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Abstract

The high replication cost of Byzantine fault-tolerance (BFT)
methods has been a major barrier to their widespread adop-
tion in commercial distributed applications. We present ZZ,
a new approach that reduces the replication cost of BFT ser-
vices from 2f + 1 to practically f + 1. The key insight in
ZZ is to use f + 1 execution replicas in the normal case and
to activate additional replicas only upon failures. In data cen-
ters where multiple applications share a physical server, ZZ
reduces the aggregate number of execution replicas running
in the data center, improving throughput and response times.
ZZ relies on virtualization—a technology already employed
in modern data centers—for fast replica activation upon fail-
ures, and enables newly activated replicas to immediately be-
gin processing requests by fetching state on-demand. A pro-
totype implementation of ZZ using the BASE library and Xen
shows that, when compared to a system with 2f + 1 repli-
cas, our approach yields lower response times and up to 33%
higher throughput in a prototype data center with four BFT
web applications. We also show that ZZ can handle simulta-
neous failures and achieve sub-second recovery.

1 Introduction

Today’s enterprises rely on data centers to run their critical
business applications. As users have become increasingly de-
pendent on online services, malfunctions have become highly
problematic, resulting in financial losses, negative publicity,
or frustrated users. Consequently, maintaining high availabil-
ity of critical services is a pressing need as well as a challenge
in modern data centers.

Byzantine fault tolerance (BFT) is a powerful replication
approach for constructing highly-available services that can
tolerate arbitrary (Byzantine) faults. This approach requires
replicas to agree upon the order of incoming requests and pro-
cess them in the agreed upon order. Despite numerous efforts
to improve the performance or fault scalability of BFT sys-
tems [4, 7, 15, 25, 1, 13], existing approaches remain expen-
sive, requiring at least 2f +1 replicas to execute each request
in order to tolerate f faults [15, 26]. This high replication cost
has been a significant barrier to their adoption—to the best of
our knowledge, no commercial data center application uses
BFT techniques today, despite the wealth of research in this
area.

Many recent efforts have focused on optimizing the agree-

ment protocol used by BFT replicas [7, 15]; consequently,
today’s state-of-the-art protocols can scale to a throughput of
80,000 requests/s and incur overheads of less than 10 µs per
request for reaching agreement [15]. In contrast, request exe-
cution overheads for typical applications such as web servers
and databases [25] can be in the order of milliseconds or tens
of milliseconds—three orders of magnitude higher than the
agreement cost. Since request executions dominate the to-
tal cost of processing requests in BFT services, the hardware
(server) capacity needed for request executions will far ex-
ceed that for running the agreement protocol. Hence, we ar-
gue that the total cost of a BFT service can be truly reduced
only when the total overhead of request executions, rather
than the cost to reach agreement, is somehow reduced.

In this paper, we present ZZ, a new approach that reduces
the cost of replication as well as that of request executions in
BFT systems. Our approach enables general BFT services to
be constructed with a replication cost close to f + 1, halv-
ing the 2f + 1 or higher cost incurred by state-of-the-art ap-
proaches [26]. ZZ targets shared hosting data center environ-
ments where replicas from multiple applications can share a
physical server. The key insight in ZZ1 is to run only f + 1
execution replicas per application in the graceful case where
there are no faults, and to use additional sleeping replicas that
get activated only upon failures. By multiplexing fewer repli-
cas onto a given set of shared servers, our approach is able
to provide more server capacity to each replica, and thereby
achieve higher throughput and lower response times for re-
quest executions. In the worst case where all applications
experience simultaneous faults, our approach requires an ad-
ditional f replicas per application, matching the overhead of
the 2f + 1 approach. However, in the common case where
only a subset of the data center applications are experiencing
faults, our approach requires fewer replicas in total, yielding
response time and throughput benefits. Like [26], our system
still requires 3f + 1 agreement replicas; however, we argue
that the overhead imposed by agreement replicas is small, al-
lowing such replicas from multiple applications to be densely
packed onto physical servers.

The ability to quickly activate additional replicas upon
fault detection is central to our ZZ approach. While any
mechanism that enables fast replica activation can be em-
ployed in ZZ, in this paper, we rely upon virtualization—a

1Denotes sleeping replicas; from the sleeping connotation of the term
“zz..”
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Table 1. ZZ versus existing BFT approaches. Here, f is the number
of allowed faults, b is the batch size, E is execution cost, µ the cost
of a MAC operation, and r � 1 is a variable formally defined in
§4.3.3. All numbers are for periods when there are no faults and the
network is well-behaved.

technique already employed in modern data centers—for on-
demand replica activation.

This paper makes the following contributions. First, we
propose a practical solution to reduce the cost of BFT to
nearly f + 1 execution replicas and define formal bounds on
ZZ’s replication cost. Second, reducing the execution cost in
ZZ comes at the expense of potentially allowing faulty nodes
to increase response times; we analyze and bound this re-
sponse time inflation and show that in realistic scenarios ma-
licious applications cannot significantly reduce performance.
Finally, we implement a prototype of ZZ by enhancing the
BASE library and combining it with the Xen virtual machine
and the ZFS file system. ZZ leverages virtualization for fast
replica activation and optimizes the recovery protocol to al-
low newly-activated replicas to immediately begin process-
ing requests through an amortized state transfer strategy. We
evaluate our prototype using a BFT web server and a ZZ-
based NFS file server. Our experimental results demonstrate
that in a prototype data center running four BFT web servers,
ZZ’s use of only f + 1 execution replicas in the fault-free
case yields response time and throughput improvements of
up to 66%, and is still able to rapidly recovery after simul-
taneous failures occur. Overall, our evaluation emphasizes
the importance of minimizing the execution cost of real BFT
services and demonstrates how ZZ provides strong fault tol-
erance guarantees at significantly lower cost compared to ex-
isting systems.

2 State-of-the-art vs. the Art of ZZ

In this section, we compare ZZ to state-of-the-art approaches
and describe how we reduce the execution cost to f + 1.

2.1 From 3f+1 to 2f+1

In the traditional PBFT approach [4], during graceful execu-
tion, a client sends a request Q to the replicas. The 3f +1 (or
more) replicas agree upon the sequence number correspond-

ing to Q, execute it in that order, and send responses back to
the client. When the client receives f +1 valid and matching
responses from different replicas, it knows that at least one
correct replica executed Q in the correct order. Figure 1(a)
illustrates how the principle of separating agreement from ex-
ecution can reduce the number of execution replicas required
to tolerate up to f faults from 3f + 1 to 2f + 1. In this sep-
aration approach [26], the client sends Q to a primary in the
agreement cluster consisting of 3f + 1 lightweight machines
that agree upon the sequence number i corresponding to Q
and send [Q, i] to the execution cluster consisting of 2f + 1
replicas that store and process application state. When the
agreement cluster receives f + 1 matching responses from
the execution cluster, it forwards the response to the client
knowing that at least one correct execution replica executed
Q in the correct order. For simplicity of exposition, we have
omitted cryptographic operations above.

2.2 Circumventing 2f+1

The 2f + 1 replication cost is believed necessary [15, 7, 1]
for BFT systems. However, more than a decade ago, Castro
and Liskov concluded their original paper on PBFT [4] saying
“it is possible to reduce the number of copies of the state to
f + 1 but the details remain to be worked out”. In this paper,
we work out those details.

