
COMPSCI 690T Coding Theory and Applications March 1, 2017

Lecture 10
Instructor: Arya Mazumdar Scribe: Names Redacted

1 Expander Codes

1.1 Review

Definition Given a D-regular bipartite graph G with the two parts being U and V and |U | = |V | = m.
We pick 2m different local codes C0 that has parameters (D,R0D, δ0D) for each vertex. For each vertex
in G, since it has a degree of D, if we assign a bit to each edge coming out, we could get a D bit sequence
that either belongs to or does not belong to its assigned local code. We can now construct an Expander
Code that has code length n = mD, where each bit corresponds to an edge in G, and its codewords are
all those assignments that ensure that the for every vertex in G the sequence from its edges is a valid
codeword.

Lemma (Expander Mixing Lemma) Given a expander code with graph G, for any vertex sets
S, T such that S ⊆ V, T ⊆ U

||E(S, T)| − D|S||T |
m

| ≤ λ
√
|S||T |

where λ is the 2nd largest eigenvalue of the adjacency matrix of G.

Theorem 1 (Zémor 2001) For an expander code C with length n constructed from a D-regular
bipartite graph and local codes with parameters (D,R0D, δ0D), the rate of the code R ≥ 2R0 − 1 and
the minimum distance dmin ≥ δ0(δ0 − λ

D)n.

Proof Assume that there is a codeword in C that has weight ωn, and we look at the vertex set
S ⊆ V that contains all the vertices with weight more than 1 on the left side and the vertex set T ⊆ U
that contains all the vertices with weight more than 1 on the right side. Since the minimum weight for
the local codes is δ0D, we have

|S| ≤ ωn

δ0n
|T | ≤ ωn

δ0D

We can bound E(S, T) on the left by ωn since the edges between S and T must contain all the one’s
and we can bound it on the right with the expander mixing lemma.

ωn ≤ |E(S, T)| ≤ ωn

δ0n

ωn

δ0n

D2

n
+ λ

ωn

δ0D

1 ≤ ω

δ20
+

λ

δ0D
=⇒ ω ≥ δ0(δ0 −

λ

D
) =⇒ dmin ≥ δ0(δ0 −

λ

D
)n

Now, since for each local code to satisfy, we need to satisfy D(1−R0) linear equations and we have 2 nD
local codes to satisfy, the dimension of code C is at least n− 2 nDD(1−R0) and therefore R ≥ 2R0− 1

1.2 Error Correction for Expander Codes

Algorithm (Zemor 2001, Indyk and Guruswami 2001-2005) For an expander code with graph
G with the two parts being U and V , correct errors for all local codes in U by nearest neighbor, and
then correct errors for all local codes in V by nearest neighbor, continue such iterations in an alternating
fashion.

1

Theorem 2 As long as the number of errors |E| ≤ (1 − ε) δ02 (δ02 −
λ
D)n, ∀ε > 0, the algorithm will

converge and correct these errors (takes 1
ε iterations).

Proof Given the conditions that we set, we know that:

|E0| ≤ (1− ε)δ0
2

(
δ0
2
− λ

D
)n

where |E0| is the number of errors before any iterations of the algorithm.

Now, let S1 be the set of vertices on the left that make mistakes in the first iteration of corrections
on the left. Similarly, let T1 be the set of vertices on the right that make mistakes in the first iterations
of corrections on the right.

Since the local codes have minimum distance δ0D and can correct about δ0D
2 errors, any correction

will be wrong only if that vertex vertex contains more than δ0
2 errors, so we know:

|S1| ≤
|E0|
δ0
2

≤ (1− ε) n
D

(
δ0
2
− λ

D
)

By similar logic, every vertex of T1 is connected to at least δ0D
2 vertices of S. Hence:

|T1| ≤
2

δ0D
|E(S1, T1)|

≤ 2

δ0D
(
|S1||T1|D2

n
+ λ
|S1|+ |T1|

2
)

= |T1|(
2

δ0D

D2

n
|S1|+

λ

δ0D
) +

λ

2

2

δ0D
|S1|

≤ |T1|(2D

δ0n
(1− ε) n

D
(
δ0
2
− λ

D
) +

λ

δ0D
) +

λ

δ0D
|S1|

≤
λ
δ0D
|S1|

1− 2D
δ0n

(1− ε)nd (δ02 −
λ
D)− λ

δ0D

≤
λ
δ0D

1− 2
δ0

(1− ε)(δ02 −
λ
D)− λ

δ0D

|S1|

If we can show |T1| ≤ α|S1| where α < 1, then we have finished the proof because we show that the
number of errors strictly decrease after each iteration. For this to be true, we must have:

