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Abstract—In this paper we present several results regarding
distance preserving maps between nonbinary Hamming spaces
and combinatorial (adversarial) joint source-channel coding. In
an (α, β)-map from one Hamming space to another, any two
sequences that are at least α relative distance apart, are mapped
to sequences that are relative distance at least β apart. The
motivation to study such maps come from (D, δ)-joint source-
channel coding (JSCC) schemes, where any encoded sequence
must be recovered within a relative distortion D, even in the
presence of δ proportion of adversarial errors.

We provide bounds on the parameters of both (α, β)-maps
and (D, δ)-JSCC for nonbinary alphabets. We also provide
constructive schemes for both, that are optimal for many cases.

I. INTRODUCTION

The problem of combinatorial joint-source channel coding
(JSCC) as an analogue to the usual compression and transmis-
sion of data over a stochastic channel was first proposed in
[8] and then subsequently studied in [7], [9], [11], [12], [14].

Definition 1 ((D, δ)q-JSCC). A pair of mappings f : Fkq →
Fnq and g : Fnq → Fkq are called together a (D, δ)q-JSCC, if
∀x ∈ Fkq and ∀z ∈ Fnq : wt(z) ≤ δn,

dH (g(f(x) + z), x) ≤ Dk,

where dH denotes the Hamming distance.

We note that given an encoding function f(·) of a (D, δ)q-
JSCC it has an optimal decoder gopt

f (·) defined as follows.

g
opt
f (z) = arg miny∈Fkq max

x:dH(z,f(x))≤δn
dH(y, x) ∀ z ∈ Fnq .

It is straightforward to see that a serial application of a
covering code with covering radius Dk followed by an δn-
error-correcting code will result in a (D, δ)q-JSCC (called the
separation scheme). In particular, it was shown in [8] that such
separation schemes are not optimal and can be outperformed.

A natural simplification of the combinatorial JSCC problem
is a problem of constructing distance-preserving maps of
Hamming spaces [9], [13].

Definition 2 ((α,β)q-maps [13]). A map f : Fkq → Fnq is said
to be an (α,β)q-map if αk and βn are integers and for all
x, x ′ ∈ Fkq we have

dH (x, x ′) > αk =⇒ dH (f(x), f(x ′)) > βn.

† University of Massachusetts at Amherst, Amherst, MA 01002, USA.
‡ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
§ Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Email: arya@cs.umass.edu, yp@mit.edu, asrawat@andrew.cmu.edu, ha-
jir@mit.edu. The work is supported by NSF grants CCF-13-18093 and CCF-
13-18620 and by the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-09-39370.

The question arises on what values of β are feasible for a
fixed α under various restrictions on k, n, and q. In the case
where α = 0, this is the classic question of error-correcting
codes.

Remark 1 (Connection between (α,β)q-maps and
(D, δ)q-JSCC). Note that an encoding map f of a (D, δ)q-
JSCC is also a (2D, 2δ)q-map. This follows from the fact that
for an encoding map f which is not a (2D, 2δ)q-map, even
the optimal decoder gopt

f cannot ensure Hamming distortion
at most Dk.

In previous works, as well as in most of the parts of this
paper, only asymptotic regime where n → ∞ and k scales
linearly with n is considered. We define R , k

n
and ρ , n

k
as

the rate of transmission and bandwidth expansion, respectively.
Bounds on the parameters of (D, δ)2-JSCC (binary alpha-

bet) were proposed in [8], [14]. In a similar spirit, [13] studied
the converse bounds for (α,β)2-maps (over F2). In this paper
our main contribution is to find impossibility bounds and
achievability results for both combinatorial JSCC and (α,β)-
maps over nonbinary, possibly large alphabets.

For (α,β)q-maps, the main technique we use to get the
achievability result is the diametric theorem of Ahlswede and
Khachatrian [2]. In the regime of large alphabets, our results
can be leveraged to construct good (α,β)-maps out of good
error correcting codes (Section II).

