COMPSCI 690T Coding Theory and Applications

Feb 22, 2017

Lecture 8

Instructor: Arya Mazumdar Scribe: Names Redacted

1 Review

1.1 Error correcting codes

The parameters for an error correcting code are

n: length of the code (number of bits)

k: logarithm of code size

d: minimum (Hamming) distance between any two codewords

The rate of the code is R = k/n. Suppose we have a family of codes with $d = \delta n$, i.e. minimum distance scales linearly with length. We want to find the best possible value of

$$R(\delta) = \lim_{n \to \infty} \frac{k}{n}.$$

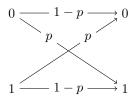
The Bassalygo-Elias bound and the Gilbert-Varshamov bound give us upper and lower bounds for $R(\delta)$:

B-E bound
$$\geq R(\delta) \geq 1 - h(\delta)$$

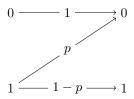
The G-V bound comes from the expected properties of a random linear code. Almost all such codes are "good", meaning achieves the G-V bound. However, verifying that a given linear code is good is computationally hard.

1.2 Communication channels

Binary symmetric channel: each bit independently can flip with probability p.



Z channel:



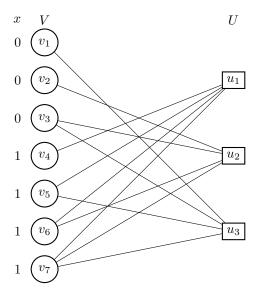
Definition 1 The capacity of a channel is the best possible rate of a code in which errors from the channel can almost always be corrected.

1.3 Decoding a linear code

A linear code C has an $(n-k) \times n$ parity check matrix like this:

$$H = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right].$$

We can decode using a **factor graph**. Make a bipartite graph with the left part containing **variable nodes** v_i representing the bits of the code and the right part containing **check nodes** u_j representing the rows of H. Draw an edge between v_i and u_j if the (j,i) entry of H is one.



To decode a vector x, we plug its components into the n variables nodes on the left side of the graph. Let N(v) be the neighbors of the node v. We say that a check node u_j is **satisfied** if $\sum_{v \in N(u_j)} x_v \equiv 0 \pmod{2}$. If all check nodes are satisfied, then $x \in C$.

To decode a vector x using the factor graph, plug its components into the variable nodes as shown above. Find a node v_i on the left with more unsatisfied neighbors than satisfied neighbors, and flip the component of x corresponding to this node. Repeat this step until all nodes are satisfied and output the resulting vector. (Call this **algorithm A**.)

We want to show that for a linear code C defined on a bipartite expander graph, this algorithm will terminate and correct a number of errors proportional to n.

2 Expander graphs

Definition 2 A bipartite graph G = (U, V, E) is a (Γ, A) -expander if for every subset $S \subset V$ of size $|S| \leq \Gamma$, the set of neighbors N(S) satisfies |N(S)| > A|S|.

Suppose we form a random factor graph G by starting with vertex sets V and U. This gives us a linear code since the factor graph is equivalent to a parity check matrix. Let D be the left degree of the graph. With high probability there exist $\alpha \in (0,1)$ and $\varepsilon > 0$ such that G is a $(\alpha n, (1-\varepsilon)D)$ -expander. In order to prove that algorithm A works, we need an $(\alpha n, \frac{3}{4}D)$ -expander graph.

Suppose $|S| = \alpha n$. Then there are a total of αnD edges touching S. The probability that it is not an $(\alpha n, (1 - \varepsilon)D)$ -expander is given by,

$$P_{e} \leq \binom{n}{\alpha n} \binom{\alpha nD}{\varepsilon \alpha nD} \left(\frac{\alpha nD}{|U|}\right)^{\varepsilon \alpha nD}$$

$$\leq \left(\frac{e}{\alpha}\right)^{\alpha n} \left(\frac{1}{\varepsilon}\right)^{\varepsilon \alpha nD} \left(\frac{\alpha D}{1-R}\right)^{\varepsilon \alpha nd}$$

$$= \left[\frac{e}{\alpha} \left(\frac{1}{\varepsilon} \frac{\alpha D}{1-R}\right)^{\varepsilon D}\right]^{\alpha n}.$$

(Note that |U| = n - k = (1 - R)n.) We just have to choose α small enough to make the quantity inside the square brackets less than 1.

Theorem 3 (Sipser and Spielman) If number of errors $\leq \frac{\alpha n}{2}$, then algorithm A finds the correct codeword (and converges).

Proof From the previous claim, we can assume the factor graph is a $(\alpha n, (1-\varepsilon)D)$ -expander for some α and ε . Let v be the number of corrupt variables and let u be the number of unsatisfied vertices on the right. The state of the algorithm is (v,u). Let S be the set of corrupted variables and let s be the number of satisfied neighbors of corrupted variables.

If $|S| \le \alpha n$, then $|N(S)| \ge v \frac{3}{4}D$ because the graph is an expander. Therefore we have $u + s > \frac{3}{4}Dv$. Furthermore, $Dv \ge u + 2s$. Putting these facts together, we obtain

$$s \ge \frac{3}{4}Dv - u$$

$$Dv \ge u + \frac{3}{2}Dv - 2u$$

$$u > \frac{Dv}{2}.$$

Therefore at least one corrupt variable node is connected to at least D/2 unsatisfied variables. So the algorithm will continue as long as $v \leq \alpha n$.

If at any stage we have $v > \alpha n$ then the algorithm fails. In order for this to happen, the state of the algorithm must first pass through $v = \alpha n$. If $v = \alpha n$, then $|N(S)| \ge \frac{3}{4}\alpha n$ which implies

$$u+s > \frac{3}{4}\alpha n$$

$$Dv \ge u + 2s$$

$$u > \frac{Dv}{2} = \frac{\alpha nD}{2}.$$

Therefore the state is (u, v) where $u > \alpha nD/2$ and $v = \alpha n$. But since at the start of the algorithm $u \le \alpha nD/2$, as at that stage the number of corrupted variables is $\alpha n/2$, and u can only decrease through the execution of the algorithm, we have a contradiction.

This is the first evidence in this class we have seen of codes that efficiently correct a number of errors linear in n.