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Abstract. The goal of this roadmap paper is to summarize the state-
of-the-art and identify research challenges when developing, deploying
and managing self-adaptive software systems. Instead of dealing with a
wide range of topics associated with the field, we focus on four essential
topics of self-adaptation: design space for self-adaptive solutions, soft-
ware engineering processes for self-adaptive systems, from centralized to
decentralized control, and practical run-time verification & validation for
self-adaptive systems. For each topic, we present an overview, suggest fu-
ture directions, and focus on selected challenges. This paper complements
and extends a previous roadmap on software engineering for self-adaptive
systems published in 2009 covering a different set of topics, and reflecting
in part on the previous paper. This roadmap is one of the many results of
the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive
Systems, which took place in October 2010.

1 Introduction

The complexity of current software systems has led the software engineering
community to investigate innovative ways of developing, deploying, managing
and evolving software-intensive systems and services. In addition to the ever
increasing complexity, software systems must become more versatile, flexible,
resilient, dependable, energy-efficient, recoverable, customizable, configurable,
and self-optimizing by adapting to changes that may occur in their operational
contexts, environments and system requirements. Therefore, self-adaptation —
systems that are able to modify their behavior and/or structure in response to
their perception of the environment and the system itself, and their goals — has
become an important research topic in many diverse application areas.
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It is important to emphasize that in all the many initiatives to explore self-
adaption, the common element that enables its provision is usually software. Al-
though control theory provides 60 years of experience and software the
necessary flexibility to attain self-adaptability, the proper engineering and re-
alization of self-adaptation in software still remains a formidable intellectual
challenge. Moreover, only recently have the first attempts been made to estab-
lish suitable software engineering approaches for the provision of self-adaptation.
In the long run, we need to establish the foundations that enable the systematic
development, deployment, management and evolution of future generations of
self-adaptive software systems.

The goal of this roadmap paper is to summarize the state-of-the-art and
identify research challenges when developing, deploying, managing and evolving
self-adaptive software systems. Specifically, we focus on development methods,
techniques, and tools that we believe are required when dealing with software-
intensive systems that are self-adaptive in their nature. In contrast to merely
speculative and conjectural visions and ad hoc approaches for systems support-
ing self-adaptability, the objective of this paper is to establish a roadmap for
research and identify the key research challenges.

The intent of this new roadmap paper is not to supersede the previous paper
on software engineering self-adaptive systems [15], but rather to complement
and extend it with additional topics and challenges. The research challenges
identified in the previous paper are still valid. Moreover, it is too early to re-
assess the conjectures made in that paper. In order to provide a context for
this roadmap, in the following, we summarize the most important challenges
identified in the first roadmap paper [15].

– Modeling dimensions — the challenge was to define models that can repre-
sent a wide range of system properties. The more precise the models are, the
more effective they should be in supporting run-time analyses and decision
processes.

– Requirements — the challenge was to define a new language capable of cap-
turing uncertainty at an abstract level. Once we consider uncertainty at the
requirements stage, we must also find means of managing it. Thus, the need
to represent the trade-offs between the flexibility provided by the uncertainty
and the assurances required by the application.

– Engineering — the challenge was to make the role of feedback control loops
more explicit. In other words, feedback control loops must become first-class
entities throughout the lifecycle of self-adaptive systems. Explicit modeling
of feedback loops will ease reifying system properties to allow their query
and modification at run-time.

– Assurances — the challenge was how to supplement traditional V&V meth-
ods applied at requirements and design stages of development with run-time
assurances. Since system context changes dynamically at run-time, systems
must manage contexts effectively, and its models must include uncertainty.

Similar to previous research roadmap paper, instead of dealing with a wide range
of topics associated with the field, this paper focuses on four essential topics
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of self-adaptation: design space of self-adaptive solutions, software engineering
processes for self-adaptive systems, from centralized to decentralized control, and
practical run-time verification and validation (V&V) for self-adaptive systems.
The presentations of each of the topics do not cover all related aspects, instead
focused theses are used as a means to identify challenges associated with each
topic. The four identified theses are the following.

– Design space – the need to define what is the design space for self-adaptive
software systems, including the decisions the developer should address.

– Processes – the need to define innovative generic processes for the devel-
opment, deployment, operation, maintenance, and evolution of self-adaptive
software systems.