For (D, δ)q-JSCC our results are fourfold. First, we provide
a set of converse results that include a list-decoding bound and
an information theoretic converse. We also show some con-
verse results for MDS codes as a JSCC (Section III). Secondly,
we outline some simple achievability scheme. In particular, we
show that for the case of ρ ≤ 1 the information theoretic con-
verse is optimal for large enough alphabets (Section IV). Next,
we consider a generalized definition of (D, δ)q-JSCC schemes
with different input and channel alphabets - we show that a
random graph code construction beats the separation scheme
in this case (Section V). Lastly, we show that, for combinations
of the two common measures of distortions/distances on the
Hamming space, namely erasure and Hamming distortions,
separation schemes are optimal (Section VI).

II. DISTANCE PRESERVING MAPS, I.E., (α,β)-MAPS

In this section we address the question of finding the best
parameters that can be achieved for an (α,β)q-map. First,
we present a simple converse, and subsequently, we present
an achievability scheme employing a result by Ahlswede and
Khachatrian [2]. For large enough q this scheme is optimal.



Then we utilize Reed-Solomon codes to construct explicit
optimal (α,β)q-maps for q > n.

A. Converse for (α,β)q-maps

Theorem 1. Let q ≥ 2. Then, for an (α,β)q-map to exist,
we must have

hq(α) ≥ 1− min{ρRqLP1(β), ρ(1− β)}, (1)

where, hq(D) = D logq
q−1
D

− (1 − D) logq(1 − D)

and, RqLP1(β) = hq
(
q−1
q

− βq−2
q

− 2
q

√
β(1− β)(q− 1)

)
.

Furthermore, for a sufficiently large field size q, we must have

α ≥ 1− ρ+ ρβ+ oq(1). (2)

Proof. Let Aq(n, d) be the maximum size of an error-
correcting code of length n and minimum distance d over the
alphabet Fq. Let f be an (α,β)q-map. Assume that C ⊆ Fkq
is a code with relative distance α. Encoding each codeword
in C with the map f, we get a set f(C) ⊆ Fnq that is a code
with minimum distance βn. This implies that

Aq(k, αk) = |f(C)| ≤ Aq(n,βn). (3)

From the Gilbert-Varshamov (GV) bound [10] we know that,
Aq(k, αk) ≥ qk(1−hq(α))+o(k). And, the linear programming
bound in [1] ensures that Aq(n,βn) ≤ qnR

q
LP1

(β)+o(n).
Now, the bound in (1) follows by using these in (3). We obtain
(2) as we have hq(a) = a+ oq(1) ∀a ∈ [0, 1].

B. Achievability scheme for (α,β)q-map

We now present an achievability scheme to construct an
(α,β)q-map. One approach to construct such maps is to first
cover Fkq with configurations of diameter at most αk; then,
pack in Fnq as many points (codewords) of pairwise distance
more than βn as there are configurations in the cover. Sub-
sequently, map configurations to codewords. To obtain good
(α,β) properties, it makes sense to look for configurations
that contain a large number of points. A natural choice is to
cover with Hamming balls - but they are too small when q > 2
and, hence, do not give satisfactory (α,β) properties. To find
the shape and cardinality of extremal configurations we rely
on the diametric theorem of Ahlswede and Khachatrian [2].

We are interested in large subsets with bounded diameter.
The cardinality of the largest such subset is

Nq(d, k) = max{|A| : A ⊂ Fkq s.t. diam(A) ≤ d},

where for a set of vectors A ⊆ Fnq , diam(A) =
maxx,y∈A dH(x,y) is its diameter. For x ∈ Fkq, define
J(x) = {j : xj = 0} and

Ui = {x ∈ Fkq : |J(x) ∩ [1, k− d+ 2i]| ≥ k− d+ i}.

Note that each set Ui can be written as a Cartesian product
of some (k−2d+ i)-dimensional ball of radius i with Fd−2iq .
In particular, U0 is a low dimensional cube Fdq inside Fkq. We
are now ready to state the diametric theorem:

Proposition 2 (The diametric theorem [2]). Let r be the largest
integer such that

k− d+ 2r < min
{
k+ 1, k− d+ 2

k− d− 1

q− 2

}
.

Then Nq(k, d) = |Ur|.

We will make use of the extremal configurations that appear
in the theorem in the covering step mentioned above. We state
the achievable parameters in the following result. For large q,
this result establishes the tightness of Theorem 1.

