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1 Information Theory

1.1 Entropy

Definition 1.1.1 Given some random variable X, and possible outcomes ΩX = {1, 2, ...,M} such that
p(X = i) = pi, the entropy H(X) is:

H(X) = −
∑
i∈ΩX

pi log pi

Definition 1.1.2 The joint entropy of two random variables X,Y is:

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y)

If X and Y are independant it’s easy to see that H(X,Y ) = H(X) +H(Y ).

Definition 1.1.3 The conditional entropy of two random variables X,Y is:

H(X|Y = y) = −
∑
x

p(x|y) log p(x|y)

Summing over all y ∈ ΩY , sample space of Y , we get,

H(X|Y ) = −
∑

x∈ΩX ,y∈ΩY

p(y)p(x|y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x|y)

= −
∑
x y

p(x, y) log
p(x, y)

p(y)

= −
∑
x,y

p(x, y) log p(x, y)− p(x, y) log p(y)

= H(X,Y )−
∑
y∈ΩY

log p(y)
∑
x∈ΩX

p(x, y)

= H(X,Y )−H(Y )

Proposition 1.1.1
H(X,Y ) = H(Y |X) +H(X) (1)

Proof

H(X|Y ) = −
∑

x∈ΩX ,y∈ΩY

p(x, y) log p(x, y) + p(x, y) log p(y)

= H(X,Y ) +
∑
y

log p(y)
∑
x

p(x, y)

= H(X,Y )−H(Y )

H(X,Y ) = H(X|Y ) +H(Y )

1



By symmetry, we get:

H(X|Y ) +H(Y ) = H(Y |X) +H(X)

⇒H(X)−H(X|Y ) = H(Y )−H(Y |X)

Looking at the above expression, we can consider the quantity to be the amount of information about
X obtained from Y , and we denote that as the mutual information between X and Y .

Definition 1.1.4 The mutual information between X and Y is I(X;Y ) = I(Y ;X) = H(X) −
H(X|Y ) = H(Y )−H(Y |X)

1.2 Relative Entropy & Bounds

First, we will look at some intuitive bounds.

Knowing Y can never reduce the amount of information you have on X, and therefore:

H(X) ≥ H(X|Y ) (2)

Moreover, the amount of information in two random variables would be more than that in one single
random variable, so:

H(X,Y ) ≥ H(X) (3)

Now Lets define the quantity of Relative Entropy D(p||q) for 2 probability mass functions of equal in-
deces, p{p1, p2, ...pm} and q{q1, q2, ...qm}

D(p||q) =
∑
i pi log pi

qi

Proposition: D(p(x, y)||p(x)p(y)) = I(X;Y )
Proof

D(p(x, y)||p(x)p(y)) =
∑

X∈ΩX ,y∈ΩY

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

X∈ΩX ,y∈ΩY

p(x|y)p(y) log
p(x|y)

p(x)

=
∑

X∈ΩX ,y∈ΩY

p(x|y)p(y) log p(x|y)−
∑

X∈ΩX ,y∈ΩY

p(x|y)p(y) log p(x)

=
∑

X∈ΩX ,y∈ΩY

p(x, y) log p(x|y)−
∑

X∈ΩX ,y∈ΩY

p(x) log p(x)

= −H(X|Y ) +H(X)

= I(X;Y )
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Proposition: D(p||q) ≥ 0
Proof

D(p||q) =
∑
i

pi log2

pi
qi

= − log2 e
∑
i

pi log
qi
pi

≥ − log2 e
∑
i

pi(
qi
pi
− 1)

= − log2 e
∑
i

qi − pi

= − log2 e(1− 1) = 0

⇒ D(p||q) ≥ 0

where the ≥ comes from the inequality, log y ≤ y − 1

Proposition: log2M ≥ H(X) where M is |Ω|
Proof Assume a uniform distribution, so ∀i ∈ Ω, qi = 1

M . So H(X) = −
∑
i

1
M log2

1
M = log2M

D(p||q) =
∑
i

pi log
pi
qi

=
∑
i

pi log pi −
∑
i

pi log2 qi

=
∑
i

pi log pi −
∑
i

pi log2

1

M

= −H(X) + log2M ≥ 0

⇒ log2M ≥ H(X)

Note that the ≥ 0 comes from the earlier proposition regarding relative entropy

1.3 Fano’s inequality

Theorem Let S be a random variable with finite outcomes |Ω| = M . Let X be another random
variable that is represents S transmitted through some channel. Ŝ is the estimator for S that we derive
from X with a function f such that Ŝ = f(X).

S // X // Ŝ

Under this setup, the probability of error in estimating S is lower bounded by:

Pe = P (Ŝ 6= S) ≤ H(S|Ŝ)− 1

log(M − 1)
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Proof Let E be an indicator variable such that:

E =

{
1, if S 6= Ŝ

0, if S = Ŝ

H(S|Ŝ) ≤ H(S,E|Ŝ) According to (3)

= H(E|Ŝ) +H(S|E, Ŝ) According to (1)

≤ H(E) +H(S|E, Ŝ) According to (2)

= H(E) + P (E = 1)H(S|E = 1, Ŝ) + P (E = 0)H(S|E = 0, Ŝ)

= h(Pe) + Pe log(M − 1) + 0

⇒ Pe ≥
H(S|Ŝ)− 1

log(M − 1)

2 Wiretap Channel (Wyner and Ozarow 1984)

2.1 Problem Description

Alice would like to encode K bits of information to N bits and transmit it to Bob, but there is a wire-
tapper Eve, who could see any µ bits of the transmission. We would like to design a channel so as to
minimize the amount of information leakage to Eve.

K-bit S encode // N -bit X decode // Ŝ

Alice Eve sees µ-bit Z Bob

More formally, we have a K bit file S, and obtain an N bit file X for transmission. Let T ⊂ {1, 2, ..., N}
and |T | = µ, and the information available to the wiretapper is Z = XT .

The information leakage of this channel is defined to be:

∆ = min
T
H(S|XT )

2.2 Parameters

The rate of this channel is R = K
N , the proportion available to the wiretapper is α = µ

N and the relative

information leakage is δ = ∆
K .

For these parameters, we have a [K,N, µ,∆], or a [R,α, δ] scheme for the wiretap channel.

As an example, let’s think about a [N = 2,K = 1, µ = 1] scheme. The way we encode S is that
we get a random bit ζ and then encode X = (ζ, S+ ζ). We decode this by Ŝ = X1⊕X2. This is correct
because ζ ⊕ ζ + S = S no matter what the value of ζ is but the wiretapper gets no information if only
allowed to view one bit.
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Fix any R = K/N , the relations between these parameters could be characterized by the following
graph.

µ
N

∆ K
µ ≤ N −K
µ > N −K

Specifically, we know that:

∆ ≤

{
K, if 0 ≤ µ ≤ N −K
N − µ, if µ ≥ N −K
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