Preferences in college applications
A non-parametric Bayesian analysis of top-10 rankings

Alnur Ali1 Thomas Brendan Murphy2 Marina Meil\text{"a}3
Harr Chen4

1Microsoft
2University College Dublin
3University of Washington
4Massachusetts Institute of Technology
Outline

Introduction
 College Applications
 Goals
 Dataset

Model
 Data Coding
 Generalized Mallow’s models
 Dirichlet process mixture models
 Gibbs sampler

Findings
 General properties
 Overall trends

Conclusions
College Applications

- Irish college applicants apply through a central system administered by the College Applications Office (CAO).
- Applicants list up to ten degree courses in order of preference.
- Applicants are awarded points on the basis of their Leaving Certificate results; these determine course entry.
Goals

- It has been postulated that a number of factors influence course choices:
 - Institution & Location
 - Degree subject
 - Degree type (Specific vs. General)
 - Points Requirement
 - Gender

Do points requirements influence ranks?
Dataset

- We study the cohort of applicants to degree courses from the year 2000.
- The applications data has the following properties:
 - There were 55,737 applicants;
 - They selected from a list of 533 courses;
 - Applicants selected up to 10 courses.
Data Coding

• The data coding \((s_1, s_2, \ldots, s_t)\) of \(\pi | \sigma\) is defined by

\[
s_j + 1 = \text{rank of } \pi^{-1}(j) \text{ in } \sigma \text{ after removing } \pi^{-1}(1 : j - 1).
\]

Example, if \(\sigma = [a \ b \ c \ d]\) and \(\pi = [c \ a \ b \ d]\)

\[
\begin{align*}
\pi^{-1}(1) &= c & s_1 &= 2 \\
\pi^{-1}(2) &= a & s_2 &= 0 \\
\pi^{-1}(3) &= b & s_3 &= 0 \\
\pi^{-1}(4) &= d & s_4 &= 0
\end{align*}
\]

• Kendall’s distance is \(d_{Kendall}(\pi, \sigma) = \sum_{j=1}^{t-1} s_j\).
Generalized Mallow’s models

- Mallow’s model assumes that

\[
P(\pi | \sigma, \theta) = \frac{1}{\psi(\theta)} \exp \left(-\theta \sum_{j=1}^{t-1} s_j(\pi | \sigma) \right).
\]

- Can extend Mallow’s model to allow for varying precision in ranking

\[
P(\pi | \sigma, \vec{\theta}) = \frac{1}{\psi(\vec{\theta})} \exp \left(-\sum_{j=1}^{t-1} \theta_j s_j(\pi | \sigma) \right).
\]

- Location parameter \(\sigma \), scale parameters \((\theta_1, \ldots, \theta_{\text{max } t-1})\).
- \(\psi(\vec{\theta}) \) is a tractable normalization constant.
Dirichlet process mixture models

- $\tilde{p} \sim Dirichlet(\alpha/K, \ldots, \alpha/K)$
- $c_i \sim Multinomial(p_1, \ldots, p_K)$
- $\sigma_c, \theta_c \sim G_0 \propto P^0(\sigma, \theta; \nu, \tilde{r})$
- $\pi_i \sim GM(\pi_i | \sigma_c, \theta_c)$

- Prior: conjugate to GM, informative w.r.t. θ
- DPMM benefits: no need to specify K upfront, identifies both large and small clusters.
Gibbs sampler

1. Resample cluster assignments:
 1.1 Draw existing cluster w.p. \(\propto \frac{N_c-1}{N+\alpha-1} \text{GM}(\pi|\sigma_c, \theta_c) \) or Beta function approximation.
 1.2 Draw new cluster w.p. \(\propto \frac{\alpha}{N+\alpha-1} \frac{(n-t)!}{n!} \).

2. Resample cluster parameters:
 2.1 Draw \(\theta_c \) by slice sampling or a Beta distribution approx.
 2.2 Draw \(\sigma_c \) “stage-wise” or by a Beta function approx.

Beta approx. based sampler (Beta-Gibbs) faster than slice based sampler (Slice-Gibbs) (per iteration & overall time to convergence).
General properties of the clusterings

- The DPMM found 164 clusters.
- Thirty three of these clusters had nine or more members.

![Cluster Size Distribution](image)

- The clusters were characterized by a number of features.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Size</th>
<th>Description</th>
<th>Male (%)</th>
<th>Points Average (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4536</td>
<td>CS & Engineering</td>
<td>77.2</td>
<td>369 (41)</td>
</tr>
<tr>
<td>2</td>
<td>4340</td>
<td>Applied Business</td>
<td>48.5</td>
<td>366 (40)</td>
</tr>
<tr>
<td>3</td>
<td>4077</td>
<td>Arts & Social Science</td>
<td>13.1</td>
<td>384 (42)</td>
</tr>
<tr>
<td>4</td>
<td>3898</td>
<td>Engineering (Ex-Dublin)</td>
<td>85.2</td>
<td>374 (39)</td>
</tr>
<tr>
<td>5</td>
<td>3814</td>
<td>Business (Ex-Dublin)</td>
<td>41.8</td>
<td>394 (32)</td>
</tr>
<tr>
<td>6</td>
<td>3106</td>
<td>Cork Based</td>
<td>48.9</td>
<td>397 (33)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>Teaching (Home Economics)</td>
<td>0.0</td>
<td>417 (4)</td>
</tr>
</tbody>
</table>
Precision

- The precision parameters (θ_j) were very high for top rankings.

- The θ_j values tended to decrease with j.

- In many cases, the θ_j values dropped suddenly after a particular point.

- The central ranking σ for each cluster is of length 533; the θ_j values suggested a point to truncate the ranking.
Overall trends

- **Subject**
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (e.g., Science) and others opt for specific (e.g., Chemical Engineering).

- **Gender**
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.

- **Geography**
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.
Overall trends

- **Subject**
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (e.g., Science) and others opt for specific (e.g., Chemical Engineering).

- **Gender**
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.

- **Geography**
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.
Overall trends

- **Subject**
 - Subject matter is a key determinant of course choice.
 - The courses chosen are similar in subject area.
 - Some opt for general degrees (eg. Science) and others opt for specific (eg. Chemical Engineering).

- **Gender**
 - There is quite a difference in the percentage male/female applicants in some clusters.
 - Males tend to dominate CS/Engineering clusters.
 - Females tend to dominate social science/education clusters.

- **Geography**
 - There is evidence of the college location influencing choice.
 - The sixth largest cluster is dominated by courses from colleges in Cork (CIT and UCC).
 - There is evidence of a mix of subject matter and geography having a joint effect; the fourth largest cluster is dominated by engineering courses outside Dublin.
Points

- The points requirements for the courses in the truncated central rankings were not monotonically decreasing in any cluster.

- This suggests that points requirements are not important when students are ranking courses.
Conclusions & Lessons Learned

- The CAO system appears to be working more effectively than many suggest.
- The clusters revealed in this analysis tend to be cohesive in subject matter.
- The focus of possible improvements to the CAO system might be directed at how points are scored.
- The Generalized Mallows DPMM facilitated discovering small clusters that were missed in previous analyses.
- The model also allowed for the study of precision in rankings within clusters.
Questions?

Thanks!