}\mathbf{V}^{\mathsf{T}}$ is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

PROJECTION VIEW

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}(\mathbf{V}\mathbf{V}^{\mathsf{T}}).$

• $\mathbf{W}\mathbf{V}^{\mathsf{T}}$ is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

PROJECTION VIEW

Claim: If $\vec{x}_1, \ldots, \vec{x}_n$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}(\mathbf{V}\mathbf{V}^{\mathsf{T}}).$

• $\mathbf{W}\mathbf{V}^{\mathsf{T}}$ is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$ onto the subspace \mathcal{V} .

LOW-RANK APPROXIMATION

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T) = XP_V$$

Note: $X(VV^{T})$ has rank k. It is a low-rank approximation of X.

$$\mathbf{X}(\mathbf{V}\mathbf{V}^{\mathsf{T}}) = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\arg\min} \|\mathbf{X} - \mathbf{B}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^{2}$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx X(VV^T).$$

This is the closest approximation to X with rows in ${\cal V}$ (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_i - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^{\mathsf{T}}\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\mathcal V}$ and correspondingly V.

Question: Why might we expect $\vec{x}_1, \ldots, \vec{x}_n$ to lie close to a *k*-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of *k* vectors.

784 dimensional vectors

projections onto 15 dimensional space

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n}$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
		_				
•	·	•	•			-
•	·	•	•	•	•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n}$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
		_				
•				-		
•	•	•	•	•		•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n}$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of **X** are approx. spanned by *k* vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

10000* bathrooms+ 10* (sq. ft.) \approx list price

How do we find \mathcal{V} (and **V**)?

How do we find \mathcal{V} (and \mathbf{V})?

How do we find \mathcal{V} (and \mathbf{V})?

How do we find \mathcal{V} (and V)?

