COMPSCI 690T Coding Theory and Applications Mar 5, 2017

Lecture 11

Instructor: Arya Mazumdar Scribe: Arya Mazumdar

Reed Solomon Codes

e g-ary Code. g is such that a finite field of size g exists. This means ¢ is a power of a prime.
e Lengthn < ¢ — 1, dimension k.
e Distanced =n — k+ 1.

Consider a finite field IF,,. Let us call the set {1, oo, . . ., @, } the Defining set, n < g.
For any polynomial f(z) € F,[z], eval(f) £ (f(a1), f(c2),..., f(an)). An [n, k] g-ary Reed Solomon
code C is defined in the following way.

C = {eval(f) : deg(f) < k}.
Proposition 1 C is a linear code over IF,.

Proof Say, ¢; = eval(f1);co = eval(fs). Then ¢1 + c2 = eval(f1 + f2) but deg(f1 + f2) < k. A

Proposition 2 C has minimum distance d = n — k + 1.

Proof Since this is a linear code, minimum distance is minimum weight. Any codeword ¢ can be thought of as
eval(f) for some polynomial f of degree at most k — 1. Since any polynomial of degree £ — 1 can have at most
k — 1 zeros, c can have at most k£ — 1 zero coordinates. That means the Hamming weight of cis at least n — k + 1.
]

Recall from Singleton bound, d < n — k + 1. Hence RS codes meats the Singleton bound. Such codes are
called MDS codes.

For an MDS code any n — k columns of the parity check matrix are linearly dependent; any & columns of the
generator matrix are linearly independent.

Decoding: Berlekamp-Welch

Suppose the defining set is P = {a1,az2,...,an}, o € Fgi = 1,2,... n. Let the received vector is r =
(r1,72,...,75). The transmitted vector is eval(f) = ¢ = (¢, ..., c,) and the error vector is e = (e1,...,€ey,),

_ n—k
and wt(e) <t = "5~

Find a polynomial Q(z,y) € F,[z, y] with the following properties:
L. Q(z,y) = Qo(x) + yQ1(x).
2. deg(Qo) <n—t—1landdeg(@1) <n—t—1—(k—1).
3. Q(ay,m;)) =0fori=1,2,...n.
Lemma 3 It is always possible to find a polynomial Q(x,y) € F[x,y] with the above properties.

Proof The number of unknown coefficients are at mostn —t +n —t —(k—1) = 2n — 2t — (k — 1) =
2n—n+k —k+1 = n+ 1. On the other hand the third condition gives n linear equation involving them. Hence
it is always possible to find a solution. ll



Theorem 4 For a Q(x,y) with the above properties, f(x) = g () Where ¢ = eval(f).

Proof Note, deg(Q(z, f(x)) < max(deg(Qo),deg(Q1)+deg(f)) = max(n—t—1,n—t—1—(k—1)+k—1) =
n —t — 1. Hence, if there exist n — ¢ or more points where Q(z, f(z)) evaluates to zero, Q(z, f(z)) = 0.
Now, r; = f(;) + ;. As wt(e) = ¢, there exists n — ¢ such s, that ; = f(«a;). Therefore, for at least n — ¢

is, Q(av, f(ey)) = 0. Hence, Q(z, f(z)) = 0= f(z) = 8%3 u

Error-locator polynomial

(21 is called error-locator polynomial as its roots give the locations of errors. Indeed,
Q(z,y) = Qo(x) + yQu(x) = —Qu(2) f(2) + yQu(z) = Qu()(y — f ().
Hence, Q(c, ;) = 0 implies Q1 (a;)(r; — f(ay)) = Q1(a;)e; = 0. Whenever, e; # 0, Q1(«;) = 0.

Interpolation
Given, n points (a1,71), ..., (an, ) € F2, find a polynomial f(z) of degree at most k — 1 that goes through at
leastn —t = ”+k pomts = RS decodmg

List Decoding of RS codes (Sudan)

Consider the following generalization of BW algorithm. Suppose the defining set is P = {a,as,...,a,},
a; € Fy,i=1,2,...,n. Let the received vector is r = (rq,ro, ..., 7,). The transmitted vector is eval(f) = ¢ =
(c1,...,cpn) and the error vector is e = (eq, ..., €,), and wt(e) = ¢ (some number).

Find a polynomial Q(z,y) € F,[z, y] with the following properties:
L Q(z,y) = Qo(z) +yQ1(z) +y°Qa(2) + - +y" QL ().
2. deg(Qj) <n—-t—1—-j(k—-1),7=0,...L.
3. Q(ay,r;)) =0fori=1,2,...n
Theorem 5 [t is possible to find a polynomial Q(x,y) € Fy[x,y] with the above properties if

nL  (k—1)L
L+1 2

t<min( ,nfL(k—l))

Proof Number of coefficients in the polynomial Q(z,y) is

L(L+1)

L
(L+1)(n—t)— DY j=L+1)n—t)—(k—1) 5

7=0

= (L+1)(n—t—(k—1)L/2).

If this is greater than or equal to n then the set of equations can be solved to find the polynomial (). That is, @
can be found if,

n
——— —(k—=1)L/2.
t<n— g~ (k=1L

At the same time deg((),) must be nonnegative, i.e.,

n—t—1—Lk—1)>0.



Theorem 6 (y — f(x)) divides Q(x,y).

Proof This will be proved, if Q(x, f(x)) = 0.
Note, deg(Q(z, f(x))) < n —t — 1. However, just as before, r; = f(a;) + e;. As wt(e) = t, there exists
n — t such s, that ; = f(«;). Therefore, for at least n — ¢ is, Q(ay, f(a;)) = 0. Hence, Q(x, f(z)) =0. W

Note that, there are at most L different polynomials f possible that are y-roots of Q(x, y).

Theorem 7 Given any vector r, Sudan’s algorithm finds all codewords that are within distance t from r. When

nL  (k—1)L
L+1 2

¢ < min ( = L(k=1)),

there exist at most L such codewords.

This is called List Decoding.

Example: Say, L = 2. Hence, t < min (27" —(k=1),n—2(k - 1)) When £ < 1, the decoding radius is
t=2n

%t — (k — 1) — 1, say. This is greater than the radius for unique decoding ”7”“