λ

D
< 1− 2

δ0
(1− ε)(δ0

2
− λ

D
)− λ

δ0D
2λ

δ0D
< ε+

2λ

δ0D
− ε 2λ

δ0D

0 < ε(1− 2λ

δ0D
)

And we can satisfy this by ensuring that δ0D > 2λ

2 Evaluation Codes

v1, v2, ...vm are boolean variables, so they are either 0 or 1, so when speaking of boolean polynomials,
vni is simply vi. So binary polynomials must be multinomials. ex: 1 + v1v2 + v3v4v5 + ... As an example,

2

let f(v1, v2, v3) = 1 + v1v2 + v1v2v3. Since there are 3 boolean variables, there are 8 possible inputs to
the function. The results shown in the table below.

v1 v2 v3 f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

2.1 Reed-Muller Code (1954)

A (r,m)-Reed-Muller code is defined by all polynomials of degree≤ r consisting ofm variables, v1, v2, v3, ...vm
Looking at RM(1, 3), so r = 1 and m = 3, we have variables, v1, v2, and v3, and polynomials,

degree 0 0 1
degree 1 v1 v2 v3 1 + v1 1 + v2 1 + v3 v1 + v2

v1 + v3 v2 + v3 v1 + v2 + v3 1 + v1 + v2 1 + v1 + v3 1 + v2 + v3 1 + v1 + v2 + v3

For each of the aforementioned polynomials, we can evaluate them for all possible inputs, in the same
order we did for the example function above, and those will be our codewords. So in this case we have
16 total codewords each corresponding to a unique polynomial.
In the table below we show the generation of the first 8 codewords, and the other 8 codewords would be
found by evaluating the other 8 polynomials.

v1 v2 v3 f = 0 f = 1 f = v1 f = v2 f = v3 f = 1 + v1 f = 1 + v2 f = 1 + v3
0 0 0 0 1 0 0 0 1 1 1
0 0 1 0 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 1 1 0 0
1 0 0 0 1 1 0 0 0 1 1
1 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 1 1 0 0 0 1
1 1 1 0 1 1 1 1 0 0 0

Code description For RM(r,m), the length of this code is the total number of binary combinations
of the m variables, so n = 2m. The number of codewords, or 2k, is just the number of multinomials
consisting of m variables with degree ≤ r.

Claim The number of multinomials using m binary variables and of max degree r is 2
∑r

i=0 (m
i)

Proof The number of multinomials using m binary variables and of max degree r is simply the product
of the number of all multinomials with degrees from 0 to r, inclusive of the all 0 vector in each degree,
since not all degrees must be present in each multinomial. So to get the number of xth degree terms
that exist when we have m variables, we simply have choose each combination of x variables from m,
so
(
m
x

)
terms exist, but since we can take any binary linear combination of these terms and still end

with an expression of only xth degree terms we have 2(m
x). Therefore our total number of multinomials

is
∏r
i=0 2(m

i), which is just equivalently 2
∑r

i=0 (m
i)

3

Since the number of multinomials is 2k, k is just
∑r
i=0

(
m
i

)
.

Now to finish desribing the code we must find dmin. To try to build up an intuition of this dmin,
lets analyze it for RM(1, 3). Since this is a linear code, dmin = min∀c∈C{wt(c)}. Additionally in this
case, for all codes with a 1 in the first element there exists the same code with a 0, so for determining
minimum weight, we can ignore that first element entirely, which in turn is equivalently ignoring the all
0 input. Now all multinomials of degree 1 or less are just linear combinations of the binary variables,
so that means our generated code list (ignoring the 0 input) can simply be generated by using the H(3)

parity check matrix as our generator matrix, which is just the dual of the hamming-3 code, where we
have already done the analysis and arrived that is has dmin of 4. Using this same methodology, for any
Reed-Muller code with r = 1, and any m, can be seen as the dual -code of a hamming code, so they have
dmin = 2m−1 which is equivalent to 2m−r in this case. Which turns out, the expression 2m−r can be
generalized for any Reed-Muller code RM(r,m) (also, see the (u, u+v)-construction from Assignment 1).

So the code description of RM(r,m) is [2m,
∑r
i=0

(
m
i

)
, 2m−r]

2.2 Reed Solomon Code

Reed Solomon codes use univariate polynomials, such as: f(x) = 1 + x+ x2 + x3 + x4. We will discuss
this topic further in the next lecture.

4