– Decentralization of control loops – the need to define a systematic engineer-
ing approach for control loops for software adaptation of varying degree of
centralization and decentralization of the loop elements.

– Practical run-time verification and validation – the need to investigate V&V
methods and techniques for obtaining inferential and incremental assess-
ments for the provision of confidence and certifiable trust in self-adaptation.

Although the topics covered by the two roadmap papers may appear related, the
issues covered are quite distinct since the topics covered different theses: design
spaces is related to the former modeling dimensions topic but taking a broader
more top-down rather than bottom up perspective, processes is a completely
new topic, decentralization of control loops looks into the control loop addressed
by the former engineering topic with the particular focus on decentralization,
and practical run-time V&V refines the related former assurances topic looking
in particular into techniques that can be effectively applied at run-time.

In order to motivate and present a new set of research challenges associated
with the engineering of self-adaptive software systems, the paper is divided into
four parts, each related to one of the new topics identified for this research
roadmap. For each topic, we present an overview, suggest future directions,
and focus on selected challenges. The four topics are: design space for adaptive
solutions (Section 2), towards software engineering processes for self-adaptive
systems (Section 3), from centralized to decentralized control (Section 4), and
practical run-time verification and validation (Section 5). Finally, Section 6 sum-
marizes our findings.

2 Design Space

Designing self-adaptive software systems involves making design decisions about
observing the environment and the system itself, selecting adaptation mecha-
nisms, and enacting those mechanisms. While most research on self-adaptive
systems deals with some subset of these decisions, to the best of our knowledge,
there has been neither a systematic study of the overall design space for such
systems nor an enumeration of the decisions the developer should address.
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2.1 Design Space Definitions

The design space of a system is the set of decisions, together with the possi-
ble choices, the developer must make. A representation of a design space is a
static textual or graphical form of a design space, or a subset of that space.
Intuitively, a design space is a Cartesian space with dimensions representing
the design decisions and values along those dimensions representing the pos-
sible choices. Points in the space represent concrete designs. In practice, most
interesting design spaces are too rich to represent in their entirety, so represen-
tations of the design space capture only the principal decisions, the ones that
are significant for the task at hand. Typically, the design dimensions are not
independent, so making one decision may preclude, restrict, or make irrelevant,
other decisions [9,49].

Several partial methodologies for identifying and representing design spaces
have emerged. For example, Andersson et al. [1] defined a set of modeling di-
mensions for self-adaptive software systems. The identified dimensions were or-
ganized into four categories: the self-adaptive goals of the system, the causes
or triggers of self-adaptation, the mechanisms used to adapt, and the effects of
those mechanisms on the system. Kramer and Magee [33] outline three tiers of
decisions the developer must make — ones that pertain to goal management,
change management, and component control. Dobson et al. [17] identify four as-
pects of self-adaptive systems around which decisions can be organized: collect,
analyze, decide, act. Finally, Brun et al. [10] discuss the importance of making
the adaptation control loops explicit during the development process and outline
several types of control loops that can lead to adaptation. Specific design spaces
have also been proposed in the form of taxonomies. For example, Brake et al. [8]
introduce (and Ghanbari et al. [22] later refine) a taxonomy for performance
monitoring of self-adaptive systems together with a method for discovering pa-
rameters in source code. Ionescu et al. [29] formally define controllability and
observability for web services and show that controllability can be preserved in
composition.

2.2 Key Design Space Dimensions

In this section, we outline a design space for self-adaptive systems with five
principal dimensions — clusters of design decisions pertinent to self-adaptive sys-
tems. The clusters are: observation, representation, control, identification, and
enacting adaptation. Each cluster provides additional structure in the form of
questions a developer should consider when designing such a system. The Obser-
vation cluster answers questions related to what is monitored by the self-adaptive
system, when and how often monitoring occurs, and how states are determined
based on the monitored data. The Representation cluster is concerned with the
run-time representation of adaptation targets, inputs, effects, system indicators,
and states. The Control cluster is concerned with the mechanisms through which
a solution is enacted. The Identification cluster is concerned with the possible
solution instances that can achieve the adaptation targets. Finally, the cluster
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of Enacting Adaptation concerns how adaptation can be achieved. While we
hope our enumeration will help formalize and advance the understanding for
self-adaptive system design, it is not intended to be complete and further work
on expanding and refining this design space is necessary and appropriate.

