I am a senior principal research manager at Microsoft Research, New York City. Previously, I spent two years as an assistant professor in the College of Information and Computer Sciences at the University of Massachusetts, Amherst and a year as a postdoctoral researcher at Microsoft Research, NYC. Before that, I completed my PhD in the Computer Science Department at Carnegie Mellon University, advised by Aarti Singh. I received my undergraduate degree in EECS at UC Berkeley. My research interests are in machine learning and statistics. I am most excited about interactive learning, or learning settings that involve feedback-driven data collection. My recent interests revolve around decision making problems with limited feedback, including contextual bandits and reinforcement learning. Selected PapersSelf-improvement in language models: The sharpening mechanism. Transformers learn shortcuts to automata. Efficient first order contextual bandits: Prediction, allocation, and triangular discrimination. FLAMBE: Structural complexity and representation learning of low rank MDPs. Kinematic state abstraction and provably efficient rich-observation reinforcement learning. Disagreement-based combinatorial pure exploration: Sample complexity bounds and an efficient algorithm. Tongyi Cao and Akshay Krishnamurthy. Contextual decision processes with low Bellman rank are PAC-learnable. Low-rank matrix and tensor completion via adaptive sampling. |