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1 Sphere Packing Bound

In the previous lecture we have seen what the singleton bound is. In this lecture we will start with the
Sphere Packing bound which is tighter than the singleton bound and as we will see that even though the
Hamming codes do not satisfy the singleton bound, they satisfy the Sphere packing bound with equality
proving that they are actually optimal. Now, we can easily see that the number of strings of length n is
2n. Now we will consider the codewords which are at least a distance of d from each other. The volume
of the set of codewords is denoted by A(n, d). Now, if we consider a ball around a particular codeword
x which is defined by

S
n,bd−12 c

,= {y : d(x, y) ≤ bd−12 c}

each of these balls around the codewords is supposed to be disjoint (otherwise there must exist a string
of length n which will be at a distance of bd−12 c from 2 codewords at the same time and hence by triangle
inequality the distance between these 2 codewords will be less than d which will be a contradiction).
Hence the sum of the volumes of these spheres must be less than the volume of the entire space. Now
the volume of Sn,t =

∑t
i=0

(
n
i

)
Hence we must have

A(n, d)|S
n,bd−12 c

| ≤ 2n

A(n, d) ≤ 2n∑bd−12 c
i=0

(
n
i

)
Now let us show that the Hamming code satisfies the sphere packing bound with equality. As we have
already seen, we can write the family of Hamming codes [n, k, d] in the form [2m − 1, 2m −m− 1, 3] for
string length m. From the above bound we have

A(n, 3) ≤ 2n

n+ 1

=
22

m−1

2m − 1 + 1

= 22
m−1−m

But since k = 2m−1−m which is the dimension of the code, hence the actual volume must be 22
m−m+1

which is the expression we obtained from the above bound. Hence the Hamming codes are optimal.

2 Bounds on codes

Definition An asymptotically good code is a code family whose minimum distance increases linearly
with the blocklength and it has asymptotically a positive rate.

Define,

R(δ) = lim
n→∞

log2

A(n, δn)

n

with 0 ≤ δ ≤ 1.
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We can easily observe that the Hamming codes are NOT asymptotically good since they have a
relative distance δ going to 0 whereas the rate R goes to 1. This fact can be easily verified from the
following 2 identities:-

lim
m→∞

3

2m − 1
= 0

lim
m→∞

2m − 1−m
2m − 1

= 1

Now let us understand what the Singleton bound and the Sphere Packing bound mean for the asymp-
totically good codes.

2.1 Singleton Bound

From the singleton bound we have
A(n, d) ≤ 2n−d+1

Hence we have that

R(δ) ≤ limn→∞
n− δn+ 1

n

R(δ) ≤ 1− δ

2.2 Sphere-packing Bound

From the sphere packing bound we have

R(δ) ≤
n− log

bd−12 c∑
i=1

(
n

i

)
n

≤ 1−
log

bd−12 c∑
i=1

(
n

i

)
n

≤ 1−
log
( n

bd−12 c

)
n

The last step is because we have
(
n
t

)
≤
∑t
i=0

(
n
t

)
≤ (t + 1)

(
n
t

)
and limt→∞

log t+ 1

t
= 0. Now we can

use Stirling’s formula (n! ∼ (ne )n) to simplify the above expression. Using Stirling’s expression we can

simplify and write
(
n
t

)
=

nn

tt(n− t)n−t
. Now substituting t = τn and taking log on both sides we will

have
log
(
n
τn

)
= n log n− τn log τn− (n− τn)log(n− τn)
= n log n− τn log n− τn log τ − (n− τn) log(1− τ)− (n− τn) log n

Hence we must have that

1

n
log

(
n

τn

)
= −τ log τ − (1− τ) log(1− τ) = h(τ)

where h is the binary entropy function. Substituting the above result by using d = δn and hence τ = δ
2

in the above calculations for rate, we have that

R(δ) ≤ 1− h( δ2 )
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2.3 Gilbert-Varshamov (GV) Bound

We will end this section by showing an achievability proof due to Gilbert known as the Gilbert-Varshamov
construction. Gilbert constructed an asymptotically good code by a greedy approach in which a took
a random string and discarded all the neighbor strings which are at a distance of d − 1 or less from
the selected string. From the remaining strings again select one randomly and discard the neighboring
strings in the ball of radius d − 1. Continue this process until we can no longer select any string. So
the entire set of strings selected will form the codewords whose minimum distances is guranteed to be d
by the construction process. For every codeword the volume of strings discarded is

∑d−1
i=0

(
n
i

)
. Hence at

most this many number of new strings are discarded for every codeword. Since the volume of the entire
space is 2n, hence the process to terminate, the volume of the codewords can be lower bounded by the
following

A(n, d) ≥ 2n∑d−1
i=0

(
n
i

) .
This is called the Gilbert Varshamov bound. Using Stirling’s approximation like before we have that

R(δ) ≥ 1− h(δ)

. However we must note that the construction process is computationally infeasible since we have to
search in a space exponential in the length of the string in every iteration . Also we should note there
does not exist any known result about the hardness of construction of an asymptotically good code and
the fact that there does not exist any explicit construction of a code so far that is able to satisfy the GV
bound.