To explain the concepts, we separate self-adaptive systems into two elements:
the Managed System, which is responsible for the system’s main functionality,
and the Adaptation System, which is responsible for altering the Managed Sys-
tem as appropriate. The elements inherent to the managed system (that is, the
things that would exist even if it were not adaptively managed) such as the in-
puts and the environment are captured and used by the Adaptation System. The
Adaptation System produces adaptations that impact the Managed System.

Observation. The observation cluster is concerned with design decisions re-
garding what information is observed by the self-adaptive system and when
such observations are made.

A key design decision about self-adaptive systems is “what information will
the system observe?” In particular, “what information about the external envi-
ronment and about the system itself will need to be measured or estimated?” To
make these measurements, the system will need a set of sensors; these determine
what the system can observe. Some of the measurements can be made implicitly
(e.g., by inferring them from the state of the system or success or failure of an
action). Choices include different aspects of goals, domain knowledge, environ-
ment, and the system itself necessary to make decisions about adaptation toward
meeting the adaptation goals.

Given the set of information the system observes, another important design
decision is “how will the system determine that information?” The system could
make direct measurements with sensors, infer information from a proxy, extrap-
olate based on earlier measurements, aggregate knowledge, etc.

Given a way to observe, there are two important decisions that relate to tim-
ing: “what triggers observation?” and “what triggers adaptation?” The system
could be continuously observing or observation could be triggered by an exter-
nal event, a timer, an inference from a previous observation, deviation or error
from expected behavior, etc. Thus, the observation can happen at a fixed delay,
on-demand, or employ a best-effort strategy. The same decisions relate to when
the adaptation triggers, which is also relevant to the control cluster.

Handling uncertainty in the measurements is another decision related to ob-
servation. Filtering, smoothing, and redundancy are just some of the solutions
to dealing with noise and uncertainty.

Representation. The representation cluster is concerned with design decisions
regarding how the problem and system are represented at run-time. Uncertainty
is intrinsic to many self-adaptive systems, so some information may be available
only at run-time. Therefore, to enable mechanisms of adaptation, key informa-
tion about the problem and system may have to be made available at run-time.
This cluster is closely related to the observation cluster, and has ties to the
remaining clusters that make use of this representation.
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A key decision in this cluster is “what information is made available to the
components of the self-adaptive system?” Answers include different aspects of
the adaptation targets, existing domain knowledge, and observations of the en-
vironment and Managed System that are found necessary and sufficient for a
self-adaptive system to operate.

Another design decision in this cluster relates to choices of internal represen-
tation. “How is this information represented?” is meant to guide the designer
to the representation that best matches the adaptation targets and the nature
of the problem. Choices include explicit representations such as graph models,
formulae, bounds, objective functions, etc., or implicit representations in the
code.

Control. The control cluster is concerned with the system’s run-time decision
making toward self-adaptation.

“How to compute how much change to enact forms one design decision in this
cluster?” Possible choices include the change being a predefined constant value
or proportional to the deviation from the desired behavior. The PID technique
adds three values to determine the amount of change: a value proportional to
the control error, a value proportional to the derivative of the error, and a value
proportional to the integral of the error.

Feedback loops play an integral role in adaptation decisions. Thus, key de-
cisions about a self-adaptive system’s control are: “what control loops are in-
volved?” and “how do those control loops interact?” The choices depend on the
structure of the system and the complexity of the adaptation goals. Control
loops can be composed in series, parallel, multi-level (hierarchical), nested, or
independent patterns. Brun et al. [10] have further discussed the choices and
impact of control loops on the design of self-adaptive systems.

What aspects of the system can be adapted from another design decision? Sys-
tems can change parameters, representations, and resource allocations, choose
among pre-constructed components and connectors, synthesize new components
and connectors, and augment the system with new sensors and actuators.

The possible adaptations those aspects can undergo form another design deci-
sion. Choices include aborting, modifying data, calling procedures, starting new
processes, etc.

The design decision from the observation cluster that deals with what triggers
adaptation is closely related to the control cluster.

Identification. At every moment in time, the self-adaptive system is in one in-
stantiation. The self-adaptation process consists of traversing the space of such
instantiations. The identification cluster is concerned with identifying those in-
stantiations the system may take on at run-time. Instantiations can describe
system structure, behavior, or both.

