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Group testing schemes from low-weight codewords
of BCH codes

Shashanka Ubaru∗ Arya Mazumdar† Alexander Barg§

Abstract—Despite a large volume of research in group testing,
explicit small-size group testing schemes are still difficult to
construct, and the parameters of known combinatorial schemes
are limited by the constraints of the problem. Relaxing the worst-
case identification requirements to probabilistic localization of
defectives enables one to expand the range of parameters, and
yet the small-size practical constructions are sparse.

Motivated by this question, we perform an experimental
study of almost disjunct matrices constructed from low-weight
codewords of binary BCH codes, and evaluate their performance
in nonadaptive group testing. We observe that identification
of defectives is much more stable in these schemes compared
to the schemes constructed from random binary matrices. We
derive an estimate of the error probability of identification in
the constructed schemes which provides a partial explanation of
their performance.

I. INTRODUCTION

The group testing problem calls for efficient identification of
a small number t of defective elements in population of a large
size N. The elements are tested in groups with the premise
that most tests will return negative results, clearing the entire
group. If the test result is positive, then the group contains at
least one defective. The collection of tests is said to form a
group testing scheme if the outcomes of the tests enable one
to identify any subset of defectives of size at most t.

A nonadaptive group testing scheme with M tests is de-
scribed by an M ×N binary incidence matrix A, where each
row corresponds to a test, and Aij = 1 if and only if the
ith test includes the jth element. The result of the test is
positive if the indices of ones in the row overlap with the
indices of the defective configuration. The smallest possible
number of tests in terms of the total number of subjects N
and the maximum number of defective elements t is known
to satisfy M = Θ( t2

log t logN) [6]–[8], [20].
A construction of group testing schemes using matrices of

error-correcting codes and code concatenation appeared in the
foundational paper by Kautz and Singleton [11]. This work
introduced a two-level construction in which a q-ary (q > 2)
Reed-Solomon code is concatenated with a unit-weight binary
code, and the resulting vectors are used as columns of the test-
ing matrix. Many later constructions of group testing schemes
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also rely on Reed-Solomon codes and code concatenations;
among them [5], [21]. Other explicit constructions of non-
adaptive group testing schemes with M = O(t2 logN) were
suggested in [10], [18], [19]; see also [3], [4].

In order to improve the tradeoff between the parameters
of the scheme, it has been suggested to construct schemes
that permit a small probability of error (false positives). Such
schemes were considered under the name of weakly separated
designs in [12], [14], [15], [22]. With this relaxation, it is
possible to reduce the number of tests to Θ(t logN) [22]; how-
ever, this result is not constructive. A construction of weakly
separated designs with O(tpoly(logN)) was suggested in a
recent work [9]. An explicit (non-probabilistic) construction of
almost disjunct matrices with the number of tests proportional
to t3/2

√
logN was presented in [17] and was subsequently

improved to t log2N/ log t in [16]. The construction of [11]
and many others above are based on constant weight error-
correcting codes. Estimates of the parameters of the group
testing schemes from constant weight codes were obtained
using the minimum distance of the code [11] and more recently
using the average distance [16], [17]. Another construction
of almost disjunct matrices using Reed-Solomon codes was
suggested in [2], where it was shown that there exist group
testing schemes with M = O(t logN) for t ≤ logN.

In this work, we perform experiments with test matrices
constructed from the codewords of a fixed (low) weight in bi-
nary BCH codes. The resulting matrices are sparse in the sense
that most of their entries are zero. We show that these matrices
perform extremely well in experiments, outperforming random
matrices. While the experimental results form the main body
of the paper, we also give some theoretical justification for this
construction. Sharpening the estimates of the error probability
is currently an open problem.

A new estimate of the probability of false positive that we
derive is based on the dual distance d′ of constant weight
codes. Constant weight codes with a given d′ are known as
combinatorial designs (of strength d′−1). A design of strength
r (an r-design, or, in more detail, an r-(n,w, λ) design) is a
collection of w-subsets of an n-set V , called blocks, such that
every r elements of V are contained in the same number λ of
blocks. The use of r-designs for constructing disjunct matrices
is not new, see, e.g., Sect. 7.4 of [3]. However the conclusion
in [3, p. 146], is that disjunct matrices obtained from designs
are of little interest because of restrictions on their parameters.

