UML

UML DISTILLED

UNIFIED o

MODELING JRATED Ebrtion]
OBsECT MODELING LANGUAGE
LANGUAGE S
%

Design and UML Diagrams

2/18/15

How do people
draw / write down
software architecture?

Example architectures

VerizonWireless

GPS satellite

CS 320
student ag Cell phone

Big questions

* Whatis UML?
— Why should | bother? Do people really use UML?

* What is a UML class diagram?

— What kind of information goes into it?
— How do | create it?

— When should | create it?

Design phase

» design: specifying the structure of how a software
system will be written and function, without actually
writing the complete implementation

a transition from "what" the system must do, to
"how" the system will do it

— What classes will we need to implement a system that
meets our requirements?

— What fields and methods will each class have?
— How will the classes interact with each other?

How do we design classes?

« class identification from project spec / requirements
— nouns are potential classes, objects, fields
— verbs are potential methods or responsibilities of a class
* CRC card exercises
— write down classes' names on index cards
— next to each class, list the following:

« responsibilities: problems to be solved; short verb phrases

« collaborators: other classes that are sent messages by this class
(asymmetric)

¢ UML diagrams

lass di i [
- T
class |agrams Pl ok
— sequence diagrams Y pome

Kens s
- o bt

123 #"ﬁiﬁ;

UML

In an effort to promote Object Oriented designs,
three leading object oriented programming
researchers joined ranks to combine their
languages:

— Grady Booch (BOOCH)
— Jim Rumbaugh (OML: object modeling technique)
— Ivar Jacobsen (OOSE: object oriented software eng)

and come up with an industry standard [mid 1990’s].

2/18/15

UML - Unified Modeling Language

» The result is large (as one might expect)
— Union of all Modeling Languages
» Use case diagrams
« Class diagrams
+ Object diagrams
» Sequence diagrams
« Collaboration diagrams
« Statechart diagrams
« Activity diagrams
« Component diagrams
» Deployment diagrams
— But it's a nice standard that has been embraced by
the industry.

Introduction to UML

* UML: pictures of an OO system

— programming languages are not abstract enough for 0O
design

— UML is an open standard; lots of companies use it

* What is legal UML?
— a descriptive language: rigid formal syntax (like
programming)
— a prescriptive language: shaped by usage and convention

— it's okay to omit things from UML diagrams if they aren't
needed by team/supervisor/instructor

Uses for UML

as a sketch: to communicate aspects of system

— forward design: doing UML before coding

— backward design: doing UML after coding as documentation
— often done on whiteboard or paper

— used to get rough selective ideas

as a blueprint: a complete design to be implemented

— sometimes done with CASE (Computer-Aided Software
Engineering) tools

as a programming language: with the right tools, code can
be auto-generated and executed from UML
— only good if this is faster than coding in a "real" language

UML class diagrams

* What is a UML class diagram?
=« UML class diagram: a picture of
= the classes in an OO system
= their fields and methods
= connections between the classes
= that interact or inherit from each other

¢ What are some things that are not
represented in a UML class diagram?

details of how the classes interact with each other
algorithmic details
= how a particular behavior is implemented

« operations / methods (optional)

Diagram of one class

* class name in top of box
— write <<interface>> on top of interfaces' names

— use italics for an abstract class name Redangle
- wictth: int
- height: int
 attributes (optional) 1 area: double
— should include all fields of the object [+ Rectangle(width int, height: int)
+ distance(r: Rectangle): double

Student

— may omit trivial (get/set) methods name:String
* but don't omit any methods from an interface! ddint

— should not include inherited methods HotalStudentsint

#getiD(Yint

+getNam e():String

~getE mail Address(x String
+getT otalStudents(rint

Class attributes

 attributes (fields, instance variables)
— visibility name : type [count] = default_value