Table 1 shows the replication cost and performance char-
acteristics of several BFT State Machine Replication (BFT-
SMR) approaches in comparison to ZZ; quorum based ap-
proaches such as [7, 1] lead to a similar comparison. All
listed numbers are for gracious execution, i.e., when there
are no faults and the network is well-behaved. Note that all
approaches require at least 3f +1 replicas in order to tolerate
up to f independent Byzantine failures, consistent with clas-
sical results that place a lower bound of 3f + 1 replicas for
a safe Byzantine consensus protocol that is live under weak
synchrony assumptions [10].

In contrast to common practice, we do not measure repli-
cation cost in terms of the total number of physical machines
as we assume a virtualized environment that is common in
many data centers today. Virtualization allows resources to be
allocated to a replica at a granularity finer than an entire phys-
ical machine. Virtualization itself is useful in multiplexed en-
vironments, where a data center owner hosts many services
simultaneously for better management of limited available re-
sources. Note that virtualization helps all BFT approaches,
not just ZZ, in multiplexed environments.

Cost: Our position is that execution, not agreement, is the
dominant provisioning cost for most realistic data center ser-
vices that can benefit from the high assurance provided by
BFT. To put this in perspective, consider that state-of-the-art
BFT approaches such as Zyzzyva show a peak throughput of
over 80K requests/second for a toy application consisting of
null requests, which is almost three orders of magnitude more
than the achievable throughput for a database service on com-
parable hardware [25]. Thus in realistic systems, the primary
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Figure 1. (a) The PBFT approach versus the separation of agreement from execution. (b-c) Various scenarios in the ZZ system for f = 2
faults. Request 22 results in matching responses γ, but the mismatch in request 23 initiates new virtual machine replicas on demand.

cost is that of hardware performing application execution, not
agreement. ZZ nearly halves the data center provisioning
cost by reducing the number of replicas actively executing
requests (Table 1 row 2).

Throughput: ZZ can achieve a higher peak through-
put compared to state-of-the-art approaches when execution
dominates request processing cost and resources are con-
strained. For a fair comparison, assume that all approaches
are provisioned with the same total amount of resources.
Then, the peak throughput of each approach is bounded by the
minimum of its best-case execution throughput and its best-
case agreement throughput (row 4). Agreement throughput
is primarily limited by the overhead µ of a MAC operation
and can be improved significantly through batching. How-
ever, batching is immaterial to the overall throughput when
execution is the bottleneck (row 5).

The comparison above is for performance during periods
when there are no faults and the network is well-behaved.
In adverse conditions, the throughput and latency of all
approaches can degrade significantly and a thorough com-
parison is nontrivial and difficult to characterize concisely
[23, 6].

When failures occur, ZZ incurs a higher latency to execute
some requests until its failure recovery protocol is complete.
Our experiments suggest that this additional overhead is mod-
est and is small compared to typical WAN delays. In a world
where failures are the uncommon case, ZZ offers valuable
savings in replication cost or, equivalently, improvement in
throughput under limited resources.

ZZ is not a new “BFT protocol” as that term is typically
used to refer to the agreement protocol; instead, ZZ is an ex-
ecution approach that can be interfaced with existing BFT-
SMR agreement protocols. Our prototype uses the BASE im-
plementation of the PBFT protocol as it was the most ma-
ture and readily available BFT implementation at the time
of writing. The choice was also motivated by our premise
that we do not seek to optimize agreement throughput, but to
demonstrate the feasibility of ZZ’s execution approach with
a reasonable agreement protocol. Admittedly, it was easier to
work out the details of augmenting ZZ to PBFT compared to
more sophisticated agreement protocols.

3 ZZ design

3.1 System and Fault Model

We assume a Byzantine failure model where faulty replicas
or clients may behave arbitrarily. There are two kinds of
replicas: 1) agreement replicas that assign an order to client
requests and 2) execution replicas that maintain application
state and execute client requests. Replicas fail independently,
and we assume an upper bound g on the number of faulty
agreement replicas and a bound f on the number of faulty
execution replicas in a given window of vulnerability. We
initially assume an infinite window of vulnerability, and relax
this assumption in Section 4.3.4. An adversary may coordi-
nate the actions of faulty nodes in an arbitrary malicious man-
ner. However, the adversary can not subvert standard crypto-
graphic assumptions about collision-resistant hashes, encryp-
tion, and digital signatures.

ZZ uses the state machine replication model to implement
a BFT service. Replicas agree on an ordering of incoming
requests and each execution replica executes all requests in
the same order. Like all previous SMR based BFT systems,
we assume that either the service is deterministic or the non-
deterministic operations in the service can be transformed to
deterministic ones via the agreement protocol [4].

Our system ensures safety in an asynchronous network
that can drop, delay, corrupt, or reorder messages. Liveness is
guaranteed only during periods of synchrony when there is a
finite but possibly unknown bound on message delivery time.
The above system model and assumptions are similar to those
assumed by many existing BFT systems [4, 15, 26, 22].

Virtualization: ZZ assumes that replicas are being run
inside virtual machines. As a result, it is possible to run
multiple replicas on a single physical server. To maintain
the fault independence requirement, no more than one agree-
ment replica and one execution replica of each service can be
hosted on a single physical server.

ZZ assumes that the hypervisor may be Byzantine. Be-
cause of the placement assumption above, a malicious hyper-
visor is equivalent to a single fault in each service hosted on
the physical machine. As before, we assume a bound f on the
number of faulty hypervisors within a window of vulnerabil-
ity. We note that even today sufficient hypervisor diversity
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Figure 2. An example server setup with three f = 1 fault tolerant
applications, A, B, and C; only execution replicas are shown.

(e.g., Xen, KVM, VMWare, Hyper-V) is available to justify
this assumption.

3.2 ZZ Design Overview

ZZ reduces the replication cost of BFT from 2f +1 to nearly
f +1 using virtualization based on two simple insights. First,
if a system is designed to be correct in an asynchronous en-
vironment, it must be correct even if some replicas are out of
date. Second, during fault-free periods, a system designed to
be correct despite f Byzantine faults must be unaffected if up
to f replicas are turned off. ZZ leverages the second insight
to turn off f replicas during fault-free periods requiring just
f+1 replicas to actively execute requests. When faults occur,
ZZ leverages the first insight and behaves exactly as if the f
standby replicas were slow but correct replicas.

If the f + 1 active execution replicas return matching re-
sponses for an ordered request, at least one of these responses,
and by implication all of the responses, must be correct. The
problematic case is when the f + 1 responses do not match.
In this case, ZZ starts up additional virtual machines hosting
standby replicas For example, when f = 1, upon detecting
a fault, ZZ starts up a third replica that executes the most re-
cent request. Since at most one replica can be faulty, the third
response must match one of the other two responses, and ZZ
returns this matching response to the client. Figure 1(b-c) il-
lustrates the high-level control flow for f = 2. Request 22
is executed successfully generating the response γ, but re-
quest 23 results in a mismatch waking up the two standby
VM replicas. The fault is resolved by comparing the outputs
of all 2f + 1 replicas, revealing α as the correct response.

The above design would be impractical without a quick
replica wake-up mechanism. Virtualization provides this
mechanism by maintaining additional replicas in a “dormant”
state. Figure 2 illustrates how ZZ can store additional repli-
cas both in memory as prespawned but paused VMs and hi-
bernated to disk. Paused VMs resume within milliseconds
but consume memory resources. Hibernated replicas require
only storage resources, but can incur greater recovery times.

3.3 Design Challenges

The high-level approach described above raises several fur-
ther challenges. First, how does a restored replica obtain the
necessary application state required to execute the current re-
quest? In traditional BFT systems, each replica maintains an
independent copy of the entire application state. Periodically,
all replicas create application checkpoints that can be used
to bring up to speed any replicas which become out of date.