The paper is organized as follows. In Section II, we intro-
duce some definitions and notation. The main experimental
section appears next in Section III. In Section IV, we present
some estimates of the error probability, connecting them with
the dual distance of the code. We show that the estimates
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available in the literature are quite far from the experimental
results, and derive better bounds (which still do not come close
to the values observed in our experiments).

II. DEFINITIONS AND NOTATION

Definition 1: An M×N binary matrix A is called t-disjunct
if the support1 of any of its columns is not contained in the
union of the supports of any other t columns.

It is easy to see that a t-disjunct matrix gives a group
testing scheme that identifies any defective set up to size
t. Conversely, any group testing scheme that identifies any
defective set up to size t must be a (t − 1)-disjunct matrix
[3]. To a great advantage, disjunct matrices support a simple
identification algorithm that runs in time O(Nt). Indeed, any
element that participates in a test with a negative outcome
is not defective. After we perform all the tests and weed out
all the non-defective elements, the disjunctness property of the
matrix guarantees that all the remaining elements are defective.

Definition 2: For any ε > 0, an M × N matrix A with
columns a1, a2, . . . , aN , is called (t, ε)-disjunct if

Pr({I ∈
(
[N ]
t

)
, j ∈ [N ] \ I | supp(aj)⊆

⋃
k∈I

supp(ak)}) ≤ ε.

The group testing scheme given by a (t, ε)-disjunct matrix is
called a (t, ε)-scheme.

In other words, the union of supports of a randomly and uni-
formly chosen subset of t columns of a (t, ε)-disjunct matrix
does not contain the support of any other random column with
probability at least 1− ε.

The next fact follows from the definition of disjunct matrices
and the decoding procedure [3, p. 134].

Proposition 1: A (t, ε)-disjunct matrix defines a group
testing scheme that can identify all items in a random defective
configuration of size t, and with probability ε identifies any
randomly chosen item outside of the defective configuration
as defective (false-positive).

Remark 1: Unless ε < t
N−t , the average number of false

positives in the (t, ε) scheme will be greater than the actual
number of defectives. However even in that case, the tests will
output a subset of [N ] of a vanishingly small proportion that
includes all of the t defective items.

A code of length M is a subset of the vector space FM
q .

The minimum Hamming distance between distinct codewords
of C is called the distance of the code. We use the notation
C(M,N, d) to refer to the code of length M , cardinality N
and distance d. If in addition all the codevectors of the code C
contain exactly w nonzero entries, we call it a constant weight
code and use the notation C(M,N, d, w). Finally we refer to a
linear code of length M and dimension K as an [M,K] code.

III. NUMERICAL EXPERIMENTS

As we already mentioned, our work is motivated in part
by the experimental results which show that matrices formed
of codewords of a fixed weight obtained from binary codes
perform very well in the group testing problem for identifying
defective entries. In this section, we present a few simulation

1The support of a vector x ∈ Fn
q is the set supp(x) := {i : xi 6= 0}.

results using matrices formed by codewords of fixed weight
obtained from different BCH codes, and compare their perfor-
mance with best possible randomly generated sparse matrices.

The results are presented in Fig. 1,2. Each of the eight plots
in Fig. 1 presents results of identification of defectives for
two group testing schemes, one using a matrix formed of the
fixed-weight codewords of the BCH code and the other using
a random binary matrix. The experiments were organized as
follows. For instance, for the first plot (top left corner) we
formed a test matrix A by using the codewords of weight w =
6 in the [M = 31,K = 21] BCH code as its columns. There
are N = 806 such codewords in the code, which enables us to
construct a 31×806 test matrix. This means that we can test a
set of N = 806 items for the presence of defectives using M =
31 tests. To compare this construction with the scheme based
on random matrices, we constructed a sparse random matrix
assigning the entries independently to 0 or 1 with probability
of 1 equal to p̃ = 1/(t+ 1) and 0 with probability 1− p̃. It is
known (and also experimentally verified) that p̃ = 1/(t + 1)
gives the best performance among such random matrices [3].
Each experiment consisted of generating a random vector with
t defectives randomly inserted among N items and performing
the identification procedure mentioned in Section II above. As
the outcome, we record the number of false positives identified
by each of the two schemes. This experiment is repeated 300
times; then we compute the average number of false positives
found by the two group testing schemes. The curves in the
plot show this number as a function of the actual number of
defective elements t.

