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Abstract—We derive density evolution equations for codes on
bipartite graphs (BG codes) for the binary erasure channel
(BEC). We study the cases of local codes being introduced on
only one side of the graph (Generalized LDPC codes) as well
as on both sides. Each local code is assumed to correct up to
a number of erasures one less than its distance. We define and
enumerate stopping sets for BG codes, which serves an important
tool for analysis of decoding thresholds on the BEC.

I. INTRODUCTION

Tanner’s construction of codes on graphs [13] assumes
that local constraints (codes) are imposed on the subsets of
edges incident to every vertex of the graph. A variant of this
construction was considered in [3], [7] where the graph was
assumed bipartite with one side formed of variable nodes and
the other side with local codes such as the one-error-correcting
Hamming codes. This class of codes was termed Generalized
Low Density Parity Check (GLDPC) codes. Codes on bipartite
graphs in which local code constraints are imposed on both
sides and the symbols transmitted correspond to graph’s edges
were studied in [12] and a number of follow-up works. This
construction is called bipartite-graph (BG) codes.

Weight distribution of the versions of BG-codes discussed
was computed in [3], [7], [2]. Later works considered other
versions of this construction, such as codes constructed from
protographs and computed their weight distributions [5], or
analyzed their performance with exit charts [14].

Let G(V1 ∪ V2, E) be a bipartite graph. In the standard
construction of LDPC codes, every u ∈ V1 corresponds to a
variable bit and every v ∈ V2 corresponds to a [∆v,∆v−1, 2]
single parity-check code C2, where ∆v is the degree of v.
Since the variable bit is replicated on every edge leaving
the corresponding variable node u ∈ V1, we can think of
a [∆u,∆u, 1] repetition code C1 associated with the variable
node u where ∆u is its degree in G. Replacing the code C2

with general linear binary codes which may be different for
different vertices v, we obtain GLDPC codes of [3], [7] (these
papers assumed Hamming codes at every check vertex). If in
addition the code C1 is replaced by nontrivial linear binary
codes (different vertices may have different codes), we obtain
the family of general BG codes. Theoretical analysis of BG
codes previously was performed using graph expansion (see
[12] and later works). Our purpose in this paper is to analyze
them under message passing decoding.

Density evolution equations allow us to compute the decod-
ing error probability for iterative decoding. These equations
for an ensemble of LDPC codes for the binary erasure channel
(BEC) are found in [11] and described in greater detail in [10].
With the help of these equations it was also shown that if the
channel erasure probability is below some threshold, iterative
decoding used on an average code in the ensemble defined by
random graphs corrects erasures in the received vector in all
but a small fraction of transmissions. Concentration analysis
performed in [11] shows that the probability of deviation from
the average approaches zero exponentially with the code’s
length.

Paper [4] introduced stopping sets as a combinatorial tool
to characterize decoding failures and estimate the threshold
of the message-passing algorithm (earlier these configurations
were considered in [15]. The distribution of stopping sets for
regular LDPC codes was found in [8] which also used it to
estimate the block error probability of LDPC codes.

The paper is organized as follows. In Section II, we find
density evolution equations on the BEC for the ensemble of
BG codes. We consider separately the cases when non-trivial
local codes are introduced in only one side and both sides
of the graph. To decode the local codes we employ bounded
distance decoding, assuming that each local code corrects d−1
erasures where d is its distance. From the density evolution
equations we obtain the threshold of iterative decoding for
both cases. We also find an upper bound on the threshold by
deriving a stability condition similar to the one discussed in
[10].

In Section III we define and enumerate stopping sets for
the regular ensemble of BG codes. Again we consider the
cases of generalized LDPC and doubly generalized LDPC
codes separately employing the decoding described above.
We show that the average block erasure probability of the
ensemble approaches zero at least polynomially in the block
length n if the erasure probability of the channel p is less
than some threshold pth, similar to the standard LDPC codes
in [8]. For p < pth the main contribution to the block erasure
probability is from stopping sets of size sublinear in n while
the contribution from linearly-sized stopping sets declines
exponentially in n. Section IV concludes the paper.



II. DENSITY EVOLUTION EQUATIONS AND THRESHOLD

Our analysis will be performed assuming the Tree Channel
defined in [10]. Asymptotic convergence of the bit error
probability of BG codes to that of the tree channel can be
proved similarly to that of the standard LDPC codes.