However, a restored ZZ replica may not have any previous
version of application state. It must be able to verify that
the state it obtains is correct even though there may be only
one correct execution replica (and f faulty ones), e.g., when
f = 1, the third replica must be able to determine which of
the two existing replicas possesses the correct state.

Second, transferring the entire application state can take
an unacceptably long time. In existing BFT systems, a re-
covering replica may generate incorrect messages until it ob-
tains a stable checkpoint. This inconsistent behavior during
checkpoint transfer is treated like a fault and does not impede
progress of request execution if there is a quorum of f + 1
correct execution replicas with a current copy of the applica-
tion state. However, when a ZZ replica recovers, there may
exist just one correct execution replica with a current copy of
the application state. The traditional state transfer approach
can stall request execution in ZZ until f recovering replicas
have obtained a stable checkpoint.

Third, ZZ’s replication cost must be robust to faulty replica
or client behavior. A faulty client must not be able to trigger
recovery of standby replicas. A compromised replica must
not be able to trigger additional recoveries if there are at least
f + 1 correct and active replicas. If these conditions are not
met, the replication cost savings would vanish and system
performance could be worse than a traditional BFT system
using 2f + 1 replicas.

4 ZZ Protocol

In this section we briefly describe the separated protocol from
[26], and present ZZ’s modifications to support switching
from f + 1 to 2f + 1 execution replicas after faults are de-
tected.

4.1 Graceful Execution

Client Request & Agreement: In Figure 3 step 1, a client c
sends a request Q to the agreement cluster to submit an oper-
ation o with a timestamp t. The timestamps ensure exactly-
once semantics for execution of client requests, and a faulty
client’s behavior does not affect other clients’ requests.

Upon receiving a client request Q, the agreement replicas
will execute the standard three phase BFT agreement protocol
[4] in order to assign a sequence number n to the request.
When an agreement replica j learns of the sequence number n
committed to Q, it sends a commit message C to all execution
replicas (Fig. 3 step 2).

Execution: An execution replica i executes a request Q
when it gathers a commit certificate {Ci}, i ∈ A|2g + 1—a
set of 2g + 1 valid and matching commit messages from the
agreement cluster, and it has executed all other requests with
a lower sequence number. Each execution node produces a
reply R which it sends to the client and an execution report
message, ER, which is sent to all agreement nodes (Fig. 3
steps 3 and 4).



To appear in EuroSys 2011 5

In the normal case, the client receives a response certifi-
cate {Ri}, i ∈ E|f + 1—matching reply messages from
f+1 execution nodes. Since at most f execution replicas can
be faulty, a client receiving a response certificate knows that
the response is correct. If a client does not obtain matching
replies, it resends its request to the agreement cluster. If an
agreement node receives a retransmitted request for which it
has received f + 1 matching execution report messages, then
it can send a reply affirmation, RA to the client (Fig. 3 step 5).
If a client receives g+1 such messages containing a response
digest, R, matching one of the replies already received, then
the client can accept that reply as valid. This “backup” so-
lution is used by ZZ to prevent unnecessary wakeups where
a partially faulty execution node may reply to the agreement
cluster, but not to the client. If the agreement cluster cannot
produce an affirmation for the client, then additional nodes
must be started as described in subsequent sections.

4.2 Dealing with Faults

4.2.1 Checkpointing

Checkpoints are used so that newly started execution repli-
cas can obtain a recent copy of the application state and
so that replicas can periodically garbage collect their logs.
The checkpoints are constructed at predetermined request se-
quence numbers, e.g., when it is exactly divisible by 1024.

With at least 2f + 1 execution replicas in other BFT-SMR
systems, a recovering replica is guaranteed to get at least f+1
valid and matching checkpoint messages from other execu-
tion replicas, allowing checkpoint creation and validation to
be done exclusively within the execution cluster [26]. How-
ever, ZZ runs only f + 1 execution replicas in the normal
case, and thus a new replica may not be able to tell which of
the checkpoints it is provided are correct.

To address this problem, ZZ’s execution cluster must co-
ordinate with the agreement cluster during checkpoint cre-
ation. ZZ execution nodes create checkpoints of application
state and their reply log, then assemble a proof of their check-
point, CP, and send it to all of the execution and agreement
nodes (Fig. 3 step 6). Informing the agreement nodes of the
checkpoint digest allows them to assist recovering execution
replicas in verifying the checkpoint data they obtain from po-
tentially faulty nodes.

A checkpoint certificate {CPi}, i ∈ E|f + 1 is a set of
f+1 CP messages with matching digests. When an execution
replica receives a checkpoint certificate with a sequence num-
ber n, it considers the checkpoint as stable and discards ear-
lier checkpoints and request commit certificates with lower
sequence numbers that it received from the agreement cluster.
Likewise, the agreement nodes are able to use these check-
point certificates to determine when they can garbage collect
messages in their communication log with the execution clus-
ter.

Agreement 
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(3g+1)

Exec Cluster
(f+1) active
f asleepClient

Q=<REQUEST, o, t, c>
C = <COMMIT, n, j, Q>
R = <REPLY, t, c, i, R>
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RA = <REPLY-AFFIRM, t, c, i, R>

Figure 3. The normal agreement and execution protocol in ZZ
proceeds through steps 1-4. Step 5 is needed only after a fault.
Checkpoints (step 6) are created on a periodic basis. The notation
�LABEL, X� denotes the message of type LABEL with parameters
X . We indicate the digest of parameter Y as Y .

4.2.2 Fault Detection

The agreement cluster is responsible for detecting faults in
the execution cluster. Agreement nodes in ZZ are capable of
detecting invalid execution or checkpoint messages; the fault
detection and recovery steps for each of these are identical,
so for brevity we focus on invalid or missing execution re-
sponses. In the normal case, an agreement replica j waits
for an execution certificate, {ERi}, i ∈ E|f + 1, from the
execution cluster. Replica j inserts this certificate into a lo-
cal log ordered by the sequence number of requests. When
j receives ER messages which do not match, or waits for
longer than a predetermined timeout, j sends a recovery re-
quest, W = �RECOVER, j, n�j , to the f hypervisors control-
ling the standby execution replicas. When the hypervisor of
a sleeping execution replica receives a recovery certificate,
{Wi}, i ∈ A|g + 1, it wakes up the local execution replica.

4.2.3 Replica Recovery with Amortized State Transfer

When an execution replica k starts up, it must obtain the most
recent checkpoint of the entire application state from existing
replicas and verify that it is correct. Unfortunately, check-
point transfer and verification can take an unacceptably long
time. Worse, unlike previous BFT systems that can lever-
age copy-on-write techniques and incremental cryptography
schemes to transfer only the objects modified since the last
checkpoint, a recovering ZZ replica has no previous check-
points.

How does replica k begin to execute requests without any
application state? Instead of performing an expensive trans-
fer of the entire state upfront, a recovering ZZ replica fetches
and verifies the state necessary to execute each request on de-
mand. Replica k first fetches a log of committed requests
since the last checkpoint from the agreement cluster and
a checkpoint certificate {CPi}, i ∈ E,A|g + 1 from some
combination of g + 1 execution and agreement replicas. This
checkpoint certificate includes digests for each state object,
allowing the replica to verify that any state object it obtains
has come from a correct replica.

