
COMPSCI 690T Coding Theory and Applications Feb 22, 2017

Lecture 8
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Review

1.1 Error correcting codes

The parameters for an error correcting code are

n: length of the code (number of bits)

k: logarithm of code size

d: minimum (Hamming) distance between any two codewords

The rate of the code is R = k/n. Suppose we have a family of codes with d = δn, i.e. minimum distance
scales linearly with length. We want to find the best possible value of

R(δ) = lim
n→∞

k

n
.

The Bassalygo-Elias bound and the Gilbert-Varshamov bound give us upper and lower bounds for R(δ):

B-E bound ≥ R(δ) ≥ 1− h(δ)

The G-V bound comes from the expected properties of a random linear code. Almost all such codes
are “good”, meaning achieves the G-V bound. However, verifying that a given linear code is good is
computationally hard.

1.2 Communication channels

Binary symmetric channel: each bit independently can flip with probability p.

0

1

0

1

1− p

p

1− p

p

Z channel:

0

1

0

1

1

1− p

p

Definition 1 The capacity of a channel is the best possible rate of a code in which errors from the
channel can almost always be corrected.

1

1.3 Decoding a linear code

A linear code C has an (n− k)× n parity check matrix like this:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
We can decode using a factor graph. Make a bipartite graph with the left part containing variable

nodes vi representing the bits of the code and the right part containing check nodes uj representing
the rows of H. Draw an edge between vi and uj if the (j, i) entry of H is one.

V

v1

v2

v3

v4

v5

v6

v7

x

0

0

0

1

1

1

1

U

u1

u2

u3

To decode a vector x, we plug its components into the n variables nodes on the left side of the graph.
Let N(v) be the neighbors of the node v. We say that a check node uj is satisfied if

∑
v∈N(uj)

xv ≡ 0

(mod 2). If all check nodes are satisfied, then x ∈ C.
To decode a vector x using the factor graph, plug its components into the variable nodes as shown

above. Find a node vi on the left with more unsatisfied neighbors than satisfied neighbors, and flip the
component of x corresponding to this node. Repeat this step until all nodes are satisfied and output the
resulting vector. (Call this algorithm A.)

We want to show that for a linear code C defined on a bipartite expander graph, this algorithm will
terminate and correct a number of errors proportional to n.

2 Expander graphs

Definition 2 A bipartite graph G = (U, V,E) is a (Γ, A)-expander if for every subset S ⊂ V of size
|S| ≤ Γ, the set of neighbors N(S) satisfies |N(S)| > A|S|.

Suppose we form a random factor graph G by starting with vertex sets V and U . This gives us a
linear code since the factor graph is equivalent to a parity check matrix. Let D be the left degree of the
graph. With high probability there exist α ∈ (0, 1) and ε > 0 such that G is a (αn, (1− ε)D)-expander.
In order to prove that algorithm A works, we need an (αn, 34D)-expander graph.

2

Suppose |S| = αn. Then there are a total of αnD edges touching S. The probability that it is not
an (αn, (1− ε)D)-expander is given by,

Pe ≤
(
n

αn

)(
αnD

εαnD

)(
αnD

|U |

)εαnD
≤
(e
α

)αn(1

ε

)εαnD (
αD

1−R

)εαnd
=

[
e

α

(
1

ε

αD

1−R

)εD]αn
.

(Note that |U | = n− k = (1−R)n.) We just have to choose α small enough to make the quantity inside
the square brackets less than 1.

Theorem 3 (Sipser and Spielman) If number of errors ≤ αn
2 , then algorithm A finds the correct

codeword (and converges).

Proof From the previous claim, we can assume the factor graph is a (αn, (1−ε)D)-expander for some
α and ε. Let v be the number of corrupt variables and let u be the number of unsatisfied vertices on
the right. The state of the algorithm is (v, u). Let S be the set of corrupted variables and let s be the
number of satisfied neighbors of corrupted variables.

If |S| ≤ αn, then |N(S)| ≥ v 3
4D because the graph is an expander. Therefore we have u+ s > 3

4Dv.
Furthermore, Dv ≥ u+ 2s. Putting these facts together, we obtain

s ≥ 3

4
Dv − u

Dv ≥ u+
3

2
Dv − 2u

u >
Dv

2
.

Therefore at least one corrupt variable node is connected to at least D/2 unsatisfied variables. So the
algorithm will continue as long as v ≤ αn.

If at any stage we have v > αn then the algorithm fails. In order for this to happen, the state of the
algorithm must first pass through v = αn. If v = αn, then |N(S)| ≥ 3

4αn which implies

u+ s >
3

4
αn

Dv ≥ u+ 2s

u >
Dv

2
=
αnD

2
.

Therefore the state is (u, v) where u > αnD/2 and v = αn. But since at the start of the algorithm
u ≤ αnD/2, as at that stage the number of corrupted variables is αn/2, and u can only decrease through
the execution of the algorithm, we have a contradiction.

This is the first evidence in this class we have seen of codes that efficiently correct a number of errors
linear in n.

3