A. Check-side generalized BG code

Consider transmission over the BEC(p) with GLDPC codes.
Our goal is to derive the density evolution equations for
their iterative decoding under which in every even-numbered
iteration all the local codes at the check nodes are decoded
in parallel up to their minimum distance. Suppose that the
ensemble is characterized by the degree distributions λ and
ρ, where λ is a vector whose jth entry λj is the fraction
of edges incident to variable nodes of degree j and ρ is a
matrix in which ρi,d refers to the fraction of edges incident
to check nodes of degree i whose local codes have distance
d. We assume that there exist linear codes of lengths equal
to the degrees of the vertices given by ρ. Otherwise the code
ensemble can be defined in the same way as standard irregular
LDPC ensembles. This remark also applies to general BG
codes below.
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Denote by xl the average erasure probability of a bit after l
iterations.

Theorem 1. xl satisfies the the following recurrence: x0 =
p, xl = f(p, xl−1), l = 1, 2, . . .

Proof: The proof is done by induction with x0 = p
serving as its base.

We compute the average erasure probability of a bit after l
iterations. Consider a check node of degree i and local code
minimum distance d. Consider the message going out from
this node. It will be an erasure if at least d − 1 incoming
messages among the remaining i− 1 edges are erasures. The
probability of this event equals
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)
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as xl−1 is the probability of erasure after the (l−1)th iteration.
The probability that the edge is incident to a vertex v ∈ V2 of
degree i and local minimum distance d equals ρi,d. Therefore,
the probability that the message sent along this edge to the
variable node is an erasure equals
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On the variable side consider a node of degree j. This node
will send an erasure via an edge if the incoming messages on
all the other j−1 edges are erasures and the received bit itself
was an erasure which happens with probability
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The probability that an edge coming out from a variable node
of degree j is λj . Together with the above this implies the
theorem.

Our next goal is to examine some properties of the function
f(p, x).

Lemma 1. f(p, x) is increasing on both arguments for p, x ∈
[0, 1].

Proof: It is obvious that f(p, x) is increasing on p. To
show that f(p, x) is increasing on x it suffices to prove that
the quantity
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which proves the claim.
Let P

(1)
l,λ,ρ(p) be the average probability of erasure after l

iterations for the ensemble if the channel erasure probability
is p. The next two claims follow directly as a consequence of
Lemma 1. Their proofs are similar to those for LDPC codes
([10], Ch. 3).

Lemma 2. If P
(1)
l,λ,ρ(p) → 0 as l → ∞, and p′ ≤ p, then

P 1
l,λ,ρ(p

′) → 0 as l →∞. Moreover, xl is monotone in l.

Theorem 2. P
(1)
l,λ,ρ(p) converges to the nearest root of the

equation x = f(p, x) as l →∞.



Using Lemma 2 we can define the threshold of iterative
decoding for the erasure channel.

Definition 1. Consider the ensemble of GLDPC codes char-
acterized by the degree distribution (λ, ρ). The threshold
probability p∗(λ, ρ) is defined as

p∗(λ, ρ) = sup {p ∈ [0, 1] : P
(1)
l,λ,ρ(p) → 0 as l →∞}.

(1)

Theorem 2 provides the following characterization of the
threshold.

p∗(λ, ρ)
= sup {p ∈ [0, 1] : x = f(p, x) has no solutions in (0, 1]}
= inf {p ∈ [0, 1] : x = f(p, x) has a solution in (0, 1]}.

To determine the threshold numerically we plot f(p, x) − x.
The largest value of p for which the entire curve is below the
x-axis gives us the threshold.

Stability Condition:
We have

xl = f(p, xl−1) = f(p, 0) +
∂

∂x
f(p, 0)xl−1 + O(x2

l−1).

Assume that there are no nodes of degree 1, so f(p, 0) = 0.
By a calculation similar to the proof of Lemma 1, we have

∂
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which gives

xl = pλ2
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ρi,2(i− 1)xl−1 + O(x2
l−1). (2)

Notice that the only contribution to the linear term comes from
check nodes whose local codes have distance 2. This gives
a condition for the fixed point at 0 being stable. Formally
speaking, we have

Theorem 3. If pλ2

∑
i ρi,2(i− 1) > 1 then liml→∞ P

(1)
l,λ,ρ(p)

> 0. On the other hand if pλ2

∑
i ρi,2(i− 1) < 1, then there

exists ζ > 0 such that liml→∞ P
(1)
l,λ,ρ(p) = 0 for all p ∈ [0, ζ).