After obtaining the checkpoint certificate with object di-
gests, replica k begins to execute in order the recently com-
mitted requests. Let Q be the first request that reads from
or writes to some object p since the most recent checkpoint.
To execute Q, replica k fetches p on demand from any exe-
cution replica that can provide an object consistent with p’s
digest that k learned from the certificate. Replica k continues
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executing requests in sequence number order fetching new
objects on demand until it obtains a stable checkpoint.

Recovery is complete only when replica k has obtained a
stable checkpoint. Since on-demand fetches only fetch ob-
jects touched by requests, they are not sufficient for k to ob-
tain a stable checkpoint, so the replica must also fetch the
remaining state in the background.

4.3 System Properties

Here we formally define the performance, replication cost,
safety and liveness properties of ZZ. Due to space constraints
we defer complete proofs to [3].

4.3.1 Response Time Inflation

ZZ relies on timeouts to detect faults in execution replicas.
This opens up a potential performance vulnerability. A low
value of the timeout can trigger fault detection even when
the delays are benign and needlessly start new replicas. On
the other hand, a high value of the timeout can be exploited
by faulty replicas to degrade performance as they can delay
sending each response to the agreement cluster until just be-
fore the timeout. The former can take away ZZ’s savings in
replication cost as it can end up running more than f + 1
(and up to 2f +1) replicas even during graceful periods. The
latter hurts performance under faults. Note that safety is not
violated in either case.

To address this problem, we suggest the following simple
procedure for setting timeouts to limit response time inflation.
Upon receiving the first response to a request committed to
sequence number n, an agreement replica sets the timeout τn
to Kt1, where t1 is the response time of the first response
and K is a pre-configured variance bound. If the agreement
replica does not receive f more matching responses within
τn, then it triggers a fault and wakes up f additional replicas.

This procedure trivially bounds the response time inflation
of requests to a factor of K, but we can further constrain the
performance impact by considering the response time distri-
bution as follows. Given p, the probability of a replica being
faulty,

THEOREM 1 Faulty replicas can inflate average response
time by a factor of min(1, I):

I =
�

1≤m≤f pm K·E[MINf+1−m]

E[MAXf+1]

where E[MINf+1−m] is the expected minimum response
time for a set of f + 1 − m replicas and E[MAXf+1] is the
expected maximum response time of all f + 1 replicas, as-
suming all response times are identically distributed as some
distribution Ψ. The top term in this expression follows from
the rule defined above: a faulty node can increase response
time by at most K compared to the fastest correct replica (i.e.
the replica with the minimum response time out of f +1−m
nodes). The bottom term is the non-faulty case where re-
sponse time is limited by the slowest of the f+1 replicas. We

must sum this fraction over all possible cases, m = 1, 2, ...f
faults. As an example, suppose K = 4, f = 3, and response
times are exponentially distributed with E[Ψ] = 2ms. Then
E[MINf+1−m] = 2

3+1−mms and E[MAXf+1] = 4.2ms. If
p = 0.1, then I = 0.075, i.e. no inflation of average re-
sponse time. Only for p > 0.56 is I > 1; if p = 0.75 then
I = 1.81. Note that proactive recovery can be used to ensure
p remains small [5] and that to achieve this worst case bound
faulty nodes must be able to predict the earliest response time
of correct replicas. In practice, correct execution replicas may
sometimes violate the variance bound due to benign execu-
tion or network delays, causing a false timeout. These false
timeouts can impact overall replication cost as described in
section 4.3.3.

4.3.2 Waking Up and Shutting Down

Since waking up nodes to respond to faults is an expen-
sive procedure, ZZ distinguishes between “blocking” and
“non-blocking” faults, and only triggers a wakeup event for
blocking faults—those which cannot be resolved without a
wakeup. Fortunately, blocking faults by definition are more
widespread in their impact, and thus can always be traced
back to a faulty execution node which can then be shutdown.

THEOREM 2 If a wakeup occurs, ZZ will be able to terminate
at least one faulty or slow replica.

To understand the difference, consider the response matrix
where position (i, j) indicates Ei’s response as reported by
agreement node Aj . Consider two examples where the client
receives conflicting responses P and Q, and f = g = 1,

Non-blocking fault Blocking fault

A1A2A3A4 A1A2A3A4

E1 : Q P P P E1 : Q P P P
E2 : Q P P P E2 : Q Q Q P

In the first scenario, it is impossible to distinguish whether
only A1 is faulty or if an execution replica and A1 is faulty;
however, g + 1 agreement nodes can provide a reply affirma-
tion that P is the correct response. In the second case, there
is no way to tell whether Q or P is the correct response, so
a wakeup is required. Once this replica is started, it will be
simple to determine whether E1 or E2 should be terminated.

4.3.3 Overall Replication Cost

The expected replication cost of ZZ varies from f+1 to 2f+1
depending on the probability of replicas being faulty p, and
the likelihood of false timeouts, Π1.

THEOREM 3 The expected replication cost of ZZ is less than
(1 + r)f + 1, where r = 1− (1− p)f+1 + (1− p)f+1Π1.

These two factors influence the replication cost because
additional nodes are started only if 1) a replica truly is faulty
(which happens with probability 1− (1− p)f+1), or 2) there
are no faults, but a correct slow replica causes a false time-
out (which happens with probability (1−p)f+1Π1). In either
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Figure 4. For each checkpoint an execution replica (1) sends any
modified memory state, (2) creates hashes for any modified disk
files, (3) creates a ZFS snapshot, and (4) returns the list of hashes
to agreement nodes.

case, the replication cost is increased by f , resulting in the
theorem. The value of p can be reduced by proactive recov-
ery, and Π1 is dependent on the value of K. Adjusting K
results in a tradeoff between the replication cost and the re-
sponse time inflation bound. Note that in practice the replica-
tion cost may be even lower than this because ZZ will quickly
shutdown nodes after the fault has been resolved.

4.3.4 Safety and Liveness Properties

ZZ provides the following safety and liveness properties.
The proofs for these properties follow from those of Sepa-
rated [26] and PBFT [5].

ZZ ensures the safety property that if a correct client ob-
tains either a response certificate or an affirmation certificate
for a response �REPLY, t, c, j, R�j , then (1) the client issued
a request �REQUEST, o, t, c�c earlier; (2) all correct replicas
agree on the sequence number n of that request and on the
order of all requests with sequence numbers in [1, n]; (3) the
value of the reply R is the reply that a single correct replica
would have produced if it started with a default initial state
S0 and executed each operation oi, 1 ≤ i ≤ n, in that order,
where oi denotes the operation requested by the request to
which sequence number i was assigned.

ZZ also ensures the liveness property that if a correct client
sends a request R with a timestamp exceeding previous re-
quests and repeatedly retransmits the request, then it will
eventually receive a response certificate or an affirmation cer-
tificate for R.

Reducing the Window of Vulnerability: ZZ’s current
implementation assumes an infinite window of vulnerability,
i.e., the length of time in which up to f faults can occur. How-
ever, this assumption can be relaxed using proactive recov-
ery [5]. By periodically forcing replicas to recover to a known
clean state, proactive recovery allows for a configurable finite
window of vulnerability.

5 ZZ Implementation

We implemented ZZ by enhancing the 2007 version of BASE
[22] so as to 1) use virtual machines to run replicas, 2) in-
corporate ZZ’s checkpointing, fault detection, rapid recovery
and fault-mode execution mechanisms, and 3) use file system
snapshots to assist checkpointing.

5.1 Replica Control Daemon

We have implemented a ZZ replica control daemon that runs
on each physical machine and is responsible for managing
replicas after faults occur. The control daemon, which runs
in Xen’s Domain-0, uses the certificate scheme described in
Section 4.2.2 to ensure that it only starts or stops replicas
when enough non-faulty replicas agree that it should do so.