Similar experiments were performed for the other group
testing schemes shown in Fig. 1. In the second plot, we used
a [63, 57]-BCH codeword matrix with constant weight w =
3, N = 651 and M = 63, i.e., the matrix formed by the
codewords of weight 3 of the Hamming code of length 63
(they are known to support a 2-design). In the third plot the
matrix was formed of codewords of weight 5 in the [63, 51]
BCH code (there are N = 1890 such words) and in the fourth
we used the 3411 codewords of weight 7 in the [63, 45] BCH
code. To summarize, the parameters (N,M,w) of the schemes
and the associated codes are:

(806,31,6) (651,63,3) (1890,63,5) (3411,63,7)
[63, 39] [63,57] [63,51] [63,45]

For the second-row plots in Fig. 1 the parameters are:

(2170,63,9) (2667,127,3) (16002,127,5) (48387,127,7)
[63, 39] [127,120] [127,113] [127,106]

where we also list the parameters of the BCH codes used to
construct the matrices.

We can see that the fixed-weight BCH codeword matrices
consistently in most cases perform much better than sparse
random matrices in terms of the number of false positives de-
tected, and the gap widens (in most cases) with the increase of
the number of defectives. To exemplify this improvement, we
show in Fig. 2 two individual experiments performed for fixed-
weight BCH testing matrices used to generate Fig. 1, namely,
the matrices with the parameters N = 1890,M = 63, w = 5
and N = 16002,M = 127, w = 5. In the left column in
Fig. 2 we show the locations of the actual defective elements
inserted in the population and the defective vectors identified
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by the BCH-based matrix (middle plot) and the random matrix
(bottom plot) for the first set of parameters. We see that the
BCH matrix locates the defectives exactly while the random
matrix inserts a large number of false positives compared to
the actual number t = 4. In the right column of the plot
we show similar results for an individual experiment for the
second set of parameters. Here the BCH matrix-based scheme
inserts a few false defectives, while the random matrix adds
many more.

IV. PROPERTIES OF CONSTANT WEIGHT CODES AND
ESTIMATES OF THE ERROR PROBABILITY

In this section we cite some known, and present some new
results on constant weight codes with which we attempt to
explain the observed performance of constant weight almost
disjunct matrices.

The following well-known result of [11] has been the basis
of a large number of construction of testing matrices.

Proposition 2: An (M,N, d, w) constant weight binary code
C provides a t-disjunct matrix, where t =

⌊
w−1

w−d/2
⌋
.

Proof: Write the codewords of C as the columns of
an M × N matrix. The intersection of supports of any two
columns has size at most w− d/2. Hence if w > t(w− d/2),
the support of any column will not be contained in the union
of supports of any t other columns.

This proposition implies that a group testing scheme can
be obtained from constant weight codes with large distance.
However, the set of codewords of weight 5 in a [63, 51]
BCH code forms a (63, 1890, 3, 5) constant weight code with
distance d = 5, so Proposition 2 clearly fails to explain the
performance of the group testing scheme obtained from this
code.

Extending the theory of Kautz-Singleton to almost-disjunct
matrices, [16] provides a bound on the false-positive probabil-
ity of a constant weight code matrix in terms of its distance
distribution. Define the average distance D of a code C:

D(C) =
1

|C|
min
x∈C

∑
y∈C

dH(x, y).

Here dH denotes the Hamming distance. Define also the
second-moment of the distance distribution as follows:

D2(C) =
1

|C|2
∑

x,y∈C
dH(x,y)2.

One of the main results of [16] is the following theorem.
Theorem 3: Let C be a constant weight binary code C of

size N , minimum distance d and average distance D such that
every codeword has length M and weight w. The test matrix
obtained from the code is (t, ε)-disjunct for the largest t such
that the inequality

d ≥ D − 3(w − t(w −D/2))2

(ln 1/ε)(2t(w −D/2) + w)

holds true.
Paper [16] also provides a more refined estimate that relies

on the second moment of the distance distribution.
Theorem 4: Let C be a constant-weight (M,N, d, w) binary

code with average distance D and the second moment of the

TABLE I
MINIMUM DISTANCE AND AVERAGE DISTANCE

PARAMETERS d = dmin D = davg D2

M = 31, w = 6 6 9.6894 96.7742
M = 63, w = 3 4 5.7231 33.1797
M = 63, w = 5 6 9.2112 86.1239
M = 63, w = 7 8 12.4481 157.3620
M = 63, w = 9 10 15.4357 241.8802
M = 127, w = 3 4 5.8605 34.5917
M = 127, w = 5 6 9.6050 93.0134
M = 127, w = 7 - - -

distance distribution D2. The test matrix obtained from the
code is (t, ε)-disjunct for the largest t such that the inequality

d ≥ D +
3t(D2 −D2)