Corollary 1.

p∗(λ, ρ) ≤ 1
λ2

∑
i ρi,2(i− 1)

. (3)

B. General BG code

We now consider the ensemble of BG codes with local
constraints introduced on both sides of the graph G used
on the BEC(p). In contrast to the LDPC code construction,
the bits of the transmission are associated with the edges of
G. Our purpose is to derive density evolution equations for
message passing decoding assuming that the local codes are
decoded up to their distance. The ensemble is characterized

by two matrices λ and ρ. The (i, d)th entry of λ (ρ) denotes
the fraction of edges incident to a left (resp., right) node of
degree i whose local code has distance d.

Let
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We will assume that one iteration of decoding consists of
decoding all the right codes in parallel, updating the bit values
on the left and decoding all the left codes in parallel.

Theorem 4. The erasure probability xl of a bit after l
iterations of message passing decoding satisfies the following
recurrence: x0 = p, yl−1 = fρ(p, xl−1), xl = fλ(p, yl−1).

Proof: The proof again goes by induction. Its base holds
true by definition. Suppose that the statement is true up to
l − 1 iterations. Let yl−1 be the probability of erasure being
sent to the left side along a randomly chosen edge in the lth

iteration. Clearly, an edge will carry an erasure to left if it was
erased in transmission and the right decoding involving it did
not recover its value. Thus,

yl−1 = p
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The expression for xl follows immediately.

Lemma 3. The function g(p, x) = fλ(p, fρ(p, x)) is increas-
ing in both arguments for p, x ∈ [0, 1].

Proof: From Lemma 1 it follows that both fλ(p, x) and
fρ(p, x) are increasing functions of p and x ∈ [0, 1].

Let P
(2)
l,λ,ρ(p) be the ensemble-average probability of erasure

after l iterations. We have the following:

Lemma 4. If P
(2)
l,λ,ρ(p) → 0 as l → ∞, and p′ ≤ p, then

P
(2)
l,λ,ρ(p

′) → 0 as l →∞. Moreover, xl is monotonic in l.

Theorem 5. P
(2)
l,λ,ρ(p) converges to the nearest root of the

equation x = g(p, x), as l →∞.

Definition 2. Consider a BG code characterized by the
distributions (λ, ρ). The threshold probability p∗∗(λ, ρ) equals

p∗∗(λ, ρ) = sup {p ∈ [0, 1] : P
(2)
l,λ,ρ(p) → 0 as l →∞}.

(4)

The threshold probability can be characterized as follows:

p∗∗(λ, ρ)
= sup {p ∈ [0, 1] : x = g(p, x) has no solution in (0, 1]}
= inf {p ∈ [0, 1] : x = g(p, x) has a solution in (0, 1]}.



Stability Condition: Writing out a quadratic Taylor poly-
nomial for g we obtain

xl = g(p, xl−1)

= g(p, 0) +
∂

∂x
g(p, 0)xl−1 + O(x2

l−1).

We get g(p, 0) = fλ(p, fρ(p, 0)) = 0. Moreover,
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Again only local codes with minimum distance 2 contribute
to the linear term. We have the following stability condition
for the fixed point at 0,

Theorem 6. If p2
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An upper bound on the threshold probability is given in the
next corollary.

Corollary 2.

p∗∗(λ, ρ) ≤ 1√∑
i λi,2(i− 1)

∑
i ρi,2(i− 1)

.

C. Exit Charts

An analysis of threshold probability can also be done using
the exit charts. For the definition of exit function we refer
the reader to Chapter 3 of [10]. In the following analysis
we consider bi-regular bipartite graph codes with constant
left degree be ∆1 and right degree ∆2. The analysis though
can be easily generalized to irregular bipartite graph with
a given degree distribution. Let us assume that we have
the codes C1[∆1, k1] and C1[∆2, k2] on the left and right
nodes respectively. Moreover we assume that, these codes are
chosen from an ensemble of random linear codes of the same
parameters. An analysis similar to the one below appears in
[9].