3 Plotkin bound

Gilbert Varshamov bound gives us a lower bound on the rate when δ ≤ 1/2. Although it is widely
believed that Gilbert-Varshamov bound is tight, we do not know of any efficient (sub-exponential time)
construction of a code which satisfies it. The Sphere Packing bound gives us an upper bound when
δ < 1. Thus, there is a gap between the Gilbert-Varshamov bound and the sphere packing bound for
every δ for which the bounds are defined. The Plotkin bound makes the sphere packing bound tighter
for δ = 0.5 and matches with the GV bound at that point.

We derive it by first proving that

A(n, d) ≤ 2d

2d− n
for all d > n/2

Consider a set of code words C = {c1, c2, . . . , cm} where m = A(n, d) with the minimum distance
d. We arrange these code words in a matrix like fashion - with m rows and n columns. Let λi =
number of 1’s in ithcolumn.
Consider sum of all pairwise distances between two code words in C.∑

c1,c2,c1 6=c2

d(c1, c2) =

n∑
i=1

λi(m− λi)

It is easy to see that the expression on right hand side is also equal to the sum of all pairwise distances
between two code words. The idea is to sum up the contribution of each column in the pairwise distance
sum. For an ith column, we know that there are λi 1’s and m− λi 0’s. So, each column will contribute
to a distance of λi(m− λi).
As the minimum distance is d and there are

(
m
2

)
pairs which contribute to pairwise distance sum,(

m
2

)
d ≤

∑n
i=1 λi(m− λi)
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Now As λ(m− λ) is maximized at λ =
m

2
hence

(
m
2

)
d ≤

∑n
i=1

m

2
(m− m

2
)

=
m2n

4

d ≤ mn

2(m− 1)

m ≤ 2d

2d− n

As m > 0, we have d > n/2. Therefore, A(n, d) ≤ 2d

2d− n
when d > n/2.

R(δ) = lim
n→∞

log2

A(n, δn)

n

R(δ) = lim
n→∞

log2

2δn

n(2δn− n)

R(δ) = lim
n→∞

log2

2δ

n(2δ − 1)

R(δ) = 0

Figure 1: coding theory bounds
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The above graph is plot of all the bounds that we have done so far. As we can easily observe there
is a large gap at all values of δ except the endpoints between the upper and the lower bounds which
remains unresolved so far. After using the plotkin bound the sphere packing bound makes a sudden
drop to 0 which creates a sharp point. Hence in the next section we will study the Johnson bound and
the Elias-Basslygo bound which gives a smooth bound that matches the lower bound at the endpoints

4 Johnson bound

We consider another type of bound called Johnson Bound for codes with constant weight. Recall, that
weight of a code word is the number of 1’s in the code word.

∀x ∈ C,wt(x) = w (a fixed constant)

Let A(n, d, w) denote the maximum possible size of a code with parameters n, d and w. We apply
similar arguments as that of Plotkin bound to derive Johnson bound. Let C be a set of code words with
minimum distance d such that |C| = m and ∀x ∈ C : wt(x) = w. Let λi = number of 1s in ith column .
Hence we can easily observe that Total number of 1’s in a matrix when counting row-wise or column-wise
is the same and hence

∑n
i=1 λi = mw(

m
2

)
d ≤

∑n
i=1 λi(m− λi)

= m
∑n
i=1 λi −

∑n
i=1 λ

2
i

Now we know from Cauchy Schwartz inequality or the weighted AM inequality that

n∑
i=1

λ2i ≥
(
∑n
i=1 λi)

2

n

Hence we must have

(
m
2

)
d ≤ m(mw)− (mw)2

n

m(m− 1)d

2
≤ m2w − m2w2

n

m−1
m ≤ 2w

d −
2w2

nd

m ≤ 1

1− 2w

d
(1− w

n
)

Therefore the Johnson Bound is given by the following expression :

A(n, d, w) ≤ 1

1− 2w

d
(1− w

n
)

=
nd

nd− 2wn+ 2w2
.
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