Rules:

• Collaborations are allowed on the homework but answers must be written independently.
• Please write on your solution who you collaborated with.
• Solutions must be typeset in LaTeX.
• Email solutions to mcgregor@cs.umass.edu with subject “711 Homework 3 Solutions.”
• If a solution is late by \(h \geq 0 \) hours, marks will be scaled by a factor \(0.75^{h/24} \).

Question 1 (10 marks). Prove or disprove the following statements:

1. The cover time of a random walk on an undirected connected graph is polynomial in the number of nodes in the graph.
2. The cover time of a random walk on a directed strongly-connected graph is polynomial in the number of nodes in the graph.
3. Adding an undirected edge to an undirected graph can increase the cover time of a random walk on the graph.

Question 2 (10 marks). Recall that a sequence of random variables \(Z_0, Z_1, \ldots \) is a martingale with respect to sequence \(X_0, X_1, \ldots \) if for all \(n \geq 0 \):

 1. \(Z_n \) is a function of \(X_0, X_1, \ldots, X_n \);
 2. \(\mathbb{E}[|Z_n|] < \infty \);
 3. \(\mathbb{E}[Z_{n+1}|X_0, \ldots, X_n] = Z_n \)

 and that \(Z_0, Z_1, \ldots \) is a martingale if it is a martingale with respect to itself. Prove or disprove the following:

 1. If \(Z_0, Z_1, \ldots \) is a martingale with respect to \(X_0, X_1, \ldots \), then it is also a martingale with respect to itself.
 2. If \(Z_0, Z_1, \ldots \) is a martingale with respect to itself and \(Z_n \) is a function of \(X_0, X_1, \ldots, X_n \) (for all \(n \geq 0 \)) then \(Z_0, Z_1, \ldots \), is martingale with respect to \(X_0, X_1, \ldots \).

Question 3 (10 marks). Consider the following strange algorithm for finding the median of a set \(X = \{x_1, x_2, \ldots, x_{2n-1}\} \) of distinct integers.

1. Let \(\pi \) be a permutation of \([2n-1]\) chosen uniformly at random and let \(y_i = x_{\pi(i)} \)
2. Let \(X = \{y_1, \ldots, y_s\} \) and set \(L = 0 \) and \(H = 0 \)
3. For \(i = s+1, \ldots, 2n-1 \):
 a. If \(y_i < \min X \): \(L \leftarrow L + 1 \)
 b. If \(y_i > \max X \): \(H \leftarrow H + 1 \)
 c. If \(\min X < y_i < \max X \): Add \(y_i \) to \(X \)
 i. If \(H < L \): Remove largest element from \(X \), and \(H \leftarrow H + 1 \)
 ii. Else: Remove smallest element from \(X \), and \(L \leftarrow L + 1 \)
 d. If \(1 \leq n - L \leq s \) then return the \((n - L)\)-th smallest element in \(X \); Otherwise “Fail”

How large must \(s \) be such that the above algorithm correctly returns the median of \(X \) with probability at least \(9/10 \)?

Question 4 (10 marks). Consider a 2-wise random hash function \(h : [n] \rightarrow [w] \), i.e., each \(h(i) \) is distributed uniformly at random from \([w]\) and \(h(i) \) and \(h(j) \) are independent if \(i \neq j \). Let
be a 4-wise random function $c : [n] \to \{-1, 1\}$. Let $f = (f_1, f_2, \ldots, f_n) \in \mathbb{R}^n$ and $X = \sum_{i \in [n]} (\sum_{j \in [n]} h(j) = i) f_j c(j)^2$. Prove that,

1. $\mathbb{E}[X] = \sum_{i \in [n]} f_i^2 =: F^2$
2. $\mathbb{V}[X] = O(F^2 / w)$

Let $\langle a_1, \ldots, a_m \rangle$ be a stream where each $a_i \in [n]$ and define $f_i = \{ j : a_j = i \}$. Design a small space data space stream algorithm that approximates F_2 such that the estimate \hat{F}_2 satisfies

$$
\mathbb{P}\left[\left| \hat{F}_2 - F_2 \right| \leq \epsilon F_2 \right] \leq 1 - \delta.
$$

Question 5 (10 marks). Let $\langle a_1, \ldots, a_m \rangle$ be a stream where each $a_i \in [n]$. Define $f_i = \{ j : a_j = i \}$ and $p_i = f_i / m$. Suppose all $p_i \leq 1/10$. Based on the algorithm for estimating $F_k = \sum_{i=1}^n f_i^k$ ($k \geq 3$) by Alon, Matias, Szegedy (JCSS 1999), design a data stream algorithm using $\tilde{O}(\epsilon^{-2} \log \delta^{-1} \log m (\log m + \log n))$ space that estimates the entropy,

$$
H(p) = -\sum_{i=1}^n p_i \ln p_i
$$

such that the estimate \hat{H} satisfies

$$
\mathbb{P}\left[\left| \hat{H} - H(p) \right| \leq \epsilon H(p) \right] \leq 1 - \delta.
$$