COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 11

LOGISTICS

- Problem Set 2 is due this Friday $10 / 11$. Will allow submissions until Sunday 10/13 at midnight with no penalty.
- Midterm next Thursday 10/17.

Problem Set 2:

- Mean was a $32.74 / 40=81 \%$.
- Mostly seem to have mastered Markov's, Chebyshev, etc.
- Some difficulties with exponential tail bounds (Chernoff and Bernstein). Will give some review exercises before midterm.

SUMMARY

Last Two Classes: Randomized Dimensionality Reduction

- The Johnson-Lindenstrauss Lemma
- Reduce n data points in any dimension d to $O\left(\frac{\log n / \delta}{\epsilon^{2}}\right)$ dimensions and preserve (with probability $\geq 1-\delta$) all pairwise distances up to $1 \pm \epsilon$.
- Compression is linear via multiplication with a random, data oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and principal component analysis.

- Compression is still linear - by applying a matrix.
- Chose this matrix carefully, taking into account structure of the dataset.
- Can give better compression than random projection.

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Recall: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $V \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} .
$$

- $\mathrm{V}^{\top} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_{1}, \ldots, \vec{x}_{n}$ into k dimensions with no distortion.
- An actual projection, analogous to a JL random projection $\boldsymbol{\Pi}$.

EMBEDDING WITH ASSUMPTIONS

Main Focus of Today: Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathrm{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathrm{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and V ?
- How good is the embedding?

LOW-RANK FACTORIZATION

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Letting $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V}, can write any \vec{x}_{i} as:

$$
\vec{x}_{i}=c_{i, 1} \cdot \vec{v}_{1}+c_{i, 2} \cdot \vec{v}_{2}+\ldots+c_{i, k} \cdot \vec{v}_{k} .
$$

- So $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span the rows of \mathbf{X} and thus $\operatorname{rank}(X) \leq k$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
hal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

Claim: $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

- Every data point \vec{x}_{i} (row of X) can be written as

$$
c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}=\vec{c}_{i} \mathbf{V}^{\top} .
$$

k parameters

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The columns of X are spanned by k vectors: the columns of C.
$\vec{x}_{1}, \ldots, \vec{x}_{n}$: data points (in \mathbb{R}^{d}), \mathcal{V} : k-dimensional subspace of $\mathbb{R}^{d}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in$ \mathbb{R}^{d} : orthogonal basis for \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{\mathrm{v}}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

What is this coefficient matrix C?

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$, the identity (since V is orthonormal) $\Longrightarrow \mathrm{XV}=\mathrm{C}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{R} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

What is this coefficient matrix C?

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$, the identity (since V is orthonormal) $\Longrightarrow \mathrm{XV}=\mathrm{C}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathrm{X}=\mathrm{CV}^{\top}$.

What is this coefficient matrix C?

- $\mathrm{X}=\mathrm{CV}^{\top} \Longrightarrow \mathrm{XV}=\mathrm{CV}^{\top} \mathrm{V}$
- $\mathrm{V}^{\top} \mathrm{V}=\mathrm{I}$, the identity (since V is orthonormal) $\Longrightarrow \mathrm{XV}=\mathrm{C}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{X}\left(\mathrm{~V} \mathrm{~V}^{\top}\right)
$$

- VV^{\top} is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{X}\left(\mathrm{~V} \mathrm{~V}^{\top}\right)
$$

- $\mathbf{V V}^{\top}$ is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathrm{X}=\mathrm{X}\left(\mathrm{~V} \mathrm{~V}^{\top}\right)
$$

- $\mathbf{V V}^{\top}$ is a projection matrix, which projects the rows of X (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ onto the subspace \mathcal{V}.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $x \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogo-
nal basis for subspace \mathcal{V}. $\mathrm{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
X \approx X\left(V V^{\top}\right)=X P_{\mathcal{V}}
$$

Note: $\mathbf{X}\left(\mathbf{V V}^{\top}\right)$ has rank k. It is a low-rank approximation of \mathbf{X}.

$$
\mathrm{X}\left(\mathrm{VV}^{\top}\right)=\underset{\mathrm{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathrm{X}-\mathrm{B}\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\mathrm{B}_{i, j}\right)^{2} .
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathrm{X} \approx \mathrm{X}\left(\mathrm{VV} \mathrm{~V}^{\top}\right)
$$

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $\left(X V V^{\top}\right)_{i},\left(X V V^{\top}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points,

$$
\left\|\left(X V V^{\top}\right)_{i}-\left(X V V^{\top}\right)_{j}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right] V^{\top}\right\|_{2}=\left\|\left[(X V)_{i}-(X V)_{j}\right]\right\|_{2}
$$

- Can use XV $\in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace \mathcal{V} and correspondingly V .
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathcal{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n}$ to lie close to a k-dimensional subspace?

- The rows of X can be approximately reconstructed from a basis of k vectors.
projections onto 15
784 dimensional vectors
dimensional space orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{15}$

WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	.	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors. Linearly Dependent Variables:

	10000* bathrooms+ 10* (sq. ft.) \approx list price					
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathrm{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (and V)?
$\underset{\text { orthonormal } \mathrm{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathrm{X}-\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i, j}\left(\mathrm{X}_{i, j}-\left(\mathrm{XVV}^{\top}\right)_{i, j}\right)^{2}=\sum_{i=1}^{n}\left\|\vec{x}_{i}-\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2}$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $\mathbb{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (and V)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\|\mathbf{X}\|_{F}^{2}-\left\|\mathbf{X V V}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\vec{x}_{i}\right\|_{2}^{2}-\left\|\mathbf{V} \mathbf{V}^{\top} \vec{x}_{i}\right\|_{2}^{2}
$$

d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (and V)?

d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathrm{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $V \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as XVV^{\top}. XV gives optimal embedding of X in \mathcal{V}.

How do we find \mathcal{V} (and V)? $\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max }\left\|\mathrm{XVV}^{\top}\right\|_{F}^{2}=\sum_{i=1}^{n}\left\|\mathrm{VV}^{\top} \vec{x}_{i}\right\|_{2}^{2}$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $X \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace \mathcal{V}. $V \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

