COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Cameron Musco University of Massachusetts Amherst. Fall 2019. Lecture 10

- Problem Set 2 is due next Friday 10/11, although we will allow submissions until Sunday 10/13 at midnight with no penalty.
- Midterm on Thursday 10/17. Will cover material through today.

Last Class: Dimensionality Reduction

- Applications and examples of dimensionality reduction in data science.
- Low-distortion embeddings (MinHash as an example).
- Low-distortion embeddings for Euclidean space and the Johnson-Lindenstrauss Lemma.

This Class: Finish the JL Lemma.

- Prove the Johnson-Lindenstrauss Lemma.
- Discuss algorithmic considerations, connections to other methods, etc.

Low Distortion Embedding for Euclidean Space: Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and error parameter $\epsilon \ge 0$, find $\tilde{x}_1, \ldots, \tilde{x}_n \in \mathbb{R}^{d'}$ (where $d' \ll d$) such that for all $i, j \in [n]$:

$$(1-\epsilon)\|x_i - x_j\|_2 \le \|\tilde{x}_i - \tilde{x}_j\|_2 \le (1+\epsilon)\|x_i - x_j\|_2$$

If x_1, \ldots, x_n lie in a k-dimensional subspace of \mathbb{R}^d can project to d' = k dimensions with no distortion.

If close to a *k*-dimensional space, can project to *k* dimensions without much distortion (the idea behind PCA).

Johnson-Lindenstrauss Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{d'}} \cdot \mathcal{N}(0, 1)$. For any set of points $x_1, \ldots, x_n \in \mathbb{R}^d$, $\epsilon, \delta > 0$, and $d' = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \mathbf{\Pi} x_i$, with probability $\geq 1 - \delta$ we have:

For all
$$i, j$$
: $(1 - \epsilon) \|x_i - x_j\|_2 \le \|\mathbf{\tilde{x}_i} - \mathbf{\tilde{x}_j}\|_2 \le (1 + \epsilon) \|x_i - x_j\|_2$.

Surprising and powerful result.

• Construction of **Π** is simple, random and data oblivious.

 x_1, \ldots, x_n : original data points (*d* dimensions), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed data points (*d'* < *d* dimensions), $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$: random projection matrix (embedding function), ϵ : error of embedding, δ : failure probability.

RANDOM PROJECTION

 $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$ is a random matrix. I.e., a random function mapping length d vectors to length d' vectors.

 x_1, \ldots, x_n : original points (*d* dims.), $\tilde{x}_1, \ldots, \tilde{x}_n$: compressed points (d' < d dims.), Π : random projection (embedding function), ϵ : error of embedding.

$$\tilde{\mathbf{x}}_{\mathbf{i}}(j) = \langle \mathbf{\Pi}(j), x_i \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j, k) \cdot x_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

$$\tilde{\mathbf{x}}_{\mathbf{i}}(j) = \langle \mathbf{\Pi}(j), x_i \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j,k) \cdot x_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 x_1, \ldots, x_n : original points (*d* dims.), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points (*d'* < *d* dims.), $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$: random projection (embedding function)

$$\tilde{\mathbf{x}}_{\mathbf{i}}(j) = \langle \mathbf{\Pi}(j), x_i \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j,k) \cdot x_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 x_1, \ldots, x_n : original points (*d* dims.), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points (*d'* < *d* dims.), $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$: random projection (embedding function)

$$\tilde{\mathbf{x}}_{\mathbf{i}}(j) = \langle \mathbf{\Pi}(j), x_i \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j, k) \cdot x_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

$$\mathbf{\tilde{x}}_{i}(j) = \langle \mathbf{\Pi}(j), x_{i} \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j, k) \cdot x_{i}(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 x_1, \ldots, x_n : original points (*d* dims.), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points (*d'* < *d* dims.), $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$: random projection (embedding function)

$$\mathbf{\tilde{x}}_{i}(j) = \langle \mathbf{\Pi}(j), x_{i} \rangle = \sum_{k=1}^{d} \mathbf{\Pi}(j, k) \cdot x_{i}(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 x_1, \ldots, x_n : original points (*d* dims.), $\tilde{\mathbf{x}}_1, \ldots, \tilde{\mathbf{x}}_n$: compressed points (*d'* < *d* dims.), $\mathbf{\Pi} \in \mathbb{R}^{d' \times d}$: random projection (embedding function)

$$\tilde{\mathbf{x}}_{\mathbf{i}}(j) = \langle \mathbf{\Pi}(j), x_i \rangle = \sum_{k=1}^d \mathbf{\Pi}(j,k) \cdot x_i(k).$$

 $\Pi(j)$ is a vector with independent random Gaussian entries.