Inactive replicas are maintained in either a paused state,
where they have no CPU cost but incur a small memory over-
head on the system, or hibernated to disk which utilizes no
resources other than disk space. To optimize the wakeup la-
tency of replicas hibernating on disk, ZZ uses a paged-out re-
store technique that exploits the fact that hibernating replicas
initially have no useful application state in memory, and thus
can be created with a bare minimum allocation of 128MB of
RAM (which reduces their disk footprint and load times). Af-
ter being restored, their memory allocation is increased to the
desired level. Although the VM will immediately have access
to its expanded memory allocation, there may be an applica-
tion dependent period of reduced performance if data needs
to be paged in.

5.2 Exploiting File System Snapshots

Checkpointing in ZZ relies on the existing mechanisms in
the BASE library to save the protocol state of the agreement
nodes and any memory state used by the application on the
execution nodes. In addition, ZZ supports using the snapshot
mechanism provided by modern journaled file systems [27] to
simplify checkpointing disk state. Creating disk snapshots is
efficient because copy-on-write techniques prevent the need
for duplicate disk blocks to be created, and the snapshot over-
head is independent of the disk state of the application. ZZ
uses ZFS for snapshot support, and works with both the native
Solaris and user-space Linux ZFS implementations.

ZZ includes meta-information about the disk state in the
checkpoint so that the recovery nodes can validate the disk
snapshots created by other execution nodes. To do so, ex-
ecution replicas create a cryptographic hash for each file in
the disk snapshot and send it to the agreement cluster as part
of the checkpoint certificate as shown in Figure 4. Hashes
are computed only for those files that have been modified
since the previous epoch; hashes from the previous epoch are
reused for unmodified files to save computation overheads.

Tracking Disk State Changes: The BASE library re-
quires all state, either objects in memory or files on disk, to
be registered with the library. In ZZ we have simplified the
tracking of disk state so that it can be handled transparently
without modifications to the application. We define func-
tions bft fopen() and bft fwrite() which replace the ordinary
fopen() and fwrite() calls in an application. The bft fwrite()
function invokes the modify() call of the BASE library which
must be issued whenever a state object is being edited. This
ensures that any files which are modified during an epoch will
be rehashed during checkpoint creation.
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Figure 5: Experimental setup for a basic ZZ BFT service.

For the initial execution replicas, the bft fopen() call is
identical to fopen(). However, for the additional replicas
which are spawned after a fault, the bft fopen call is used
to retrieve a file from the disk snapshots and copy it to the
replica’s own disk on demand. When a recovering replica
first tries to open a file, it calls bft fopen(foo), but the replica
will not yet have a local copy of the file. The recovery replica
fetches a copy of the file from any replica and verifies it
against the hash contained in the most recent checkpoint. If
the hashes do not match, the recovery replica requests the file
from a different replica, until a matching copy is found and
copied to its own disk.

6 Experimental Evaluation

6.1 Experiment Setup

Our experimental data-center setup uses a cluster of 2.12 GHz
64-bit dual-core Dell servers, each with 4GB RAM. Each ma-
chine runs a Xen v3.1 hypervisor and Xen virtual machines.
Both domain-0 (the controller domain in Xen) as well as the
individual VMs run the CentOS 5.1 Linux distribution with
the 2.6.18 Linux kernel and the user space ZFS filesystem.
All machines are interconnected over gigabit ethernet. Figure
5 shows the setup for agreement and execution replicas of a
generic BFT app for g = f = 1; multiple such applications
are assumed to be run in a BFT data center.

Our experiments involve three fault-tolerant server appli-
cations: a Web Server, an NFS server, and a toy client-server
microbenchmark.

Fault-tolerant Web Server: We have implemented a
BFT-aware HTTP 1.0 Web server that mimics a dynamic web
site with server side scripting. The request execution time is
configurable to simulate more complex request processing.
We generate web workloads using httperf clients which con-
tact a local BFT web proxy that submits the requests to the
agreement nodes.

Fault-tolerant NFS: BASE provides an NFS client relay
and a BFT wrapper for the standard NFS server. We have
extended this to support ZZ’s on demand state transfer which
allows a recovery replica to obtain file system state from ZFS
snapshots as it processes each request.

Client-Server Microbenchmark: We utilize the simple
client-server application from the BASE library to measure
ZZ’s performance for null requests and to study it’s recovery
costs under different application state scenarios.

Graceful performance After failure
h1 h2 h3 h4 h1 h2 h3

BASE 1234 1234 1234 1234 1234 1234 1234
SEPAgree 1234 1234 1234 1234 1234 1234 1234
SEPExec 134 124 123 234 134 124 123
ZZAgree 1234 1234 1234 1234 1234 1234 1234
ZZExec 12 12 34 34 123 124 34
ZZSleep 3 4 1 2 1

Table 2. Placement of the 4 web servers’ virtual machines (denoted
1 to 4) on the 4 data center hosts (h1 to h4) under graceful perfor-
mance and on the 3 remaining hosts after h4 failure.

Our experiments compare three systems: ZZ, BASE, and
Separated (SEP). BASE is the standard BFT library described
in [22]. SEP is our extension of BASE which separates the
agreement and execution replicas, and requires 3f +1 agree-
ment and 2f + 1 execution replicas similar to [26]. ZZ also
requires 3f + 1 agreement replicas, but extends SEP to use
only f + 1 active execution replicas, with an additional f
sleeping replicas. While more recent agreement protocols
provide higher performance than BASE, our evaluation fo-
cuses on cases where execution is at least an order of mag-
nitude more expensive than agreement; we believe our con-
clusions are consistent with what would be found with more
optimized agreement protocols.

6.2 Graceful Performance

We study the graceful performance of ZZ by emulating a
shared hosting environment running four independent web
apps on four machines. Table 2 shows the placement of agree-
ment and execution replicas on the four hosts. As the agree-
ment and execution clusters can independently handle faults,
each host can have at most one replica of each type per appli-
cation.

6.2.1 Throughput

We first analyze the impact of request execution cost under
ZZ, SEP, and BASE, which require f +1, 2f +1, and 3f +1
execution replicas per web server respectively. Figure 6(a)
compares the throughput of each system as the execution cost
per web request is adjusted. When execution cost averages
100 µs, BASE performs the best since the agreement over-
head dominates the cost of processing each request and our
implementation of separation incurs additional cost for the
agreement replicas. However, for execution costs exceed-
ing 0.75 ms, the execution replicas become the system bot-
tleneck. As shown in Figure 6(b), ZZ begins to outperform
BASE at this point, and performs increasingly better com-
pared to both BASE and SEP as execution cost rises. SEP
surpasses BASE for request costs over 2ms, but cannot ob-
tain the throughput of ZZ since it requires 2f + 1 replicas
instead of only f+1. ZZ provides as much as a 66% increase
in application throughput relative to BASE for requests with
large execution costs.
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Figure 7: For high execution costs, ZZ achieves both higher throughput and lower response times.

6.2.2 Latency

This experiment further characterizes the performance of
ZZ in graceful operation by examining the relation between
throughput and response time for different request types. Fig-
ure 7 shows the relation between throughput and response
time for increasingly CPU intensive request types. For null
requests or at very low loads, Figure 7(a), BASE beats SEP
and ZZ because it has less agreement overhead. At 1ms, ZZ’s
use of fewer execution replicas enables it to increase the max-
imum throughput by 25% over both SEP and BASE. When
the execution cost reaches 10ms, SEP outperforms BASE
since it uses 2f + 1 instead of 3f + 1 replicas. ZZ provides
a 33% improvement over SEP, showing the benefit of further
reducing to f + 1.

