
compsci 514: algorithms for data science

Cameron Musco
University of Massachusetts Amherst. Fall 2019.
Lecture 11

0



logistics

• Problem Set 2 is due this Friday 10/11. Will allow
submissions until Sunday 10/13 at midnight with no penalty.

• Midterm next Thursday 10/17.

Problem Set 2:

• Mean was a 32.74/40 = 81%.
• Mostly seem to have mastered Markov’s, Chebyshev, etc.
• Some difficulties with exponential tail bounds (Chernoff and
Bernstein). Will give some review exercises before midterm.
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summary

Last Two Classes: Randomized Dimensionality Reduction

• The Johnson-Lindenstrauss Lemma
• Reduce n data points in any dimension d to O

(
log n/δ

ϵ2

)
dimensions and preserve (with probability ≥ 1− δ) all
pairwise distances up to 1± ϵ.

• Compression is linear via multiplication with a random, data
oblivious, matrix (linear compression)

Next Two Classes: Low-rank approximation, the SVD, and
principal component analysis.

• Compression is still linear – by applying a matrix.
• Chose this matrix carefully, taking into account structure of
the dataset.

• Can give better compression than random projection.
2



embedding with assumptions

Assume that data points x⃗1, . . . , x⃗n lie in any k-dimensional subspace
V of Rd.

Recall: Let v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be
the matrix with these vectors as its columns. For all x⃗i, x⃗j:

∥VTx⃗i − VTx⃗j∥2 = ∥⃗xi − x⃗j∥2.

• VT ∈ Rk×d is a linear embedding of x⃗1, . . . , x⃗n into k dimensions
with no distortion.

• An actual projection, analogous to a JL random projection Π. 3



embedding with assumptions

Main Focus of Today: Assume that data points x⃗1, . . . , x⃗n lie close to
any k-dimensional subspace V of Rd.

Letting v⃗1, . . . , v⃗k be an orthonormal basis for V and V ∈ Rd×k be the
matrix with these vectors as its columns, VTx⃗i ∈ Rk is still a good
embedding for xi ∈ Rd. The key idea behind low-rank approximation
and principal component analysis (PCA).

• How do we find V and V?
• How good is the embedding? 4



low-rank factorization

Claim: x⃗1, . . . , x⃗n lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Letting v⃗1, . . . , v⃗k be an orthonormal basis for V , can write any x⃗i as:

x⃗i = ci,1 · v⃗1 + ci,2 · v⃗2 + . . .+ ci,k · v⃗k.

• So v⃗1, . . . , v⃗k span the rows of X and thus rank(X) ≤ k.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 5



Claim: x⃗1, . . . , x⃗n lie in a k-dimensional subspace V ⇔ the data
matrix X ∈ Rn×d has rank ≤ k.

• Every data point x⃗i (row of X) can be written as
ci,1 · v⃗1 + . . .+ ci,k · v⃗k = c⃗iVT.

• X can be represented by (n+ d) · k parameters vs. n · d.
• The columns of X are spanned by k vectors: the columns of C.

x⃗1, . . . , x⃗n : data points (in Rd), V : k-dimensional subspace of Rd , v⃗1, . . . , v⃗k ∈
Rd : orthogonal basis for V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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low-rank factorization

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace with orthonormal
basis V ∈ Rd×k, the data matrix can be written as X = CVT.

What is this coefficient matrix C?

• X = CVT =⇒ XV = CVTV
• VTV = I, the identity (since V is orthonormal) =⇒ XV = C.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 7
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projection view

Claim: If x⃗1, . . . , x⃗n lie in a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be written as

X = X(VVT).

• VVT is a projection matrix, which projects the rows of X (the data
points x⃗1, . . . , x⃗n onto the subspace V .

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 8
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low-rank approximation

Claim: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ X(VVT) = XPV

Note: X(VVT) has rank k. It is a low-rank approximation of X.

X(VVT) = argmin
B with rows in V

∥X− B∥2F =
∑
i,j

(Xi,j − Bi,j)2.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 9



low-rank approximation

So Far: If x⃗1, . . . , x⃗n lie close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as:

X ≈ X(VVT).

This is the closest approximation to X with rows in V (i.e., in the
column span of V).

• Letting (XVVT)i, (XVVT)j be the ith and jth projected data points,

∥(XVVT)i − (XVVT)j∥2 = ∥[(XV)i − (XV)j]VT∥2 = ∥[(XV)i − (XV)j]∥2.

• Can use XV ∈ Rn×k as a compressed approximate data set.

Key question is how to find the subspace V and correspondingly V.

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k .
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why low-rank approximation?

Question: Why might we expect x⃗1, . . . , x⃗n to lie close to a
k-dimensional subspace?
• The rows of X can be approximately reconstructed from a
basis of k vectors.
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why low-rank approximation?

Question: Why might we expect x⃗1, . . . , x⃗n to lie close to a
k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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best fit subspace

If x⃗1, . . . , x⃗n are close to a k-dimensional subspace V with
orthonormal basis V ∈ Rd×k, the data matrix can be approximated as
XVVT. XV gives optimal embedding of X in V .

How do we find V (and V)?

argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F =
∑
i,j

(Xi,j − (XVVT)i,j)2 =
n∑
i=1

∥⃗xi − VVTx⃗i∥22

x⃗1, . . . , x⃗n ∈ Rd : data points, X ∈ Rn×d : data matrix, v⃗1, . . . , v⃗k ∈ Rd : orthogo-
nal basis for subspace V . V ∈ Rd×k : matrix with columns v⃗1, . . . , v⃗k . 13
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