2(w − t(w −D/2))
− 3(w − t(w −D/2))

ln 1/ε
(1)

holds true.
In order to compute the estimates based on these theorems,

we computed the distance distributions of a number of constant
weight codes obtained from low-weight codewords of the BCH
codes of length 63 and 127 mentioned above, and found D
and D2 for these codes. The results are listed in Table I.

Using these values, we can find the estimates of the error
probability ε given by Theorems 3 and 4. The results are
summarized in Tables II and III, respectively. Although they
represent a large improvement over the initial estimates of
Kautz-Singleton, they still do not match the performance in
actual experiments. For example, with codewords of weight
5 in a BCH code of length 127, even with 3 defectives the
predicted false positive probability is 0.0479, whereas the
number of false positives in the experiments is close to zero.

Next we will show that better estimates can be achieved in
many cases. To formulate the result we need to define the dual
distance of a constant weight code. The distance distribution
of a constant weight code C(M,N, d, w) is a set of numbers
b0, b1, . . . , bw, where

bi =
1

|C|
|{(x, y) ∈ C2 : w − | supp(x) ∩ supp(y)| = i}| (2)

for i = 0, 1, . . . , w. Note that b0 = 1. The dual distance d′ of
C is defined as

d′(C) = min
{
j ≥ 1 : b′j :=

1

|C|

w∑
i=0

biQj(i) > 0
}
,

where Qj(i) is the value of the Hahn polynomial of degree j;
see [13, p. 545].

Now we are ready to state the main theorem in our analysis.
Theorem 5: Let C be an (M,N, d, w) constant weight code

with dual distance d′ and let w < M/2. Let t be the maximum
number of defective items and suppose that t < M/w. For any
even ` < d′ the probability of a false positive test result for the
group testing scheme constructed from C is bounded above as

ε ≤ B(`, t)
( e`(M − w)

2(M − tw)2

)`/2 `/2∑
i=0

( (M − w)`

2ew2

)i
, (3)

where B(`, t) = min{(18`t)`/2, t`}. In addition, if M ≥
max{4w2t/`2, w + 2ew2/`}, then

ε ≤ t
( 2`2(M − w)

(log `)w(M − tw)

)`
. (4)
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Fig. 1. Number of false positives using various fixed-weight BCH codeword matrices and sparse random matrices with p̃ = 1/(t + 1), averaged over 300
trials.
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Fig. 2. Two group testing examples. Left: using a fixed-weight BCH codeword matrix with weight w = 5 and a sparse random matrix with P (1) = 1
(t+1)

=

0.20 for N = 1890 subjects with M = 63 tests. Right: using a fixed-weight w = 5 BCH codeword matrix with (N,M) = (16002, 127) and a sparse
random matrix with P (1) = 0.125.

TABLE II
ESTIMATES OF THE ERROR PROBABILITY ε FROM THEOREM 3

PARAMETERS t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
M = 31, w = 6 0.1007 0.3543 0.6707 0.9060 0.9981 0.9630 0.8481 0.6997 0.5500 0.4166
M = 63, w = 3 0.0129 0.0267 0.0486 0.0804 0.1228 0.1757 0.2381 0.3084 0.3842 0.4631
M = 63, w = 5 0.0326 0.0807 0.1579 0.2619 0.3846 0.5149 0.6419 0.7562 0.8512 0.9232
M = 63, w = 7 0.0472 0.1386 0.2847 0.4638 0.6449 0.8007 0.9145 0.9802 1.0000 0.9810
M = 63, w = 9 0.0582 0.1979 0.4147 0.6495 0.8428 0.9613 1.0000 0.9716 0.8965 0.7944
M = 127, w = 3 0.0122 0.0179 0.0254 0.0350 0.0468 0.0611 0.0778 0.0972 0.1192 0.1438
M = 127, w = 5 0.0285 0.0475 0.0733 0.1063 0.1465 0.1933 0.2460 0.3034 0.3642 0.4271

In the case of ` = 2 we have

ε <
t

M − 1

(M − w)2

(M − wt)2
. (5)