 $\widetilde{x}_i = [1.1 - 2.4 \ 0.1 - 5]$ $\widetilde{x}_i = [1 - 1 \ 1 - 1]$

Points with high cosine similarity have similar random projections.

Computing a length d' SimHash signature $SH_1(x_i), \ldots, SH_{d'}(x_i)$ is identical to computing $\tilde{\mathbf{x}}_i = \mathbf{\Pi} x_i$ and then taking $sign(\tilde{\mathbf{x}}_i)$.

The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$. If we set $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability $\geq 1 - \delta$ $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{\Pi}y\|_2 \leq (1 + \epsilon) \|y\|_2$

Applying a random matrix Π to any vector y preserves y's norm with high probability.

- Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
- Can be proven from first principles. Will see next.

 $\Pi \in \mathbb{R}^{m \times d}$: random projection matrix. *d*: original dimension. *m*: compressed dimension (analogous to *d'*), ϵ : embedding error, δ : embedding failure prob.

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given x_1, \ldots, x_n , define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given x_1, \ldots, x_n , define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each y_{ij} with probability $\geq 1 - \delta$ we have:

$$(1-\epsilon)\|y_{ij}\|_2 \le \|\mathbf{\Pi}y_{ij}\|_2 \le (1+\epsilon)\|y_{ij}\|_2$$

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given x_1, \ldots, x_n , define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each y_{ij} with probability $\geq 1 - \delta$ we have:

 $(1-\epsilon)\|x_i - x_j\|_2 \le \|\Pi(x_i - x_j)\|_2 \le (1+\epsilon)\|x_i - x_j\|_2$

Since $\mathbf{\Pi}$ is linear these are the same thing!

Proof: Given x_1, \ldots, x_n , define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

• If we choose Π with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, for each y_{ij} with probability $\geq 1 - \delta$ we have:

$$(1-\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2 \le \|\mathbf{\tilde{x}}_i - \mathbf{\tilde{x}}_j\|_2 \le (1+\epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2$$

DISTRIBUTIONAL JL \implies JL

Claim: If we choose Π with i.i.d. $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$ entries and $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi x_i$, for each pair x_i, x_j with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|x_i-x_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|x_i-x_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log\binom{n}{2}/\delta}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

DISTRIBUTIONAL JL \implies JL

Claim: If we choose Π with i.i.d. $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$ entries and $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, letting $\tilde{\mathbf{x}}_i = \Pi x_i$, for each pair x_i, x_j with probability $\geq 1 - \delta'$ we have:

$$(1-\epsilon)\|x_i-x_j\|_2 \leq \|\mathbf{\tilde{x}}_i-\mathbf{\tilde{x}}_j\|_2 \leq (1+\epsilon)\|x_i-x_j\|_2.$$

With what probability are all pairwise distances preserved?

Union bound: With probability $\geq 1 - \binom{n}{2} \cdot \delta'$ all pairwise distances are preserved.

Apply the claim with $\delta' = \delta/\binom{n}{2}$. \implies for $m = O\left(\frac{\log 1/\delta'}{\epsilon^2}\right)$, all pairwise distances are preserved with probability $\geq 1 - \delta$.

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n^2/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)$$

Yields the JL lemma.

Distributional JL Lemma: Let $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$. If we set $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|\mathbf{\Pi}y\|_2 \le (1+\epsilon)\|y\|_2$$

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} y$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any j, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ : error, δ : failure prob.