For each adaptation target, there is a decision about which instantiations
could satisfy that target. The main concern of this decision is enumerating con-
crete sets of possible structures, behaviors, states, parameter values, etc. It is
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likely that not all identified instantiations will be supported at run-time. Select-
ing those that will be supported is another design decision.

Identifying the relevant domain assumptions and contexts for each instantia-
tion is yet another design decision in this cluster. The system can then recognize
the context and enact the relevant instantiations.

Finally, identifying the transition cost between instantiations informs the sys-
tem of the run-time costs of certain types of self-adaptation.

Enabling Adaptation. The choice of adaptation mechanisms the self-adaptive
system employs, how are they triggered and supported and how failure is handled
are design decisions included in the Enabling Adaptation cluster.

The mechanisms can be represented explicitly or implicitly in the system. For
example, self-managing systems with autonomic components typically have ex-
plicit adaptation mechanisms. Meanwhile, self-organizing systems often exhibit
self-adaptation as an emergent property and do not explicitly define the adapta-
tion mechanisms. The decision concerning control loops from the control cluster
is closely related to this decision. Some forms of control can be explicitly ex-
pressed in the design, whereas other forms are emergent. It is also possible to
create hybrid explicit-implicit self-adaptive systems.

Support of the self-adaptation forms another design decision. Support can
be enacted through plugin architectures, component substitution, web services,
etc. Related to this decision is what to do when adaptation fails. Choices include
trying again, trying a different adaptation mechanism or strategy, observing the
environment and the system itself to update internal representations, etc.

In selecting the adaptation mechanisms, it is important to consider the states
or events that can trigger adaptation. Examples triggers include not satisfying
the adaptation targets that relate to non-functional requirements (e.g., response
time, throughput, energy consumption, reliability, fault tolerance), behavior,
undesirable events, state maintenance, anticipated change, and unanticipated
change.

2.3 Research Challenges

The design space described above can help formalize and advance the under-
standing of self-adaptive system design. However, it is incomplete, so further
exploration and expansion are necessary to aid self-adaptive system develop-
ers. A more complete list can help ensure designers avoid leaving out critical
decisions.

The main benefit of understanding the design space is infusing a systematic
understanding of the options for self-adaptive control into the design process.
The developer should understand the trade-offs among different options and
the quantitative and qualitative implications of the design choices. To do this
effectively, we need to understand the effects of these design decisions, and their
order, on the quality of the resulting system.

Each cluster we outlined above can be further expanded and refined. Fur-
ther, validation of the alternatives against real-world examples can serve as the
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framework for describing options. Dimensions in the self-adaptive design space
are not independent and the interactions between the decisions in those clusters
need to be explored. Understanding the decision relationships can narrow the
search space and reduce the complexity of the design and the design process.

An important challenge to consider is bridging the gap between the design
and the implementation of self-adaptive systems. Frameworks and middleware
(e.g., [18,38]) can help bridge that gap, providing developers with automatically
generated code and reusable models for their specific design decisions. This chal-
lenge is even more difficult in the case of reengineering existing non-self-adaptive
systems or integrating self-adaptive and non-self-adaptive systems.

Finally, of particular importance is the understanding of interactions of con-
trol loops and self-adaptation mechanisms. If we are to build complex systems,
and systems-of-systems with self-adaptive components, we must understand how
these mechanisms and their relevant control loops interact and affect one an-
other.

3 Processes

Software engineering (SE) research has primarily focused on principles for de-
veloping high quality software systems, while the maintenance and the evolu-
tion of such systems have received less attention [40]. Meanwhile, it has been
commonly accepted that software, which implements real world applications,
must continually evolve. If software does not evolve, it will not fulfill the con-
tinuously changing requirements and thus, it will become outdated earlier than
expected [35,36]. This awareness has impacted software process models to bet-
ter address the inherent need for change and evolution by introducing iterative,
incremental, and evolutionary approaches to software development as an alter-
native to strictly separating sequenced disciplines of requirements engineering,
design, implementation, and testing [34,40].