The exit function of a linear code with parameters [n, k] in
an erasure channel is given by Equation (40) of [1],

Hn,k(x) =
1
n

n∑
g=1

(1− x)g−1xn−g

.[g.ẽg,n,k − (n− g + 1).ẽg−1,n,k] (6)

where, ẽh,n,k is the unnormalized information function defined
in [6] for a code with parameters [n, k].

For random linear codes with parameters [n, k], the expected
information function is given by,

E(ẽh,n,k)

=

(
n
h

)
[
n
k

]
h∑

r=0

r

[
h

r

][
n− h

k − r

]
2r(n−h−k+r)

where
[
a
r

]
is the Gaussian binomial coefficient defined by

[
a

r

]
=

r−1∏

j=1

2a − 2j

2r − 2j
.

Consider transmission over BEC(p). In this case the exit
function from the left hand side of the bipartite graph to an
edge is

HE1(x) = H∆1,k1(x). (7)

The exit function from the right hand vertices, HE2,p is

HE2,p(x) = pH∆2,k2(px). (8)
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Fig. 1. The Exit Chart for a Bipartite Graph Code with random linear
component codes

In Fig. 1 we have plotted the exit chart for a bipartite graph
code with parameters ∆1 = ∆2 = 24 and k1 = k2 = 18. The
exit functions are average of all linear codes of parameters
[24, 18]. The figure shows the chart for a channel with erasure
probabilities p = 0.35, p = 0.42 and p = 0.45.

From the exit chart analysis, the threshold probability for
the above mentioned code is given by p∗∗ = 0.45. The code
has rate > 2. 1824 − 1 = 0.5.

III. STOPPING SETS AND THEIR ENUMERATION

Let us define stopping sets in the context of iterative
decoding on the BEC.

Definition 3. A subset of edges is called a stopping set
if erasures in these edges submitted to the next iteration



of iterative decoding are not recovered in this iteration. By
definition, empty set is a stopping set.

For GLDPC codes stopping sets can be equivalently defined
as subsets of variable nodes. The set of stopping sets will be
denoted by Γ.

Consider an ensemble of BG codes of length n. Define
the normalized ensemble-average stopping set distribution
γ(α), α ∈ [0, 1] as follows

γ(α) , lim
n→∞

1
n

ln E[|{S ∈ Γ : |S| = αn}|]. (9)

Let

pth , sup{p : max
α∈[0,1]

[γ(α)

+(1− α)h
(

p− α

1− α

)
− h(p)] < 0} (10)

where, h(.) is the binary entropy function in nats. Let
PB(C(n), p) be the block erasure probability of a code C(n)

from the ensemble on the BEC(p).

Theorem 7. Let p < pth. Then ∃an such that

E[PB(C(n), p)] ≤
an∑

i=1

E[|{S ∈ Γ : |S| = i}|]pi+exp (−Θ(n))

(11)
where the expectation is over the ensemble of BG codes of
length n and limn→∞ an

n = 0.

For standard LDPC codes this result appears in [8]. The
proof for the generalized case is completely analogous. More-
over it is known that for regular LDPC codes, the right-hand
side of (11) goes to 0 polynomially with n. We will show that
the same holds for general BG codes and will also find an
expression for γ(α). These results imply a computable bound
on the threshold for block error rate of BG codes.

The quantitative definition of stopping sets depends on the
local decoding employed adopted in the iterative algorithm.
In our results below we again assume that a local code can
correct up to d− 1 erasures, where d is its distance.

In the following we consider regular BG codes with left
degree ∆1 and right degree ∆2. Moreover we assume that
all the local codes on one side are the same (it suffices to
assume that they have the same minimum distance or are
decoded up to the same number of erasure). Extension of
the results to the case of irregular BG codes with given
left and right degree distributions as well as different code
distances is straightforward although the results become more
cumbersome.

A. GLDPC codes

Consider regular GLDPC codes with left degree ∆1 and
right degree ∆2. Let V2 and V1 be the sets of check nodes
and variable nodes respectively. Let d denote the minimum
distance of the local codes at the vertices v ∈ V1. In each
iteration these codes are decoded up to d−1 erasures. Denote
by NR(S) the neighborhood in V2 of a subset of vertices
S ⊆ V1. From Definition 3 we have the following

Definition 4. A stopping set S ⊆ V1 is a subset of vertices
such that any vertex v ∈ NR(S) is connected to at least d
vertices in S.

