Comparison

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Divide and Conquer</th>
<th>Dynamic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulate problem</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Design algorithm</td>
<td>easy</td>
<td>hard</td>
<td>hard</td>
</tr>
<tr>
<td>Prove correctness</td>
<td>hard</td>
<td>easy</td>
<td>easy</td>
</tr>
<tr>
<td>Analyze running time</td>
<td>easy</td>
<td>hard</td>
<td>easy</td>
</tr>
</tbody>
</table>

Where does network flow fit in?

Network Flow

- Previous topics: design techniques
- Network flow: specific class of problems with many applications
- Direct applications: commodities in networks
 - wheat/rail networks
 - packets/internet
 - water/pipes
- Indirect applications:
 - Matching in bipartite graphs
 - Airline scheduling
 - Baseball elimination
Network Flow

- Previous topics: design techniques
- Network flow: specific class of problems with many applications
- Direct applications: commodities in networks
 - wheat/rail networks
 - packets/internet
 - water/pipes
- Indirect applications:
 - Matching in bipartite graphs
 - Airline scheduling
 - Baseball elimination

Plan: design and analyze algorithms for max-flow problem, then apply to solve other problems

First, a Story About Flow and Cuts

Key theme: flows in a network are intimately related to cuts

Soviet rail network in 1955

Defining Flows

Example/definitions on board

- Motivating example
- Flow network
 - Directed graph
 - Source s, target t
 - Edge capacities $c(e)$
- Flow
 - Flow $f(e)$ on each edge
 - Respects capacity and flow conservation
 - Value $v(f)$
- Max flow problem: find a flow of maximum value
Designing a Max-Flow Algorithm

Idea (false start): repeatedly choose paths and “augment” flow on those paths until we can no longer do so

Board work
- Explore this idea
- See where it gets stuck
- Introduce and define residual graph G_f
 - Forward edges
 - Backward edges
 - Augmenting path
 - Bottleneck edge

Augmenting Path

Revised Idea: use paths in the residual graph to augment flow

Augment flow f on path P in G_f

Let $b = \text{bottleneck}(P, f)$ \(\triangleright \) least residual capacity in P

for edge $e = (u, v)$ in P do
 if e is a forward edge then
 $f(e) = f(e) + b$ \(\triangleright \) increase flow on forward edges
 else
 $f(e) = f(e) - b$ \(\triangleright \) decrease flow on backward edges
 end if
end for

Example on board

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson(G, s, t)

\(\triangleright \) Initially, no flow
Initialize $f(e) = 0$ for all edges e
Initialize $G_f = G$

Ford-Fulkerson Algorithm

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson(G, s, t)

\(\triangleright \) Initially, no flow
Initialize $f(e) = 0$ for all edges e
Initialize $G_f = G$

\(\triangleright \) Augment flow as long as it is possible
while there exists an s-t path P in G_f do
 $f = \text{Augment}(f, P)$
 update G_f
end while
return f
Ford-Fulkerson Examples

Toy example on board

Example 2

Flow value = 0

Flow value = 8

Flow value = 10

Flow value = 16

Flow value = 18
Ford-Fulkerson Analysis

- Step 1: argue that F-F returns a flow
- Step 2: analyze termination and running time
- Step 3: argue that F-F returns a maximum flow

Step 1: F-F returns a flow

Claim: Let f be a flow and let $f' = \text{Augment}(f, P)$. Then f' is a flow.

Proof idea. Verify two conditions for f' to be a flow

- f' satisfies capacity constraints
- f' satisfies flow conservation

Example and proof sketch on board
Step 2: Termination and Running Time

Assumption: all capacities are integers. Then, by nature of F-F, all flow values and residual capacities remain integers during the algorithm.

Claim: F-F terminates in at most \(v(f) \) iterations, where \(f \) is the returned flow. **Proof?**

Running time:

- Let \(C \) be the total capacity of edges leaving source \(s \)
- Then \(v(f) \leq C \)
- So F-F terminates in at most \(C \) iterations

Running time per iteration?

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the **max-flow min-cut theorem**.

Board work: cut definitions

- \(s-t \) cut \((A, B) \)
- Capacity \(c(A, B) \)
- Examples
Flow Value Lemma

First relationship between cuts and flows

Lemma: Let f be any flow and (A, B) be any s-t cut. Then $\nu(f) = \sum_{e \in \text{out of } A} f(e) - \sum_{e \in \text{into } A} f(e)$.

Proof:

$\nu(f) = \sum_{e \in \text{out of } A} f(e) - \sum_{e \in \text{into } A} f(e)$.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let f be any s-t flow and let (A, B) be any s-t cut. Then $\nu(f) \leq c(A, B)$.

Proof:

$\nu(f) = \sum_{e \in \text{out of } A} f(e) - \sum_{e \in \text{into } A} f(e) \leq c(A, B)$.
Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let \(f \) be any \(s-t \) flow and let \((A, B)\) be any \(s-t \) cut. Then \(v(f) \leq c(A, B) \).

Proof:

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
\]

\[
\leq \sum_{e \text{ out of } A} c(e)
\]

\[
\leq c(A, B)
\]

Duality

Illustration on board (leave up). "Duality"

Claim: If there is a flow \(f^* \) and cut \((A^*, B^*)\) such that \(v(f^*) = c(A^*, B^*) \), then

\(f^* \) is a maximum flow

\((A^*, B^*) \) is a minimum cut

F-F returns a maximum flow

Claim: Suppose \(f^* \) is an \(s-t \) flow such that there are no residual paths in \(G_{f^*} \) (e.g., the flow returned by F-F)

... and let \((A^*, B^*)\) be the \(s-t \) cut where \(A^* \) consists of all nodes reachable from \(s \) in the residual graph.

Then the following are true:
F-F returns a maximum flow

Claim: Suppose f^* is an s-t flow such that there are no residual paths in G_{f^*} (e.g., the flow returned by F-F).

... and let (A^*, B^*) be the s-t cut where A^* consists of all nodes reachable from s in the residual graph.

Then the following are true:
- $v(f^*) = C(A^*, B^*)$
- f^* is a maximum flow
- (A^*, B^*) is a minimum cut

Corollary: F-F returns a maximum flow.

Max-Flow Min-Cut Theorem

Theorem: In every flow network, the value of the maximum s-t flow is equal to the value of the minimum s-t cut.

Proof?

Prove claim on board
Max-Flow Min-Cut Theorem

Theorem: in every flow network, the value of the maximum s-t flow is equal to the value of the minimum s-t cut.

Proof?

For any flow network, run F-F to get a maximum flow f^* and minimum-cut (A^*, B^*) such that $v(f^*) = c(A^*, B^*)$.