— visibility: + public
protected
- private
~ package (default)
/ derived

— underline static attributes

— derived attribute: not stored, but can
be computed from other attribute values

— attribute example:
- balance : double = 0.00

2/18/15

Rectangle

- wicth: int
- height: int
f area: double

+ Rectangle(wicth int, height; int)
+ distance(r: Rectangle): double

Student

-hame:String
Adcint
AotalStudentsint

#getiD(Yint

+gethlam e(:String

~getE mail Address(x String
+getT otal Students(rint

Comments

* represented as a folded note, attached to the
appropriate class/method/etc by a dashed

Cloneable is a
“tagging" interface
with no methods.
The clone method
is defined in the
.{Object class

ArraylList

vd -
«interface»
Cloneable

Relationships between classes

» generalization: an inheritance relationship

— inheritance between classes
— interface implementation

— dependency
— aggregation
— composition

association: a usage relationship

Generalization relationships

generalization (inheritance) relationships

— hierarchies drawn top-down with arrows pointing
upward to parent

— line/arrow styles differ, based on whether parent is

«interface»
Shape

+ getarea(): double

a(n): !

* class: ;
T RectangularShape
solid line, black arrow R

- height: int

* abstract class:

| area: double

[# RectangularShape(width: i, height. int)
+ contains(p: Point): boolean
[+ getArea(): double

solid line, white arrow

« interface:
dashed line, white arrow

Rectangle

- x: int
— we often don't draw trivial / obvious generalization |-y int

relationships, such as drawing the Object class asa [+ Rectangle(x int, . int, wikh: int, height. int)
+ contains(s: Poirt): bookean
parent + distance(r: Rectangle): double

Associational relationships

* associational (usage) relationships

1. muIt|p||C|ty (how many are used)
. * =>0, 1, or more
+1 = 1 exactly
* 2.4 = between 2and 4, inclusive
. 3. =>3 or more

2. name
3. navigability

(direction) 0

Class A 1.7

(what relationship the objects have)

K Class B

contains

Multiplicity of associations

one-to-one
= each student must carry exactly one ID card

IDCard
e String
i
- password: String

Student

- iacara: IDCard

I carries 1

one-to-many

= one rectangle list can contain many rectangles

Rectangle

Xt RectangleList
* contains

-y int - list: ArrayList

+ Rectangle(x: irt, y: int, width irt, height: irt) T add(Rectang)
+ contains(p: Paint): boolean .+ clear()
+ distance(r: Rectangle): double

Association types

aggregation: "is part of"
— symbolized by a clear white diamond

aggregation

composition: "is entirely made of"
— stronger version of aggregation
— the parts live and die with the whole
— symbolized by a black diamond

composition

2/18/15

Class diagram example

dependency: "uses temporarily"
— symbolized by dotted line

— often is an implementation
detail, not an intrinsic part of
that object's state

dependency

Lottery

sssssssssssapl Random
Ticket

UML example: people

Person Address

Name Sgreet

Phone Number 0.1 lvesat 1|SW

Email Address State
Postal Code

Purchase Parking Pass Country
Validate
Output As Label

Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Let’s add the visibility attributes

Class diagram example: video store

Pe=

Rental Invoice

Customer

Abstract
Class

Rental Item

1 0.1
Composition simple
Checkout Screen
[DvDMovie | [VHS Movie | [Video Game |

I

Customer No arrows; info can Order .
flow in both directions Aggregation —
name 1 0.* | date
address status Order class
A\ contains
association calcTax .
5 Fayment | 1 - calcTotal OrderDetail
abstract class— |- yment | 1 1| caleTotatweight
classes. Could
amount 1 .
be composition?
role name.
Seneralization ?:m 1. multiplicity
OrderDetail ttem <——{— class name
Credit Cash Check quanty P
shippingWeigt }
* {— attributes
nuriber cashTendered | | name tatatus 07 geseription €|
e bankiD
expDate getPriceForQuantity
authorized calceight getWeight | operations
authorized
navigability
ITheVotingProgram

VoterAuthentication

‘VoterPersonalldertification

voterlD: String
voterPassword: securePW

VoterLastiame: Siring
voterFirsthame: String
voterhidlieName: String
voterSSh: String
voterAddress1: String

: String
 |veterCity: String
| fvoterState: String

BaltCreation 1 LvoterZP: String
B = String kS idateZ] Voter ZIP:
E) candidates: String [4
S displayBal0void g
S createBalot(ivaid
securePW

this is only a small
subset of the actual
package ...