Theorem 3. Fix q ≥ 2 and set

ρ̄ :=

{
ρ(q−2)

q(1−hq(1/q))
q > 2

ρ q = 2

Then for all β ≤ 1− 1
q

and ki, ni →∞ with ni
ki
→ ρ, there

exists (αi, βi)-maps f : Fkiq → Fniq with (αi, βi)→ (α,β) if

α ≥ max{
2

q
, 1− ρ̄+ ρ̄hq(β)}} or hq(

α

2
) ≥ 1− ρ+ ρhq(β).

(4)

Proof. Let r(k, d) be the integer as in the diametric theorem.
We cover Fkq with Ur(k,d)’s. Write

Ur(k,d) = Br(k,d) × Fd−2r(k,d)q .

Define t(k, d) = k − d + 2r(k, d). Now we can mod out the
second factor so that covering Fkq with translates of Ur(k,d)

reduces to covering Ft(k,d)q with Hamming balls of radius
r(k, d). Define the terms,

K(d, X) = min{m : ∪mi=1Si = X, diam(Si) = d} ,

W(r, X) = min{m : ∪mi=1Bi = X, rad(Bi) = r}.

We further define w(r, X) , min{m :
∃m-dim. linear code C ⊂ X s.t. rcov(C) ≤ r}, where,
rcov(A) = maxy∈Fnq minx∈A dH(x,y) is the covering
radius of the set A. We have W(r,Ftq) ≤ qw(r,Ftq) ≤
qt(1−hq(r/t))+O(log t) where the second inequality is from
[6]. We can thus bound the number of configurations of
diameter d needed to cover Fkq as follows

K(d,Fkq) ≤W(r(k, d),Ft(k,d)q ) ≤ qw(r(k,d),Ft(k,d)
q )

≤ qt(k,d)(1−hq(
r(k,d)
t(k,d)

))+O(log t(k,d))

Using the GV bound, we can see that (α,β) is achievable
asymptotically if

t(k, αk)(1− hq(
r(k, αk)

t(k, d)
)) ≤ n(1− hq(β))

holds as k → ∞. By considering the cases of α ≥ 2/q and
α < 2

q
separately (omitting details) we arrive at (4).

Fig. 1 shows the bounds in (1), (2), and (4) for q = 310.
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Fig. 1. Converse and achievability schemes for (α, β)q-maps.

C. Truncated Reed-Solomon codes

Here we give an explicit family of codes that achieve
optimal (α,β)-tradeoffs for q ≥ ρk. Set ᾱ := 1 − α and
consider the Reed-Solomon code fRS : V → Fρkq where V is
the subspace of Fkq formed by its first ᾱk coordinates. Note
that fRS is a (0, 1− ᾱ

ρ
)-map. Now let πV be the projection map

from Fkq to V and define the truncated Reed-Solomon (TRS)
code fTRS : Fkq → Fρkq as follows: fTRS(x) = fRS(πV(x)).
Any vector x ∈ Fkq with Hamming weight wt(x) > αk gets
projected to a non-zero vector in V . Hence wt(x) > αk =⇒
|fTRS(x)| > (1− ᾱ

ρ
)ρk, which means that fTRS is a (α, 1− ᾱ

ρ
)-

map. Furthermore, when q ≥ ρk, one can check that the bound
in (2) is sharp even for finite k. Thus, the TRS parameters are
optimal over large enough alphabets.

III. CONVERSES FOR (D, δ)q-ADVERSARIAL JSCC

In this section we obtain the lower bounds on the
bandwidth-expansion factor ρ = n

k
of a (D, δ)q-adversarial

JSCC. We assume the alphabet size to be large enough for
existence of MDS codes (say, q > n).

A. List decoding converse

As stated in the Remark 1, the encoding map f of a (D, δ)q-
JSCC is necessarily an (α = 2D,β = 2δ)q map. Using this
fact, the coding converse for the (α = 2D,β = 2δ)q-map
provides us the following converse result for (D, δ)q-JSCC
when β = 2δ < 1.

