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Lecture 11
Instructor: Arya Mazumdar Scribe: Arya Mazumdar

Reed Solomon Codes
• q-ary Code. q is such that a finite field of size q exists. This means q is a power of a prime.

• Length n ≤ q − 1, dimension k.

• Distance d = n− k + 1.

Consider a finite field Fq . Let us call the set {α1, α2, . . . , αn} the Defining set, n ≤ q.
For any polynomial f(x) ∈ Fq[x], eval(f) , (f(α1), f(α2), . . . , f(αn)). An [n, k] q-ary Reed Solomon

code C is defined in the following way.

C ≡ {eval(f) : deg(f) < k}.

Proposition 1 C is a linear code over Fq .

Proof Say, c1 = eval(f1); c2 = eval(f2). Then c1 + c2 = eval(f1 + f2) but deg(f1 + f2) < k.

Proposition 2 C has minimum distance d = n− k + 1.

Proof Since this is a linear code, minimum distance is minimum weight. Any codeword c can be thought of as
eval(f) for some polynomial f of degree at most k − 1. Since any polynomial of degree k − 1 can have at most
k−1 zeros, c can have at most k−1 zero coordinates. That means the Hamming weight of c is at least n−k+1.

Recall from Singleton bound, d ≤ n − k + 1. Hence RS codes meats the Singleton bound. Such codes are
called MDS codes.

For an MDS code any n− k columns of the parity check matrix are linearly dependent; any k columns of the
generator matrix are linearly independent.

Decoding: Berlekamp-Welch
Suppose the defining set is P = {α1, α2, . . . , αn}, αi ∈ Fq, i = 1, 2, . . . , n. Let the received vector is r =
(r1, r2, . . . , rn). The transmitted vector is eval(f) = c = (c1, . . . , cn) and the error vector is e = (e1, . . . , en),
and wt(e) ≤ t = n−k

2 .
Find a polynomial Q(x, y) ∈ Fq[x, y] with the following properties:

1. Q(x, y) = Q0(x) + yQ1(x).

2. deg(Q0) ≤ n− t− 1 and deg(Q1) ≤ n− t− 1− (k − 1).

3. Q(αi, ri) = 0 for i = 1, 2, . . . n.

Lemma 3 It is always possible to find a polynomial Q(x, y) ∈ Fq[x, y] with the above properties.

Proof The number of unknown coefficients are at most n − t + n − t − (k − 1) = 2n − 2t − (k − 1) =
2n−n+ k− k+1 = n+1. On the other hand the third condition gives n linear equation involving them. Hence
it is always possible to find a solution.
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Theorem 4 For a Q(x, y) with the above properties, f(x) = −Q0(x)
Q1(x)

where c = eval(f).

Proof Note, deg(Q(x, f(x)) ≤ max(deg(Q0),deg(Q1)+deg(f)) = max(n−t−1, n−t−1−(k−1)+k−1) =
n− t− 1. Hence, if there exist n− t or more points where Q(x, f(x)) evaluates to zero, Q(x, f(x)) = 0.

Now, ri = f(αi) + ei. As wt(e) = t, there exists n− t such is, that ri = f(αi). Therefore, for at least n− t
is, Q(αi, f(αi)) = 0. Hence, Q(x, f(x)) = 0⇒ f(x) = −Q0(x)

Q1(x)
.

Error-locator polynomial
Q1 is called error-locator polynomial as its roots give the locations of errors. Indeed,

Q(x, y) = Q0(x) + yQ1(x) = −Q1(x)f(x) + yQ1(x) = Q1(x)(y − f(x)).

Hence, Q(αi, ri) = 0 implies Q1(αi)(ri − f(αi)) = Q1(αi)ei = 0. Whenever, ei 6= 0, Q1(αi) = 0.

Interpolation
Given, n points (α1, r1), . . . , (αn, rn) ∈ F2

q , find a polynomial f(x) of degree at most k − 1 that goes through at
least n− t = n+k

2 points =⇒ RS decoding.

List Decoding of RS codes (Sudan)
Consider the following generalization of BW algorithm. Suppose the defining set is P = {α1, α2, . . . , αn},
αi ∈ Fq, i = 1, 2, . . . , n. Let the received vector is r = (r1, r2, . . . , rn). The transmitted vector is eval(f) = c =
(c1, . . . , cn) and the error vector is e = (e1, . . . , en), and wt(e) = t (some number).

Find a polynomial Q(x, y) ∈ Fq[x, y] with the following properties:

1. Q(x, y) = Q0(x) + yQ1(x) + y2Q2(x) + · · ·+ yLQL(x).

2. deg(Qj) ≤ n− t− 1− j(k − 1), j = 0, . . . L.

3. Q(αi, ri) = 0 for i = 1, 2, . . . n.

Theorem 5 It is possible to find a polynomial Q(x, y) ∈ Fq[x, y] with the above properties if

t < min
( nL

L+ 1
− (k − 1)L

2
, n− L(k − 1)

)
.

Proof Number of coefficients in the polynomial Q(x, y) is

(L+ 1)(n− t)− (k − 1)

L∑
j=0

j = (L+ 1)(n− t)− (k − 1)
L(L+ 1)

2
= (L+ 1)(n− t− (k − 1)L/2).

If this is greater than or equal to n then the set of equations can be solved to find the polynomial Q. That is, Q
can be found if,

t < n− n

L+ 1
− (k − 1)L/2.

At the same time deg(Qj) must be nonnegative, i.e.,

n− t− 1− L(k − 1) ≥ 0.
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Theorem 6 (y − f(x)) divides Q(x, y).

Proof This will be proved, if Q(x, f(x)) = 0.
Note, deg(Q(x, f(x))) ≤ n − t − 1. However, just as before, ri = f(αi) + ei. As wt(e) = t, there exists

n− t such is, that ri = f(αi). Therefore, for at least n− t is, Q(αi, f(αi)) = 0. Hence, Q(x, f(x)) = 0.

Note that, there are at most L different polynomials f possible that are y-roots of Q(x, y).

Theorem 7 Given any vector r, Sudan’s algorithm finds all codewords that are within distance t from r. When

t < min
( nL

L+ 1
− (k − 1)L

2
, n− L(k − 1)

)
,

there exist at most L such codewords.

This is called List Decoding.

Example: Say, L = 2. Hence, t < min
(

2n
3 − (k − 1), n− 2(k − 1)

)
. When k

n < 1
3 , the decoding radius is

t = 2n
3 − (k − 1)− 1, say. This is greater than the radius for unique decoding n−k

2 .
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