6.3 Simultaneous Failures

When several applications are multiplexed on a single phys-
ical host, a faulty node can impact all its running applica-
tions. In this experiment, we simulate a malicious hypervisor
on one of the four hosts that causes multiple applications to
experience faults simultaneously. Host h4 in Table 2 is set
as a faulty machine and is configured to cause faults on all
of its replicas 20 seconds into the experiment as shown in
Figure 6(c). For ZZ, the failure of h4 directly impacts web
servers 3 and 4 which have active execution replicas there.
The replica for server 2 is a sleeping replica, so its corruption
has no effect on the system. The failure also brings down one
agreement replica for each of the web servers, however they
are able to mask these failures since 2f+1 correct agreement
replicas remain on other nodes.

ZZ recognizes the corrupt execution replicas when it de-
tects disagreement on the request output of each service. It
responds by waking up the sleeping replicas on hosts h1 and
h2. After a short recovery period (further analyzed in the
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objects must be verified.

next section), ZZ’s performance is similar to that of SEP with
three active execution replicas competing for resources on h1

and h2. Even though h3 only has two active VMs and uses
less resources with ZZ, applications 3 and 4 have to wait for
responses from h1 and h2 to make progress. Both ZZ and
SEP maintain a higher throughput than BASE that runs all
applications on all hosts.

6.4 Recovery Cost

The following experiments study the cost of recovering repli-
cas in more detail using both microbenchmarks and our fault
tolerant NFS server. We study the recovery cost, which we
define as the delay from when the agreement cluster detects a
fault until the client receives the correct response.

6.4.1 NFS Recovery Costs

We investigate the NFS server recovery cost for a workload
that creates 200 files of equal size before encountering a fault.
We vary the size of the files to adjust the total state maintained
by the application, which also impacts the number of requests
which need to be replayed after the fault.

ZZ uses an on-demand transfer scheme for delivering ap-
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plication state to newly recovered replicas. Figure 8(a) shows
the time for processing the checkpoints when using full trans-
fer or ZZ’s on-demand approach (note the log scale). The full
state transfer approach performs very poorly since the BFT
NFS wrapper must both retrieve the full contents of each file
and perform RPC calls to write out all of the files to the actual
NFS server. When transferring the full checkpoint, recov-
ery time increases exponentially and state sizes greater than
a mere 20 megabytes can take longer than 60 seconds, after
which point NFS requests typically will time out. In con-
trast, the on-demand approach has a constant overhead with
an average of 1.4 seconds. This emphasizes the importance of
using the on-demand transfer for realistic applications where
it is necessary to make some progress in order to prevent ap-
plication timeouts.

We report the average time per request replayed and the
standard deviation for each scheme in Figure 8(b). ZZ’s on
demand system experiences a higher replay cost due to the
added overhead of fetching and verifying state on-demand; it
also has a higher variance since the first access to a file incurs
more overhead than subsequent calls. While ZZ’s replay time
is larger, the total recovery time is much smaller when using
on-demand transfer.

6.4.2 Obtaining State On-Demand

This experiment uses a BFT client-server microbenchmark
which processes requests with negligible execution cost to
study the recovery cost after faults are caused in applications
with different state sizes.

In the best case, a fault occurs immediately after a check-
point and new replicas only need to load and resume from the
last save, taking a constant time of about 2s regardless of state
size (Figure 9(a)). Otherwise, the cost of on-demand recov-
ery varies depending on the amount of application state that
was modified since the last checkpoint. The “10% Dirty” line
shows the recovery cost when 10% of the application’s state
needs to be fetched during replay. In that case, ZZ’s recov-
ery time varies from 5.2s to 7.1s for states of 50 and 400MB,
respectively. This remains much faster than the Full Trans-
fer technique which requires over 30s to transfer and verify
400MB of state.

The tradeoff between amount of dirty state and recovery
speed is further studied in Figure 9(b). Even when 10% of
application state is modified between each checkpoint, on-
demand transfers speed up recovery by at least five times.
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Only when more than 50% of state is dirty does it becomes
more expensive to replay than to perform a full transfer. For-
tunately, we have measured the additional cost of ZFS check-
points at 0.03s, making it practical to checkpoint every few
seconds, during which time most applications will only mod-
ify a small fraction of their total application state.

Next we examine the impact of on-demand recovery on
throughput and latency. The client sends a series of requests
involving random accesses to 100KB state objects and a fault
is injected after 20.2s (Figure 9(c)). The faulty request expe-
riences a sub-second recovery period, after which the applica-
tion can handle new requests. The mean request latency prior
to the fault is 5ms with very little variation. The latency of
requests after the fault has a bimodal distribution depending
on whether the request accesses a file that has already been
fetched or one which needs to be fetched and verified. The
long requests, which include state verification and transfer,
take an average of 20ms. As the recovery replica rebuilds its
local state, the throughput rises since the proportion of slow
requests decreases. After 26s, the full application state has
been loaded by the recovery replica, and the throughput prior
to the fault is once again maintained.

6.5 Trade-offs and Discussion

6.5.1 Impact of Multiple Faults

We examine how ZZ’s graceful performance and recovery
time changes as we adjust f , the number of faults supported
by the system when null requests are used requiring no exe-
cution cost. Figure 10(a) shows that ZZ’s graceful mode per-
formance scales similarly to BASE as the number of faults
increases. This is expected because the number of crypto-
graphic and network operations rises similarly in each.

We next examine the recovery latency of the client-server
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microbenchmark for up to three faults. We inject a fault to
f of the active execution replicas and measure the recovery
time for f new replicas to handle the faulty request. Fig-
ure 10(b) shows how the recovery time increases slightly due
to increased message passing and because each ZFS system
needs to export snapshots to a larger number of recovering
replicas. We believe the overhead can be attributed to our use
of the user-space ZFS code that is less optimized than the So-
laris kernel module implementation, and messaging overhead
which could be decreased with hardware multicast.

6.5.2 Agreement Protocol Performance

Various agreement protocol optimizations exist such as re-
quest batching, but these may have less effect when request
execution costs are non-trivial. While Figure 10(a) shows a
large benefit of batching for null requests, Figure 11 depicts
a similar experiment with a request execution time of 5ms.
We observe that batching improvements become insignifi-
cant with non-trivial execution costs. This demonstrates the
importance of reducing execution costs, not just agreement
overhead, for real applications.

6.5.3 Maintaining Spare VMs

In our previous experiments recovery VMs were kept in a
paused state which provides a very fast recovery but con-
sumes memory. Applications that have less stringent la-
tency requirements can keep their recovery VMs hibernated
on disk, removing the memory pressure on the system.

With a naive approach, maintaining VMs hibernated to
disk can increase recovery latency by a factor proportional to
their amount of RAM. This is because restoring a hibernated
VM involves loading the VM’s full memory contents from
disk. The table below shows how our paged-out restore tech-
nique reduces the startup time for a VM with a 2GB memory
allocation from over 40 seconds to less than 6 seconds.

Operation Time (sec)
Xen Restore (2GB image) 44.0
Paged-out Restore (128MB→2GB) 5.88
Unpause VM 0.29
ZFS Clone 0.60

ZZ utilizes ZFS to simplify checkpoint creation at low
cost. The ZFS clone operation is used during recovery to
make snapshots from the previous checkpoint available to the

recovery VMs. This can be done in parallel with initializing
the recovery VMs, and incurs only minimal latency.