Proposition 4. For δ < 1
2

, a (D, δ)q-JSCC must satisfy

ρ =
n

k
≥ 1− 2D
1− 2δ

, or D ≥ 2ρδ− (ρ− 1)

2
. (5)

We now extend the bound in Proposition 4 for the values
of δ ∈ [1

2
, 1) by using the notion of list decoding. Before

presenting the bound, we state the following result which
characterizes the maximum size of an (δ, L)-list decodable
n-length code Aq,L(n, δn).

Theorem 5. Let Rq(L, δ) = 1
n

logqAq,L(n, δn) be the best
achievable rate of a code decodable with list size L up to
radius δn. Then, we have

Rq(L, δ) = 1−
(L+ 1)δ

L
+ oq(1). (6)

Proof. The achievability part of this theorem follows from a
random choice argument of [5, Sec. 2] - in particular, by taking
q to ∞ in there. We omit the details.

For the converse part, we first show that, Aq,L(n,nL/(L+
1)) ≤ L. Let us first take any L+ 1 codewords from the code
and design a new vector such that, each of the L+1 codewords
are within distance nL/(L + 1) away from this new vector.
Indeed, the new vector can be made to agree with any of the
L+1 codewords in n

L+1 coordinates easily. If Aq,L(n,nL/(L+
1)) > L then there exist a code with L + 1 codewords that is
list decodable with list size at most L up to radius nL/(L+1).
But this cannot be true according to the above argument.

Next we will prove Aq,L(n, r) ≤ Lqn−
L+1
L
r. Let the code

C is (r, L)- list decodable. Let us take a subcode of C that
has fixed first t coordinates. There must exist such a subcode
of size |C|/qt ≤ Aq,L(n − t, r). Now, we can substitute t =
n− L+1

L
r in the above to prove the claim.

We now state the list-decoding bound on a (D, δ)q-JSCC.

Theorem 6. Let L be an integer such that logL = o(n). Then,
as q→∞, a (D, δ)q-JSCC must have

ρ ≥
1− L+1

L
D

1− L+1
L
δ
, for δ ≤ L

L+ 1
. (7)

Proof. By extending the result from [14, Theorem 6] to
nonbinary alphabets, we know that the existence of a (D, δ)q-
JSCC implies that for every L we have,

Aq,L(k,Dk) ≤ LAq,L(n, δn). (8)

By taking logarithm both side and dividing by n, we obtain
the bound in (7).

B. Information theoretic converse

We now present an information theoretic converse results
which works for all values of δ ∈ [0, 1). This bound is tighter
than both the bounds presented in Section III-A when n ≤
k. We show in Section IV-A that the information theoretic
bound characterizes the exact trade-off for (D, δ)q-JSCC in
the regime of n ≤ k. The proof follows from a counting
argument similar to [8], and we omit it here.

Theorem 7. For a (D, k)q-JSCC, we must have

ρ =
n

k
≥ 1−D
1− δ

+ o(1) =⇒ D ≥ ρδ− (ρ− 1). (9)

C. MDS codes as (D, δ)q-JSCC

For large alphabet, MDS codes are optimal when the
objective is to recover the source vector with zero distortion
against adversarial errors as they achieve the Singleton bound.
This begs the question about their applicability as we relax the
zero distortion constraint. Here we study a subclass of MDS



codes, namely linear systematic codes, and show that they
exhibit poor performance as a (D, δ)q-JSCC. We divide our
analysis in two cases: 1) 1 ≤ ρ < 2 and 2) ρ ≥ 2.

Theorem 8. Let C ⊂ Fnq be an linear systematic MDS code
with |C| = qk. Then, the performance of C as a (D, δ)q-JSCC
satisfies the following.

1) For ρ ∈ [1, 2) and δ ≥ ρ−1
2ρ

, we have D ≥ ρδ.
2) For ρ ≥ 2 and δ ≥ ρ−1

2ρ
, we have D ≥ 1

2
.

We omit the proof of this and the subsequent theorem for
space constraints.

Note that the requirement of δ ≥ ρ−1
2ρ

in the statement of
Theorem 8 is necessary as for δ < ρ−1

2ρ
, an MDS code can

correct all δn errors. For δ ≥ ρ−1
2ρ

, using a linear systematic
code D = ρδ can be easily achieved by a simple decoding
function where we declare the first k symbols of the received
sequence as the source vector.