Proof: (outline) The ideas of the proof are as follows. First
we show that as long as r < d′, the rth central moment of
the distance distribution of the code equals the rth moment
of the hypergeometric random variable with the pmf fX(i) =(
w
i

)(
M−w
w−i

)
/
(
M
w

)
, i = 0, 1, . . . , w. This fact relies on simple

properties of the Johnson association scheme. After that we
use a condition similar to w > t(w − d/2) (see the proof of

Prop. 2) as sufficient for identification and write a Chernov-
type bound that it is violated, where the random variables
are the indices of t random columns of the matrix A. This
gives the estimate of ε in the form of the rth moment of a
sum of certain independent random variables which can be
bounded above using classical inequalities such the Rosenthal
inequalities or other similar estimates. The full development
of these arguments is rather long; see [1].

We have calculated the dual distances of all the low-weight
BCH matrices considered in our experiments. The results are
summarized in Table V.



5

TABLE III
ESTIMATES OF THE ERROR PROBABILITY ε FROM THEOREM 4

PARAMETERS t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
M = 31, w = 6 0.0431 0.1647 0.4311 0.7816 0.9936 0.8957 0.5789 0.2710 0.0928 0.0235
M = 63, w = 3 0.0129 0.0264 0.0480 0.0791 0.1206 0.1724 0.2335 0.3024 0.3770 0.4548
M = 63, w = 5 0.0226 0.0482 0.0917 0.1578 0.2489 0.3628 0.4929 0.6288 0.7578 0.8673
M = 63, w = 7 0.0249 0.0608 0.1302 0.2458 0.4103 0.6078 0.8020 0.9458 1.0000 0.9510
M = 63, w = 9 0.0245 0.0728 0.1815 0.3758 0.6409 0.8911 1.0000 0.8955 0.6325 0.3478
M = 127, w = 3 0.0122 0.0179 0.0254 0.0349 0.0466 0.0607 0.0774 0.0966 0.1184 0.1428
M = 127, w = 5 0.0233 0.0339 0.0479 0.0660 0.0888 0.1168 0.1503 0.1896 0.2346 0.2850

TABLE IV
ESTIMATES OF THE ERROR PROBABILITY ε FROM (5), THM. 5

PARAMETERS t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
M = 63, w = 3 0.016 0.036 0.060 0.089 0.126 0.172 0.230 0.305 0.403 0.533
M = 63, w = 5 0.016 0.039 0.070 0.117 0.188 0.299 0.484 – – –
M = 63, w = 7 0.016 0.042 0.086 0.165 0.322 0.688 – – – –
M = 127, w = 3 0.008 0.017 0.026 0.037 0.049 0.062 0.076 0.092 0.110 0.130
M = 127, w = 5 0.008 0.017 0.028 0.041 0.057 0.075 0.098 0.125 0.158 0.199
M = 127, w = 7 0.008 0.018 0.030 0.046 0.067 0.095 0.131 0.181 0.251 0.352

TABLE V
THE DUAL DISTANCES OF BCH CONSTANT WEIGHT CODES

PARAMETERS d′

n = 31, w = 6 4
n = 63, w = 3 3
n = 63, w = 5 3
n = 63, w = 7 4
n = 63, w = 9 3
n = 127, w = 3 3
n = 127, w = 5 3

Using this information together with Theorem 5, we can
compute upper bounds for the false-positive probabilities
obtained from Eq. (5) for the various fixed-weight BCH
codeword matrix examples given in Fig. 1. The results are
listed in Table IV2. We can see that the bounds are small,
especially for smaller t, even when we have ` = 2. Compared
to all previous results, this gives better estimates of ε.

V. CONCLUSION
We propose constructions of almost disjunct matrices from

codewords of a fixed weight in binary codes and perform
experiments with matrices obtained from BCH codes of length
M = 63, 127. The experiments show that the rate of error
(false-positives) of group testing schemes obtained using these
matrices is better than the performance of random binary
matrices, making them good candidates for practical uses.

We also derive a new estimate of the error probability
of constant-weight almost disjunct matrices based on the
strength of designs formed by the columns of the matrices.
We show that the estimates obtained from our results for the
parameters considered are better than the estimates available
in the literature. At the same time they still come short of
matching the performance of the experiments. Deriving better
estimates of the error probability of identification remains an
open problem.
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