7 Related Work

[19] introduced the problem of Byzantine agreement. Lam-
port also introduced the state machine replication approach
[16] that relies on consensus to establish an order on requests.
Consensus in the presence of asynchrony and faults has seen
almost three decades of research. [10] established a lower
bound of 3f + 1 replicas for Byzantine agreement given par-
tial synchrony, i.e., an unknown but fixed upper bound on
message delivery time. The classic FLP [11] result showed
that no agreement protocol is guaranteed to terminate with
even one (benignly) faulty node in an asynchronous environ-
ment. Viewstamped replication [20] and Paxos [17] describe
an asynchronous state machine replication approach that is
safe despite crash failures.

Early BFT systems [21, 14] incurred a prohibitively high
overhead and relied on failure detectors to exclude faulty
replicas. However, accurate failure detectors are not achiev-
able under asynchrony, thus these systems effectively relied
on synchrony for safety. Castro and Liskov’s PBFT [4] in-
troduced a BFT SMR-based system that relied on synchrony
only for liveness. The view change protocol at the core of
PBFT shares similarities with viewstamped replication [20]
or Paxos [17] but incurs a replication cost of at least 3f + 1
for safety. PBFT showed that the latency and throughput
overhead of BFT can be low enough to be practical. The
FARSITE system [2] reduces the replication cost of a BFT
file-system to f +1; in comparison, ZZ has similar goals, but
is able to provide the same cost reduction for any application
which can be represented by a more general SMR system. ZZ
draws inspiration from Cheap Paxos [18], which advocated
the use of cheaper auxiliary nodes used only to handle crash
failures of main nodes. Our contribution lies in extending
the idea to Byzantine faults and demonstrating its practicality
through a system design and implementation.

Virtualization has been used in several BFT systems re-
cently since it provides a clean way to isolate services. The
VM-FIT systems exploits virtualization for isolation and to
allow for more efficient proactive recovery [9]. Like ZZ, VM-
FIT employs an amortized state transfer mechanism to effi-
ciently update replicas, but it is designed for a system running
2f+1 execution nodes. The idea of “reactive recovery”, where
faulty replicas are replaced after fault detection, was used in
[24], which employed virtualization to provide isolation be-
tween different types of replicas. In ZZ, reactive recovery is
not an optional optimization, but a requirement since in order
to make progress it must immediately instantiate new replicas
after faults are detected.

The Remus system uses virtualization to provide black-
box crash fault tolerance using a standby VM replica [8]. ZZ
seeks to provide stronger Byzantine fault tolerance guaran-
tees at a similar replication cost, although ZZ, like all BFT
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systems, requires application support for the BFT protocol.
Terra is a virtual machine platform for trusted computing that
employs a trusted hypervisor [12]; ZZ allows hypervisors to
be Byzantine faulty.

8 Conclusions

In this paper, we presented ZZ a new execution approach that
can be interfaced with existing BFT-SMR agreement proto-
cols to reduce the replication cost from 2f + 1 to practically
f + 1. Our key insight was to use f + 1 execution repli-
cas in the normal case and to activate additional VM replicas
only upon failures. We implemented ZZ using the BASE li-
brary and the Xen virtual machine and evaluated it on a proto-
type data center that emulates a shared hosting environment.
The key results from our evaluation are as follows. (1) In a
prototype data center with four BFT web servers, ZZ lowers
response times and improves throughput by up to 66% and
33% in the fault-free case, when compared to systems using
3f + 1 and 2f + 1 replicas, respectively. (2) In the pres-
ence of multiple application failures, after a short recovery
period, ZZ performs as well or better than 2f + 1 replica-
tion and still outperforms BASE’s 3f +1 replication. (3) The
use of paused virtual machine replicas and on-demand state
fetching allows ZZ to achieve sub-second recovery times. (4)
We find that batching in the agreement nodes, which signif-
icantly improves the performance of null execution requests,
yields no perceptible improvements for realistic applications
with non-trivial request execution costs. Overall, our results
demonstrate that, in shared data centers that host multiple ap-
plications with substantial request execution costs, ZZ can be
a practical and cost-effective approach for providing BFT.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable byzantine fault-
tolerant services. SIGOPS Oper. Syst. Rev., 39(5):59–
74, 2005.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. In Proc. of the 5th Symposium on
Operating Systems Design and Implementation (OSDI),
2002.

[3] Anonymous. Zz and the art of practical bft. Technical
report, Anonymous Institution, October 2010.

[4] M. Castro and B. Liskov. Practical Byzantine fault tol-
erance. In Proceedings of the Third Symposium on Op-
erating Systems Design and Implementation, Feb. 1999.

[5] M. Castro and B. Liskov. Practical byzantine fault tol-
erance and proactive recovery. ACM Transactions on
Computer Systems (TOCS), 20(4), Nov. 2002.

[6] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and
M. Dahlin. Making byzantine fault tolerant systems tol-
erate byzantine faults. In 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
Apr. 2009.

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. Hq replication: A hybrid quorum protocol
for byzantine fault tolerance. In Proceedings of the Sev-
enth Symposium on Operating Systems Design and Im-
plementations (OSDI), Seattle, Washington, Nov. 2006.

[8] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchin-
son, and A. Warfield. Remus: High availability via
asynchronous virtual machine replication. In NSDI,
2008.

[9] T. Distler, R. Kapitza, and H. P. Reiser. Efficient state
transfer for hypervisor-based proactive recovery. In
WRAITS ’08: Proceedings of the 2nd workshop on
Recent advances on intrusiton-tolerant systems, New
York, NY, USA, 2008. ACM.

[10] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2), 1988.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[12] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform
for trusted computing. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pages 193–206, New York, NY, USA, 2003.
ACM Press.

[13] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
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9 Appendix

9.1 Limiting Response Time Inflation

ZZ triggers a fault if replicas respond more than K times
slower than the fastest replica. This procedure trivially
bounds the response time inflation of requests to a factor of
K, but we can further constrain the performance impact by
considering the response time distribution as follows. Given
p, the probability of a replica being faulty,

THEOREM 1 Faulty replicas can inflate average response
time by a factor of min(1, I):

I =
�

1≤m≤f pm K·E[MINf+1−m]

E[MAXf+1]

where E[MINf+1−m] is the expected minimum response
time for a set of f + 1−m replicas (also known as the first-
order statistic) and E[MAXf+1] is the expected maximum re-
sponse time of all f +1 replicas, assuming all response times
are identically distributed as some distribution Ψ.

Proof: During fault-free execution, the response time is given
by the random variable MAXf+1, i.e., the time to receive the
latest of the f + 1 responses. Now, if up to m ≤ f replicas
may be faulty, the response time of the earliest correct replica
is given by the random variable MINf+1−m. The faulty
replica(s) can delay the response time up to K · MINf+1−m

without triggering a timeout. We must sum this fraction over
all possible cases, m = 1, 2, ...f faults, normalized by the
probability of m faults, pm.

In the worst case, faulty replicas can inflate the average
response time by up to a factor K, e.g., when E[MAXf+1] is
not much greater than E[Ψ] (because there is little variance
in response times from different replicas) and there is only
one correct replica, i.e., m = f . However, several factors
mitigate this inflation in practice. First, if there is little vari-
ance in response times, then a small value of K suffices to
keep the probability of false timeouts negligibly small. Sec-
ond, in order to inflate response times without triggering a
timeout, faulty replicas need to know the response time of the
earliest response from a correct replica, which requires col-
lusion with the agreement cluster. Third, the inflation is only
for execution times and does not affect WAN propagation and
transmission delays that typically account for the bulk of the
client-perceived or end-to-end delays. Finally, as response
times can be inflated only by faulty replicas, proactive recov-
ery can further limit performance degradation under faults by
limiting the length of time for which a faulty replica operates
undetected [5].