Finally, we also consider Reed-Solomon (RS) codes with
the usual polynomial encoding approach and conclude it to
be a poor adversarial JSCC. Note that these codes are non-
systematic MDS codes.

Theorem 9. Let C be an RS code where codewords are n
evaluations of polynomials of degree less than k over Fq (on
n points of Fq) with k message symbols constituting the k
coefficients of the polynomials. Then, for sufficiently large field
size q and δ ≥ ρ−1

2ρ
, the C gives a (D, δ)q-JSCC with D ≥ 1

2
.

IV. ACHIEVABILITY SCHEMES FOR (D, δ)q-JSCC

In this section we present various (D, δ)q-JSCC schemes
and compare the performance of these schemes with the
converse results presented in Section III.

A. Optimality of truncate and transmit scheme for k ≥ n
When k ≥ n, consider the scheme of throwing out the

last k − n coordinates of a message vector to obtain the
corresponding codeword. While decoding, we just append
k − n zeros at the end of the received vector. Clearly, the
maximum possible distortion that can be introduced in this
process is Dk = δn+ (k− n), which attains the information
theoretic bound of (9). Hence, the bound of (9) is tight for
the case of k ≥ n. This prompts us to only focus on devising
(D, δ)q-JSCC schemes for the case ρ > 1 going forward.

B. Separation scheme

For the separation scheme, we first compress a k-length
message vector within Dk distortion (for large alphabets this
can be achieved is by truncating Dk coordinates), and then
encode the truncated vector using an n-length MDS code with
the minimum distance 2δn + 1. This scheme ensures correct
recovery of the truncated vector against at most δn adversarial
errors. The minimum distance requirement implies that we
have n

k
= 1−D
1−2δ , which gives us the following.

Proposition 10. For δ < 1
2

, the separation scheme achieves,

D = 2ρδ− (ρ− 1). (10)

C. Repetition scheme with majority decoding

For an odd integer ρ > 1, consider a ρ-repetition scheme
where we transmit ρ copies of each source symbol. Given
a received vector, we decode each of the k source symbols
to be that symbol in Fq which appears at the most number
of coordinates among the ρ coordinates corresponding to the
repetition of the source symbol.

Proposition 11. Let ρ be an odd integer. For δ < ρ+1
2ρ

, ρ-
repetition scheme with majority decoding achieves distortion

D = 2δρ/(ρ+ 1). (11)

V. JSCC WITH DIFFERENT SOURCE-CHANNEL ALPHABETS

So far we have considered adversarial JSCC where both
the source symbols and the transmitted (channel) symbols
belong to the same alphabet Fq. However, depending on the
setting, it is possible and/or desirable to have the channel
alphabet different from the source alphabet. In this section
we comment on such adversarial JSCC. Let Fq1 and Fq2
denote the source and the channel alphabet. Similarly to
Definition 1, an encoding map f : Fkq1 → Fnq2 along with
a decoding map g(·) defines a (D, δ)q1,q2 -JSCC if ∀x ∈ Fkq1
and ∀z ∈ Fnq2 : wt(z) ≤ δn, we have

dH (g(f(x) + e), x) ≤ Dk. (12)

In this setting, we define the rate R and the bandwidth
expansion factor ρ of the code as follows.

R ,
k logq1
n logq2

; ρ ,
1

R
=
n logq2
k logq1

. (13)

Note that with these modified definitions of R and ρ, for
large enough q1 and q2, the same converse results presented
in Section III continue to hold. Due to lack of space, we only
provide a brief sketch here. Note that the coding converse
is this setting follows as the existence of an encoding map
for a (D, δ)q1,q2 -JSCC would imply Aq1(k, 2Dk + 1) ≤
Aq2(n, 2δn+ 1), and Aq1,L(k,Dk) ≤ LAq2,L(n, δn).

Next, we describe a (D, δ)q1,q2 -JSCC that has the channel
alphabet different from the source alphabet.