DISTRIBUTIONAL JL PROOF

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} y$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot y_i \sim \mathcal{N}(0, y_i^2)$: a normal distribution with variance y_i^2 .

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

DISTRIBUTIONAL JL PROOF

- Let $\tilde{\mathbf{y}}$ denote $\mathbf{\Pi} y$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
- For any *j*, $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0, 1)$.
- $\mathbf{g}_i \cdot y_i \sim \mathcal{N}(0, y_i^2)$: a normal distribution with variance y_i^2 .

What is the distribution of $\tilde{\mathbf{y}}(j)$? Also Gaussian!

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable.

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} y$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), y \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \cdot y_{i} \sim \mathcal{N}(0, y_{i}^{2})$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable

Letting
$$\tilde{\mathbf{y}} = \mathbf{\Pi} y$$
, we have $\tilde{\mathbf{y}}(j) = \langle \mathbf{\Pi}(j), y \rangle$ and:
 $\tilde{\mathbf{y}}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \cdot y_{i} \sim \mathcal{N}(0, y_{i}^{2})$.

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, \|y\|_2^2/m)$. I.e., $\tilde{\mathbf{y}}$ itself is a random Gaussian vector. Rotational invariance of the Gaussian distribution.

Stability is another explanation for the central limit theorem.

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_j : normally distributed random variable

DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $y \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} y$: $\tilde{\mathbf{y}}(j) \sim \mathcal{N}(0, ||\mathbf{y}||_2^2/m)$.

What is $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2]$?

$$\mathbb{E}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \mathbb{E}\left[\sum_{j=1}^{m} \tilde{\mathbf{y}}(j)^{2}\right] = \sum_{j=1}^{m} \mathbb{E}[\tilde{\mathbf{y}}(j)^{2}]$$
$$= \sum_{j=1}^{m} \frac{\|\mathbf{y}\|_{2}^{2}}{m} = \|\mathbf{y}\|_{2}^{2}$$

So $\boldsymbol{\tilde{y}}$ has the right norm in expectation.

How is $\|\mathbf{\tilde{y}}\|_2^2$ distributed? Does it concentrate?

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: *j*th row of $\mathbf{\Pi}$, *d*: original dimension. *m*: compressed dimension, \mathbf{g}_j : normally distributed random variable

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $y \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} y$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|y\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|y\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $y \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} y$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|y\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|y\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

 $\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}.$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|y\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|y\|_2^2$.

 $y \in \mathbb{R}^d$: arbitrary vector, $\tilde{\mathbf{y}} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $y \to \tilde{\mathbf{y}}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\frac{1}{\sqrt{m}} \cdot \mathcal{N}(0, 1)$, for any $y \in \mathbb{R}^d$, letting $\tilde{\mathbf{y}} = \mathbf{\Pi} y$:

 $\mathbf{\tilde{y}}(j) \sim \mathcal{N}(0, \|y\|_2^2/m)$ and $\mathbb{E}[\|\mathbf{\tilde{y}}\|_2^2] = \|y\|_2^2$

 $\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^m \tilde{\mathbf{y}}(j)^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting **Z** be a Chi-Squared random variable with *m* degrees of freedom,

$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|y\|_2^2 \le \|\tilde{\mathbf{y}}\|_2^2 \le (1 + \epsilon) \|y\|_2^2$.

Gives the distributional JL Lemma and thus the classic JL Lemma!

Support Vector Machines: A classic ML algorithm, where data is classified with a hyperplane.

- For any point a in A, $\langle a, w \rangle \ge c + m$
- For any point *b* in B $\langle b, w \rangle \leq c - m$.
- Assume all vectors have unit norm.

JL Lemma implies that after projection into $O\left(\frac{\log n}{m^2}\right)$ dimensions, still have $\langle \tilde{\mathbf{a}}, \tilde{\mathbf{w}} \rangle \ge c + m/4$ and $\langle \tilde{\mathbf{b}}, \tilde{\mathbf{w}} \rangle \le c - m/4$.

Upshot: Can random project and run SVM (much more efficiently) in the lower dimensional space to find separator \tilde{w} .

Questions?