According to the above definition, the set of stopping sets is
closed under the union operation. So every subset of variable
nodes has a unique maximal stopping set which can be an
empty set. If Ω ⊂ V1 is the set of bits (variable nodes) erased
in transmission, then the set of erasures which remains when
the decoder stops is equal to the unique maximal stopping set
contained in Ω.

Theorem 8. The expected number of stopping sets of size s
in the regular ensemble of GLDPC codes is given by,

E[|{S ∈ Γ : |S| = s}|]

=
(

n

s

)coef
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(
∆2
i

)
xi

)n∆1
∆2

, xs∆1

]

(
n∆1
s∆1

)

(12)

where coef(f(x), xi) denotes the coefficient of xi in f(x).

Proof: Let E be the set of edges of G. Given a check
node c the number of ways of choosing k of its sockets is(
∆2
k

)
= coef((1+x)∆2 , xk). The number of ways of choosing

k of its sockets such that k = 0 or k ≥ d equals coef((1 +
x)∆2−∑d−1

i=1

(
∆2
i

)
xi, xk). So the number of ways of choosing

e check node sockets from all the sockets of V2, such that every
check node connected to the sockets is connected to at least d
of them, is given by coef([(1+x)∆2−∑d−1

i=1

(
∆2
i

)
xi]|V2|, xe).

Let U ⊂ V1, |U | = s. The number of edges incident to U is
e = s∆1. The probability that these e edges are such that U
becomes a stopping set equals

Pr(U ∈ Γ) =
coef([(1 + x)∆2 −∑d−1

i=1

(
∆2
i

)
xi]|V2|, xe)(|E|

e

)

=
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[
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)
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n∆1
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(
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Finally there are
(
n
s

)
ways of choosing U , which proves the

theorem.

Theorem 9. The normalized average stopping set distribution
is given by

γ(α) =
∆1

∆2
ln

1 +
∑∆2

k=d

(
∆2
k

)
xk

0

xα∆2
0

− h(α)(∆1 − 1), (13)

where x0 is the positive solution of the equation

α∆2 +
∆2∑

k=d

(
∆2

k

)
(α∆2 − k)xk

0 = 0.

Proof: From the definition of γ(α) we have



γ(α) = lim
n→∞

1
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(
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)
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n→∞

1
n
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[
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−
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(
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xi)
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= −h(α)(∆1 − 1) + lim
n→∞

1
n

∑

xd,xd+1,...,x∆2 :
∑∆2

j=d jxj=α∆1n

( n∆1
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xd, xd+1, . . . , x∆2 ,
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j=d xj

) ∆2∏

j=d

(
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j

)xj

.

Let yk = xk∆2
n∆1

. Noticing that the above sum contains
a number of terms polynomial in n and using asymptotic
properties of multinomial coefficients, we have

γ(α) = −h(α)(∆1 − 1) +
∆1

∆2
max

yd,yd+1,...,y∆2 :
∑∆2

j=d jyj=α∆2
h(yd, yd+1, . . . , y∆2 , 1−

∆2∑

j=d

yj) +
∆2∑

j=d

yj ln
(

∆2

j

)


where h(z1, . . . , zt) ,
∑t

i=1 zi ln(1/zi). Evaluating the max-
imum, we obtain the claim of the theorem.

Next let us use the above results to estimate the threshold
of block error rate for iterative decoding of GLDPC codes.
We need the following lemma.

Lemma 5. Let j < m and d > 1, then

coef

[
((1 + x)∆2 −

d−1∑

i=1

(
∆2

i

)
xi)m, xj

]

≤ (b j
d
c − d j

∆2
e+ 1)

(
m

b j
dc

)
(2∆2 − 3)j .

Proof: The proof proceeds in the same way of counting
as in Lemma 18 of [8], which gives a similar statement for
d = 2. Except generalizing this, we use the following bound,∑b j

d c
l=d j

∆2
e
(
m
l

) ≤ (b j
dc − d j

∆2
e+ 1)

(
m
b j

d c
)
.