A. (D, δ)q,qρ -JSCC using bi-regular bipartite graphs

Let ρ be an odd integer. Consider a bi-regular bipartite graph
with k = n left vertices, n right vertices and both the left and
the right degree equal ρ. We associate each left vertex with a
source symbol. Similarly, each right vertex corresponds to a
channel symbol. The encoding map consists of the following
two steps:

1) Repeat each of the k = n source symbols from Fq ρ
times and assign these ρ copies to ρ edges incident on
the left vertex associated with the source symbol.

2) For each right vertex, collect the ρ symbols assigned to
ρ edges incident on it and form a symbol belonging to
the channel alphabet Fq2 = Fqρ .

This scheme corresponds to a special case of Alon-Luby
transform [3] where we use ρ-repetition code as a local code.
For the decoding, we perform the following two steps.



1) For each received symbol, obtain ρ symbol in Fq
and assign these symbols the d edges incident on the
corresponding right vertex.

2) For each left vertex, collect the ρ symbols associated to
the ρ edges incident on it and perform majority decoding
on these ρ symbols.

In order to fully specify the scheme, we need to select a
suitable bipartite graph. Towards this, we consider a random
ensemble of bipartite graph generated using a random per-
mutations over the set [ρn] = {1, 2, . . . , ρn}. Here we skip
some details of the ensemble. In the following result we show
that this ensemble has a bipartite graph which ensures good
performance for the (D, δ)q,qρ -JSCC described above.

Theorem 12 (Distortion analysis of d-repetition scheme).
Assume that we have

h(D) − δd log x+D log
d∑

i=d+1
2

(
d

i

)
xi

+ (1−D)log

d−1
2∑
i=0

(
d

i

)
xi < (d− 1)h(δ), (14)

where x > 0 is obtained from the following equation.
d−1
2∑
i=0

d∑
j=d+1

2

(
d

i

)(
d

j

)[
δd− jD− i(1−D)

]
xi+j−

d+1
2 = 0.

Then, for large enough n, there exists a permutation
π : [ρn] → [ρn] such that the ρ-replication scheme defined
by the graph Gπ gives us a (D, δ)q,qρ -adversarial JSCC.

Proof. The proof follows by adapting the analysis of the proof
of Theorem 4.2 in [4]. We omit the details.

In Fig. 2 we illustrate the performance of this scheme along
with the list decoding bounds and other achievability schemes
for (D, δ)-JSCC when ρ = 5 and q = 2.

VI. COMBINATORIAL JSCC FOR ERASURES

Just like Hamming errors and Hamming distance as a
measure of distortion, an adversarial erasure channel and/or
erasure distortion functions are equally popular and useful
models. Recall that the erasure distortion metric dE : Fq ∪
{?}× Fq ∪ {?}→ {0, 1,∞} is defined as follows.

dE(x, x) = 0, dE(x, ?) = 1 and dE(x, y) =∞, (15)

where x and y are two distinct element of the alphabet Fq
and ? corresponds to the erased symbol.

So far in this paper we have only considered the case where
the adversary introduces errors in the channel and the measure
of distortion is Hamming distance. Table I below summarizes
the bounds for all remaining combination of Hamming and
erasure measures for large alphabet.

We also note that a separation scheme, that first optimally
compress a k-length sequence to endure Dk distortion (in
respective measures; for q > n we can just discard Dk

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11
D vs. δ for ρ = 5

Hamming errors (δ)

H
am

m
in

g 
di

st
or

tio
n 

(D
)

 

 

List−decoding bound (Thm. 6)
Separation scheme (Prop. 10)
Repetition scheme (Prop. 11) 
Graph based scheme (Thm. 12) 

Student Version of MATLAB

Fig. 2. Converse and achievability schemes for (D, δ)-JSCC.

TABLE I
THE OPTIMUM BANDWIDTH EXPANSION FOR DIFFERENT COMBINATIONS

OF ERASURE AND ERRORS

Channel Model Distortion Measure Optimum ρ

Hamming Errors (δn) Erasures (Dk) 1−D
1−2δ

Erasures (δn) Erasures (Dk) 1−D
1−δ

Erasures (δn) Hamming Distortion (Dk) 1−hq(D)

1−δ

coordinates), and then uses an MDS code of required distance,
is optimal for all three of the cases. We omit the proof of this
claim for space constraints.
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