© PvWEntered: JPasswordField
[SecureP AP secureP) securePi

Class diagram example: student

StudentBody

+ main (args : String[)

Address
- streetAddress : String
- city : String
- state : String
- zipCode : long

+ toString() : String

100 Student

- firstName : String

- lastName : String

- homeAddress : Address
- schoolAddress : Address

+ toString() : String

2/18/15

Tools for creating UML diagrams

* Violet (free)
— http://horstmann.com/violet/

« Rational Rose (trial)
— http://www.rational.com/

* Visual Paradigm UML Suite (trial)
— http://www.visual-paradigm.com/

— direct download link:
https://www.visual-paradigm.com/download/

(there are many others, but many are commercial)

Class design exercise

* Consider this Texas Hold 'em poker game system:
— 2 to 8 human or computer players
— Each player has a name and stack of chips
— Computer players have a difficulty setting: easy, medium, hard
— Summary of each round:
* Dealer collects ante from appropriate players shuffles the deck, and deals
each player a hand of 2 cards from the deck.
* A betting round occurs, followed by dealmg 3 shared cards from the deck.
* As shared cards are dealt, more betting rounds occur, where each player
can fold, check, or raise.
« At the end of a round, if more than one ﬁlayer is remaining, players' hands
are compared, and the best hand wins the pot of all chips et so far.

— What classes are in this system?
What are their responsibilities?
Which classes collaborate?

— Draw a class diagram for this system. Include relationships
between classes (generalization and associational).

UML

o i L0 OV St

UML DisTILLED

UNIFIED o

MODELING JRATED Ebrtion]
LANGUAGE -
%

UML Sequence Diagrams

UML sequence diagrams

* sequence diagram: an "interaction diagram"
that models a single scenario executing in the
system
— perhaps 2nd most used UML diagram

(behind class diagram)

relation of UML diagrams to other exercises:
—CRCcards ->class diagram
— use cases -> sequence diagrams

Key parts of a sequence diagram

* participant: an object or an entity;
the sequence diagram actor

— sequence diagram starts with an unattached
"found message" arrow

* message: communication between objects
* the axes in a sequence diagram:

— horizontal: which object/participant is acting
— vertical: time (»L forward in time)

Sequence diagram from use case
2 O O 0 o

Basic Course 1: Customer 2: Search Page 3: Search Results Page 4: Catalog. §: Search Results
The Customer specifies an

author on the Search Page I
and then presses the Search

button. |

|

| validateSearchCriteria()

onSearchl) |

The system valdates

|
|
|
|
the Customer's search criteria. |
|

The system searches the Catalog.
for books associated with the
specified author,

|
|
|
! I
| I
I I
I +
! I
When the search s complete, the | | |
system displays the search resalts | 0 D<ﬂvsplay() [j
| |
| |
|
|
|
|
|

searchByAuthor()
|
“U create()

onthe Search Results Page.

Alternate Course

If the Customer did not enter the
‘name of an author before pressing
‘the Search button, the system displays
an error message to that effect and
prompts the Customer to re-enter an
author game.

| |
displayErrorMessage() : }
| |
| |
| |
| |

2/18/15

Representing objects

* An object: a square with object type,
optionally preceded by object name and colon
— write object's name if it clarifies the diagram
— object's "life line" represented by dashed vert.

ous ek of
oy '
° c\):\ier'\ow“ clos*

ﬂowd ﬂx 3 ﬂ
| Smith:Patient I Patient | | Smith |
H] 1 "
H H 1 feline
i ! L ooeet™
1 We 1 1
§ At i i
|oowect | i
1 1 1
1 1 1

