COMPSCI 690T Coding Theory and Applications Feb 22, 2017

Lecture 8

Instructor: Arya Mazumdar Scribe: Names Redacted

1 Review

1.1 Error correcting codes

The parameters for an error correcting code are

n: length of the code (number of bits)

k: logarithm of code size

d: minimum (Hamming) distance between any two codewords

The rate of the code is R = k/n. Suppose we have a family of codes with d = dn, i.e. minimum distance
scales linearly with length. We want to find the best possible value of

R(5) = lim ©.

n—o00 N,

The Bassalygo-Elias bound and the Gilbert-Varshamov bound give us upper and lower bounds for R():
B-E bound > R(d) > 1 — h(9)

The G-V bound comes from the expected properties of a random linear code. Almost all such codes
are “good”, meaning achieves the G-V bound. However, verifying that a given linear code is good is
computationally hard.

1.2 Communication channels

Binary symmetric channel: each bit independently can flip with probability p.

0\1‘pp7

p

1—1-p——1

Z channel:

Definition 1 The capacity of a channel is the best possible rate of a code in which errors from the
channel can almost always be corrected.

1.3 Decoding a linear code
A linear code C has an (n — k) X n parity check matrix like this:
0 001111
H=]0 1100 11
1 01 01 01

We can decode using a factor graph. Make a bipartite graph with the left part containing variable
nodes v; representing the bits of the code and the right part containing check nodes u; representing
the rows of H. Draw an edge between v; and u; if the (j,4) entry of H is one.

To decode a vector z, we plug its components into the n variables nodes on the left side of the graph.
Let N(v) be the neighbors of the node v. We say that a check node u; is satisfied if ZUGN(W) T, =0
(mod 2). If all check nodes are satisfied, then z € C. '

To decode a vector = using the factor graph, plug its components into the variable nodes as shown
above. Find a node v; on the left with more unsatisfied neighbors than satisfied neighbors, and flip the
component of x corresponding to this node. Repeat this step until all nodes are satisfied and output the
resulting vector. (Call this algorithm A.)

We want to show that for a linear code C' defined on a bipartite expander graph, this algorithm will
terminate and correct a number of errors proportional to n.

2 Expander graphs

Definition 2 A bipartite graph G = (U,V, E) is a (I, A)-expander if for every subset S C V of size
|S| < T, the set of neighbors N(S) satisfies |IN(S)| > A|S|.

Suppose we form a random factor graph G by starting with vertex sets V and U. This gives us a
linear code since the factor graph is equivalent to a parity check matrix. Let D be the left degree of the
graph. With high probability there exist « € (0,1) and & > 0 such that G is a (an, (1 —) D)-expander.
In order to prove that algorithm A works, we need an (an, %D)—expander graph.

Suppose |S| = an. Then there are a total of anD edges touching S. The probability that it is not
an (an, (1 — e)D)-expander is given by,

p < n anD anD\ P
¢~ \an/ \eanD |U|
_ (E)an 1 eanD) eand
~ \« € 1-R
e (rep 1T
“|la\el—=R

(Note that [U| =n—k = (1— R)n.) We just have to choose « small enough to make the quantity inside
the square brackets less than 1.

Theorem 3 (Sipser and Spielman) If number of errors < 5, then algorithm A finds the correct

codeword (and converges).

Proof From the previous claim, we can assume the factor graph is a (an, (1 —e)D)-expander for some
«a and e. Let v be the number of corrupt variables and let u be the number of unsatisfied vertices on
the right. The state of the algorithm is (v,u). Let S be the set of corrupted variables and let s be the
number of satisfied neighbors of corrupted variables.

If |S| < an, then |[N(S)| > v2D because the graph is an expander. Therefore we have u + s > 3 Dv.
Furthermore, Dv > u + 2s. Putting these facts together, we obtain

3
> _Dv —
5_4 v —u

3
DUZU+§D’U—2’U,

Dv
u > 5
Therefore at least one corrupt variable node is connected to at least D/2 unsatisfied variables. So the
algorithm will continue as long as v < an.
If at any stage we have v > an then the algorithm fails. In order for this to happen, the state of the
algorithm must first pass through v = an. If v = an, then |[N(S)| > 3an which implies

3
u+s>iom
Dv>u+2s
Dv anD
YT T

Therefore the state is (u,v) where u > anD/2 and v = an. But since at the start of the algorithm
u < anD/2, as at that stage the number of corrupted variables is an/2, and u can only decrease through
the execution of the algorithm, we have a contradiction. ll

This is the first evidence in this class we have seen of codes that efficiently correct a number of errors
linear in n.

