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1 Random Linear Codes

1.1 Idea of a Random Construction

It is our goal to construct a code which achieves the Gilbert-Varshamov bound. One idea is to try a
random construction and then attempt to derandomize. Here, we construct a random linear code. We
will see that with high probability, such a code will achieve the Gilbert-Varshamov bound. Unfortunately,
it is an NP-Hard question on determining if our code is good, thus making this construction impractical
for use.

1.2 Achieving the Gilbert-Varshamov bound

We create a linear code by making a random Parity Check matrix

H =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n

...
...

...
. . .

...
xn−k,1 xn−k,2 xn−k,3 . . . xn−k,n


Each xij is a Bernoulli random variable, with a half probability of being either 1 or 0. We know that
the code will be the set

C := {x ∈ {0, 1}n|Hx = 0}

From this construction, we have that R ≥ k
n .

Definition 1 AW is # of random codewords with weight w.

We have that

E[Aw] =

(
n

w

)
1

2n−k
=⇒ E[

∑
w

Aw] =

∑d−1
i=1

(
n
i

)
2n−k

Define X as the number of codewords of weight ≤ d− 1. Then

Pr[X ≥ n
d−1∑
i=1

(
n

i

)
1

2n−k
] ≤ 1

n

by Markov’s Inequality. Now if we set

n

d−1∑
i=1

(
n

i

)
1

2n−k
= 1 =⇒ k = log

2n

n
∑d−1
i=1

(
n
i

)
then X < 1 with probability 1− 1

n .
If we set d = δn for asymptotics, we see that

R =
k

n
= 1− 1

n
log(n

δn−1∑
i=1

(
n

i

)
) =⇒ R = 1− h(δ)

where h(x) is the binary entropy function.
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2 Recovery in Linear Codes

2.1 Correctable Errors

Let C be a code and let x ∈ C. Then the Set of Correctable Errors is the set of vectors e such that

d(x, x+ e) < d(y, x+ e) ∀y ∈ C\{x}

Definition 2 Voronoi Region of x := {x+e : e is correctable with x}

For an example, let C = {0000, 1100, 1110}. Then the vector e = 0010 is correctable for 0000, but not for
1100, 1110. Note that if the code C is linear, then the set of correctable errors is the same for each x ∈ C.

Now suppose C is a linear code. Note that C is a subgroup of {0, 1}n under the operation of binary
addition. By Lagrange’s Theorem, the number of cosets of C in {0, 1}n is 2n

|C| = 2n

2k
= 2n−k. Therefore,

there is a bijection between the cosets and the codewords of the dual code.
We define the Standard Array to be the tabular array of cosets. For example, here is the standard

array of C = {0000, 1100, 0011, 1111}.

0000 1100 0011 1111 0000+C
0001 1101 0010 1110 0001+C
0100 1000 0111 1011 0100+C
1001 0101 1010 0110 1001+C

Claim 1 The set of correctable errors is equal to the set of coset leaders which have the unique minimum
weights in their cosets.

Proof Suppose e is a coset leader. We examine x and x+ e. We see that

d(y, x+ e) = d(x+ y, e) > d(0, e) = d(x, x+ e)

How about for the Hamming Code? The coset leaders are the weight 1 binary vectors.

2.2 Decoding Linear Codes

Definition 3 Let x ∈ {0, 1}n. The Syndrome of x is equal to HxT , where H is the Parity Check matrix.

Notice that we can redefine cosets here as groups of vectors which have the same syndrome. This is
because if x, y are in the same coset, then x = c1 +r and y = c2 +r, for some vector r and two codewords
c1, c2.

HxT = H(c1 + r)T = H(c2 + r)T = HrT = HyT

We now can develop a general decoding method of errors in linear codes:
Say we have a codeword x ∈ C. After transmission, it becomes r = x + e, where e is an error vector.
Find the coset which has the syndrome HrT . Subtract the coset leader of this coset from r, and we will
retrieve x.
In the real domain, this process is known as Sparse Recovery/Compress Sensing.
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2.3 Dual of the Hamming Code

Remember the Sphere Packing Bound :

A(n, d) ≤ 2n∑d−1
i=1

(
n
i

) .
Codes that satisfy this are called perfect codes. We know that Hamming codes are perfect codes.
There is also one other code, called the Golay Code. This code is [23, 12, 7].

We now define the Dual of the Hamming Code. In this code, we will take the Parity Check matrix
of the Hamming Code and use it as a generator matrix. It is known as Punctured Hadamard/Shortened
Reed-Muller/Simplex Code. We have that the parameters of this code are [2m − 1,m, ?]. We will inves-
tigate what the distance is.
Let us examine the case for [7,3,?].

G(3) =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
Note that

G(3) =

0 0 0 1 1 1 1
G(2) 0 G(2)

0

 .
The codewords are S(3)

0000000
0001111
0110011
1010101
0111100
1011010
1100110
1101001

But note that the codewords can be written as:

S(3) =



0
0

S(2) 0 S(2)

0
1

S(2) 1 ¯S(2)

1
1


.

Thus, the distance d = 4.

Claim 2 In general: dmin = 2m−1 = n+1
2

Thus, this code is [n, log(n+ 1), n+1
2 ]. Since,

A(n, d) ≤ 2d

2d− n
= n+ 1.

This means that the Punctured Hadamard code matches the Plotkin bound.
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