Name syntax: <objectname>:<classname>

Messages between objects

* message (method call): horizontal arrow to other object
— write message name and arguments above arrow

ag® xS
m‘:i\se argur”

:Hospital
Admit (patientID, roomType)

Different types of messages

¢ Type of arrow indicates types of messages
— dashed arrow back indicates return

— different arrowheads for normal / concurrent
(asynchronous) methods

Messages
T ontroller ocedr® cal
I — L
contrd! f(= - ==
ot v ® A‘\‘;

Lifetime of objects

creation: arrow with 'new'
written above it
— an object created after the ory dbase

start of the scenario appears
lower than the others

deletion: an X at bottom of

object's lifeline

— Java doesn't explicitly delete
objects; they fall out of scope
and are garbage collected

Indicating method calls

* activation: thick box over object's life line

— Either: that object is running its code or it is on
the stack waiting for another object's method

— nest to indicate recursion |
|

Selection and loops

« frame: box around part of a sequence diagram to indicate selection or loop

- if -> (opt) [condition]
— if/else ->(alt) [condition], separated by horizontal dashed line
— loop -> (loop) [condition or items to loop over]

caretul

Order Distioutor

RN

00) forsach i]
}; |
J

at) puaue > $10000)

operstor

l

I
I
}
|
|
aspaen |
]
|
|

aspatch

2/18/15

Linking sequence diagrams Example sequence diagram

sd ExampleJ
If one sequence diagram is too large or refers to another

diagram:
— an unfinished arrow and comment

‘ Inventory ‘

‘0
3
B

Customer Info ref)

— a"ref" frame that names the other diagram
oop { Additem

I | e

Verify customer credit

Approved?

ProcessOrder

Checkout
ConfirmOrder

Forms of system control

* What can you say about the control flow of
each of the following systems?

Why not just code it?

Sequence diagrams can be somewhat close to

~ Is it centralized? il S the code level. So why not just code up that
~ Is it distributed? — T algorithm rather than drawing it as a
>L‘J sequence diagram?

a good sequence diagram is still a bit above the level
of the real code (not all code is drawn on diagram)

sequence diagrams are language-agnostic (can be
implemented in many different languages

non-coders can do sequence diagrams
easier to do sequence diagrams as a team

. Al D = can see many objects/classes at a time on same
F - L i page (visual bandwidth)
Poker sequence diagram exercise Calendar sequence diagram exercise
Zhe S;:enalrll_)r:eglrs \?(,her;] thﬁ player Choolses to start a r.]e.w The user chooses to add a new appointment in the Ul. The Ul notices which part
round in the UL. e Ul asks whether any new players want to join of the calendar is active and pops up an Add Appointment window for that date
the round; if so, the new players are added using the Ul. and time.

The user enters the necessary information about the appointment's name,
location, start and end times. The Ul will prevent the user from entering an
appointment that has invalid information, such as an empty name or negative
duration. The calendar records the new appointment in the user's list of

All players' hands are emptied into the deck, which is then
shuffled. The player left of the dealer supplies a blind bet of the

proper amount" Next, each Player "S dealt a hand of two cards appointments. Any reminder selected by the user is added to the list of reminders.
from the deck in a round-robin fashion; one card to each player. If the user already has an appointment at that time, the user is shown a warning
Then the second card. message and asked to choose an available time or replace the previous

appointment. If the user enters an appointment with the same name and duration

If the player left of the dealer doesn't have enough money for as an existing group meeting, the calendar asks the user whether he/she intended

his/h blind, he/she i d fi th d th t to join that group meeting instead. If so, the user is added to that group meeting's
Is/her blin Y e/she 'IS remove rom e game an e nex Jist of participants.

player supplies the blind. If that player also cannot afford the

blind, this cycle continues until a rich-enough player is found or all

players are removed.