9.2 Wakeup and Shutdown Rules

In this section we prove the following theorem about ZZ’s
wakeup and shutdown rules.
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THEOREM 2 If a wakeup occurs, ZZ will be able to terminate
at least one faulty or slow replica.

To ensure this theorem, ZZ uses the following wakeup
rule:

Wakeup Rule: A wakeup happens if and only if a mis-
match report is ”blocking”.

A mismatch occurs when an agreement replica receives
execution replies which are not identical. Suppose that for a
particular request there are g + c agreement replicas which
experience a mismatch. Consider the mismatch matrix of size
(f+1)*(g+c) where entry i, j corresponds to the reply by exe-
cution replica Ei as reported by agreement node Aj . Let the
execution mismatch of a row be defined as the smallest num-
ber of entries that need to be changed in order to make all
g + c entries in that row identical. Let the smallest such exe-
cution mismatch across all f + 1 rows be m. The mismatch
is considered blocking if m < c.

To understand the difference, consider two examples
where the client receives conflicting responses P and Q, and
f = g = 1,

Full Matrix Mixmatch Matrix

A1A2A3A4 A3A4

E1 : Q Q P Q E1 : P Q c = 1
E2 : Q Q Q P E2 : Q P m = 1

In this scenario, the mismatch matrix has size g+c = 2. Since
g = 1, c = 1. Both rows require one entry to be changed in
order to create a match, so the minimum mismatch is m = 1.
Since m = c, this is not a blocking fault. The client will be
able to receive a reply affirmation that Q is correct from A1

and A2. Note that if an additional node were woken up, it
would not be possible to tell which execution node was faulty
since it is impossible to tell if A3 or A4 is also faulty.

Full Matrix Mixmatch Matrix

A1A2A3A4 A2A3

E1 : Q Q Q P E1 : Q Q c = 1
E2 : Q P P P E2 : P P m = 0

The second scenario illustrates a blocking mismatch. In
this case, the rows in the mismatch matrix require no changes,
thus m = 0. Since m < c we have a blocking fault. This
makes sense because there is no way to tell whether Q or P
is the correct response, so a wakeup is required. To ensure
Theorem 2, we also must guarantee:

Claim: A client will receive an affirmation certificate un-
less a mismatch is blocking.

Since g+c agreement replicas report a mismatch, the num-
ber of replicas that have matching replies is 2g + 1 − c. For
a client to get an affirmation certificate, we must show that
there are at least g+1 correct agreement replicas with match-
ing replies whenever a blocking mismatch occurs. Since all
rows have an execution mismatch of at least m, at least m of
the agreement replicas out of the g + c reporting a mismatch
must be faulty. Thus, at most g−m of the remaining 2g+1−c
replicas can be faulty, so 2g+1−c−(g−m) = g+1−c+m
are correct. If the fault is categorized as non-blocking, then

m >= c, giving us at least g + 1 correct agreement repli-
cas with matching replies. These nodes will be able to pro-
vide an execution affirmation to the client without requiring a
wakeup, proving the claim.

Claim: A blocking mismatch implies that at least one exe-
cution replica other than a replica with the minimal execution
mismatch is faulty.

We prove the claim by contradiction. Consider a replica
with the minimal execution mismatch m and suppose that it
is the only faulty execution replica. Since g + c agreement
replicas report a mismatch, at least g + k − m agreement
replicas must be faulty. However, if the mismatch is blocking,
m < k, which implies that at least g + 1 agreement replicas
must be faulty, resulting in a contradiction. Thus, there must
be at least one other faulty execution replica.

Shutdown Rule: Shut down any f execution replicas not
including a replica with the minimum execution mismatch.

Claim: The shutdown rule shuts down at least one faulty
replica.

The proof follows from the claim above.

9.3 Replication Cost

ZZ provides the following guarantee about its expected repli-
cation cost:

THEOREM 3 The expected replication cost of ZZ is less than
(1 + r)f + 1, where r = 1− (1− p)f+1 + (1− p)f+1Π1.

where p is the probability of a node being faulty and Π1 is
the probability of a correct node causing a false timeout.
Lemma 1: The probability of a false timeout, Π1 is bounded
by:
Pi1 ≤

�∞
t=0p[Ψ(1) ≤ t]P[Ψ(f+1) > Kt]dt

Proof: A false timeout occurs when the timing assumptions
are not satisfied, i.e., correct execution replicas return re-
sponses within times that vary by more than a factor K.
The probability of a false timeout when the first response
arrives within time t is given by P[Ψ(1) ≤ t]· P[Ψ(f+1) >
Kt | Ψ(1) ≤ t]. The first term is the probability that the
first response arrives within time t and the second term is the
probability that the (f +1)th response arrives within time Kt
conditional on the first response arriving within time t. Note
that Ψ(1) and Ψ(f+1) are not independent, hence the condi-
tional in the second term. The probability of a false timeout
Π1 is

Π1 =

� ∞

t=0
p[Ψ(1) ≤ t] · P [Ψ(f+1) > Kt | Ψ(1) = t]dt

where the integral is over all possible values of t and the
notation p[.] using a small ‘p’ denotes the pdf2, i.e., p[Ψ(1) ≤

2The notation pΨ(1)
(t) is more common, but results in a confusing sub-

script overkill.
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t] = d
dt (P [Ψ(1) ≤ t]). In order to prove the lemma, we note

that removing the conditional in the second term inside the in-
tegral strictly increases the second term for all possible values
of t. In other words, the probability that the (f+1)th response
time is greater than Kt is greater than the probability that the
(f +1)th response time is greater than Kt conditional on the
first response time being equal to t. Thus,

Π1 ≤
� ∞

t=0
p[Ψ(1) ≤ t] · P [Ψ(f+1) > Kt]dt

proving the lemma.
Note that the above Lemma is only the probability of a

false timeout at a single correct agreement replica. The prob-
ability of a new execution replica being woken up is even
smaller as g + 1 agreement replicas must be able to produce
a convictable timeout.

COROLLARY 1 The probability of a new execution replica
being unnecessarily woken up despite all execution replicas
being correct is at most Π1.

The above lemma can be used to numerically compute the
bound on the probability of a false timeout or wakeup. For
example, if Ψ is exponential with mean 1

λ , then Ψ(1) is also an
exponential with mean 1

(f+1)λ with a pdf given by p[Ψ(1) ≤
t] = λ(f +1)e−λ(f+1)t; and Ψ(f+1) is given by P[Ψ(f+1) >
t] = 1− (1− e−λt)f+1.

Given this bound on false timeouts and the probability of
a node being faulty p, we can prove Theorem 3 as follows.
Proof: The replication cost is more than f + 1 only when a
fault is detected either because some replica is faulty or be-
cause a false timeout occurs. The probability that at least one
replica is faulty is 1− (1− p)f+1. When all replicas are cor-
rect, Lemma 1 implies that a false timeout occurs with prob-
ability at most Π1. Thus, a fault is detected with probability
r ≤ 1 − (1 − p)f+1 + (1 − p)f+1Π1. Up to f replicas may
be woken up when a fault is detected. Hence the theorem.