Theorem 10. Let p ∈ [0, 1], then

an∑

i=1

E[|{S ∈ Γ : |S| = i}|]pi = O

(
1

n∆1(1−1/d)−1

)
(14)

∀an such that limn→∞ an

n = 0.

Proof: We use the bound of the above lemma as follows,
an∑
s=1

E[|{S ∈ Γ : |S| = s}|]ps

=
an∑
s=1

(
n

s

)coef
[
((1 + x)∆2 −∑d−1

i=1

(
∆2
i

)
xi)

n∆1
∆2 , xs∆1

]

(
n∆1
s∆1

) ps

≤
an∑
s=1

(
n

s

) (b s∆1
d c − d s∆1

∆2
e+ 1)

( n∆1
∆2

b s∆1
d c

)
(2∆2 − 3)s∆1

(
n∆1
s∆1

) ps

which can be bounded above by decreasing geometric se-
quences, for all an = o(n). Therefore,

an∑
s=1

E[|{S ∈ Γ : |S| = s}|]ps = O

(
1

n∆1(1−1/d)−1

)

which proves the theorem.
The above theorem along with Equation (11) establishes pth

as the threshold of block erasure probability below which the
expected block erasure probability goes to 0 with n. Numerical
values of pth can be easily computed from Equations (10) and
(13).

B. General BG codes

Consider regular BG codes with left degree ∆1 and right
degree ∆2. Let E be the set of edges of G, |E| = n =
|V1|∆1 = |V2|∆2. Consider the ensemble of graphs obtained
by connecting the vertices in V1 with the vertices in V2 using
all permutations on the set of n edges. Denote by d1 and d2

the local distances at the vertices of V1 and V2, respectively.
In iterations, the local codes will be decoded to correct d− 1
erasures, where d = d1 or d2 as appropriate.

Definition 5. Let S ⊆ E be a subset of edges and let V1(S)
and V2(S) be the sets of left and right nodes to which they are
incident. Then S is called a stopping set if every u ∈ V1(S)
has S-degree at least d1 in S and every v ∈ V2(S) has S-
degree at least d2.

As before, the set of stopping sets is closed under taking the
union. Therefore, every subset of edges has a unique maximal
stopping set which can be an empty set. If Ω ⊂ E is the
subset of bits erased in transmission, then the set of erasures
which remains when the decoder stops is equal to the unique
maximal stopping set of Ω.

Theorem 11. The expected number of stopping sets of size s
in the (∆1, ∆2)-biregular ensemble of BG codes is given by

E[|{S ∈ Γ : |S| = s}|]

=

∏2
l=1 coef

[
((1 + x)∆l −∑dl−1

i=1

(
∆l

i

)
xi)

n
∆l , xs

]
(
n
s

) .

Proof: Consider an s-subset U ⊂ E. From Theorem 8,
the number of ways of choosing s right node sockets from
all the sockets of V2, such that every right node connected to
the sockets is connected to at least d2 of them, is given by



coef([(1+x)∆2−∑d2−1
i=1

(
∆2
i

)
xi]|V2|, xs). A similar expression

can be found for the left side. If the graph is chosen randomly
then the events of U satisfying the constraints on the left side
and the right side are independent. So we have

Pr[U ∈ Γ] =

∏2
l=1 coef

[
((1 + x)∆l −∑dl−1

i=1

(
∆l

i

)
xi)

n
∆l , xs

]

(
n
s

)2

because |V1| = n
∆1

and |V2| = n
∆2

. Since there are
(
n
s

)
ways

of choosing U , this completes the proof.

Theorem 12. The normalized average stopping set distribu-
tion is given by

γ(α) =
2∑

l=1

[
1
∆l

ln
1 +

∑∆l

k=dl

(
∆l

k

)
xk

l

xα∆l

l

]
− h(α)

where xl, l = 1, 2 is the positive solution of the equation

α∆l +
∆l∑

k=d

(
∆l

k

)
(α∆l − k)xk

l = 0.

Proof: From the definition of γ(α) we have,

γ(α) = lim
n→∞

1
n

.

ln




∏2
l=1 coef

[
((1 + x)∆l −∑dl−1

i=1

(
∆l

i

)
xi)

n
∆l , xαn

]
(

n
αn

)



= −h(α) + lim
n→∞

1
n

2∑

l=1

ln coef

[
((1 + x)∆l −

dl−1∑

i=1

(
∆l

i

)
xi)

n
∆l , xαn

]
.

We proceed the same way as Theorem 9, obtaining

γ(α) = −h(α) +
2∑

l=1

1
∆l

max
ydl

,ydl+1,...,y∆l
:
∑∆l

j=dl
jyj=α∆l

h(ydl
, ydl+1, . . . , y∆l

, 1−
∆l∑

j=dl

yj) +
∆l∑

j=dl

yj ln
(

∆l

j

)
 .

Evaluating the maximum, we obtain the statement of the
theorem.

Theorem 13. Let p ∈ [0, 1], then

an∑

i=1

E[|{S ∈ Γ : |S| = i}|]pi = O

(
1

n1−b1/d1c−b1/d2c

)

(15)
∀an such that limn→∞ an

n = 0.

Proof: We use the bound of the Lemma 5, to have,
an∑
s=1

E[|{S ∈ Γ : |S| = s}|]ps =
an∑
s=1

ps

.

∏2
l=1 coef

[
((1 + x)∆l −∑dl−1

i=1

(
∆l

i

)
xi)

n
∆l , xs

]
(
n
s

)

≤
an∑
s=1

∏2
l=1(b s

dl
c − d s

∆l
e+ 1)

( n
∆l

b s
dl
c
)
(2∆l − 3)s

(
n
s

) ps

which can be bounded from above by decreasing geometric
sequences for an = o(n). Therefore,

a∑
s=1

E[|{S ∈ Γ : |S| = s}|]ps = O

(
1

n1−b1/d1c−b1/d2c

)
.

From (11), if the erasure probability satisfies p < pth, the
expected block error probability goes to 0 with n. We can
compute pth numerically using Equation (10) and Theorem
12.

IV. CONCLUDING REMARKS

1. We notice from both equations (2) and (5), that for an
ensemble of BG codes with local code minimum distance at
least 3, the linear terms disappear, making xl = O(x2

l−1). This
means that the fixed point of density evolution equations at 0
is always stable in these cases. In case of conventional LDPC
codes, the stability condition imposes an upper bound on the
threshold probability, but in an ensemble of BG codes with
local code minimum distance at least 3 no such constraint is
imposed on the threshold.

If we take an ensemble of graphs with given degree distri-
bution and consider GLDPC codes on it, we obtain a better
threshold from the density evolutions compared to that of
LDPC codes on the same ensemble. The same applies for
the threshold (pth) for the average block error probability.
Consider a biregular ensemble of bipartite graphs with left
and right degrees ∆1 and ∆2 respectively. For GLDPC codes,
if the rate of the local codes at the check node is fixed at
RL, then the overall rate of the code is ≥ 1 −∆1(1 − RL),
which is lower than LDPC codes on the same graph. Thus
the better decoding threshold of these codes is at the expense
of decreasing the rate. For a general BG code on a biregular
graph, the overall rate is ≥ R1+R2−1, where codes of rate R1

and R2 are used on the left and right nodes respectively. These
codes have better rate and thresholds compared to GLDPC
codes.

2. The stopping set distribution above is derived in the
context of bounded distance decoding. If we know the rank
distribution of the local codes, then it is also possible to find
the stopping set distribution under ML decoding at the vertices.
For a given vertex v let Cv be the local code associated with
it. Denote by E(v) and NL(v), respectively the set of edges
incident to v and the set of variable nodes connected to v. The



definitions of stopping sets in this case should be modified as
follows.

Definition 6. Stopping sets for GLDPC codes with local
ML decoding: Let S ⊆ V1 and let NR(S) be the set of check
nodes connected to S. S is called a stopping set if for every
v ∈ NR(S) the set of edges NL(v) \ S does not contain an
information set of Cv .

Definition 7. Stopping sets for general BG codes with local
ML decoding: A subset S ⊂ E is called a stopping set if
for any u ∈ V1(S), the set E(u) \ S does not contain an
information set of Cu, and for any v ∈ V2(S), the set E(v)\S
does not contain an information set of Cv .

In a future work, we plan to study the performance of
BG codes under message passing decoding on the binary
symmetric channel and other discrete channels.
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