In the last decade, software maintenance and evolution have emerged as a
key research field in SE [40] that separates the time before and the time af-
ter the software is delivered, or in other words, divides the software lifecycle
into development-time, deployment-time, and run-time. Post-delivery changes
are typically realized by re-entering the regular development disciplines, which
eventually results in a new version of a software product or a patch that is then
released to replace or enhance the currently running version [32]. Such releases
are usually performed during scheduled down-times of the system compromis-
ing the system’s availability. Thus, the whole maintenance process is mainly
performed off-line guided by human-driven change management activities and
decoupled from the running system.

However, such a lifecycle does not meet the requirements of self-adaptive soft-
ware [15] that we are considering in this work. A self-adaptive software system
operates in a highly dynamic world and must adjust its behavior automatically
in response to changes in its environment, in its goals, or in the system itself.
This vision requires shifting the human role from operational to strategic. Hu-
mans define adaptations, that is, how a system should react to changes and the
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system then performs adaptations autonomously at run-time. The implication
is that activities previously performed during development-time will be shifted
to run-time. Several researchers [4,6,27,28] argue that, as a consequence, we
have to reconceptualize SE processes to fit modern software systems better. In
particular, to fit self-adaptive software systems.

The problem being addressed concerns the timing of software activities [12]
in a particular process regarding the software lifecycle. This problem has three
dimensions:

– Software lifecycle phases [43] (i.e., development, deployment, operation, and
maintenance and evolution).

– Software engineering disciplines [43] (i.e., requirements, design, implementa-
tion, validation, verification, etc.), and activities included in the disciplines
(e.g., requirements elicitation, prioritization, and validation).

– Software activities timeline [12], that is, when activities take place (i.e.,
development-time, deployment-time, run-time).

The motivation for our work is that lifecycle activities in a self-adaptive software
system are not bound to a traditional timeline (e.g., development-time), but may
be shifted to run-time. However, such shifts have uncharted consequences, for
instance, they may introduce new process requirements in a different phase (e.g.,
that additional activities have to be performed during development or deploy-
ment of the system to enable shifts of other activities to run-time). Moreover,
these consequences must be identified, analyzed, and possibly mitigated, thus re-
sulting in a more dynamic view on software processes. One example of changed
timing for activities in self-adaptive systems is verification and validation. The
dynamic nature of a running self-adaptive system and its environment requires
continuous verification and validation (V&V) to assess the system at run-time.
V&V are traditionally performed at development-time and shifting it to run-
time requires new and efficient techniques (cf. Section 5). The consequence is a
different and more dynamic SE process for self-adaptive systems that needs to
be understood and elaborated. Our main challenge is to provide means for engi-
neering processes for self-adaptive systems that will cover the complete software
lifecycle. Engineering processes implies support for reasoning about costs and
benefits of shifting activities in a process, a prerequisite for engineers to make
informed decisions.

3.1 Example: Migrating Evolution Activities

To illustrate the specifics of SE processes for self-adaptive software systems and
their differences to traditional software development and evolution activities,
we compare the traditional approach to corrective maintenance [50] with the
automatic workarounds approach [13,14]. Automatic workarounds aim to mask
functional faults at run-time by automatically looking for and executing alter-
native ways to perform actions that lead to failures.

Besides the implementation of new or changing requirements, the evolution
of software systems may include corrective maintenance activities [50]. Tradi-
tionally, users experience failures and report them to developers who are then in
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charge of analyzing the failure report, identifying the root cause of the problem,
implementing the changes, and releasing the new fixed version of the software.

In contrast, the automatic workarounds mechanism exploits the intrinsic re-
dundancy of “equivalent operations” usually offered by software systems for
different needs, but for obtaining the same functionality. Consider for example a
container component that implements an operation to add a single element, and
another operation to add several elements. To add two elements, it is possible
to add one element after another, or as an equivalent alternative to add them
both at the same time using the other operation. If adding two elements in se-
quence causes a failure at run-time, the automatic workarounds mechanism tries
to execute the equivalent operation instead, as an attempt to avoid the problem.

Thus, the automatic workarounds approach partially moves corrective main-
tenance activities to run-time. Once the user reports a failure, the automatic
workarounds mechanism tries to find a workaround based on that information. It
checks whether the failure has been experienced by other users and a workaround
is already known. If so, it first attempts to execute the workaround known to be
valid. If no workaround is known or the known workaround no longer works, the
mechanism scans the list of equivalent operations and checks whether they may
serve as workarounds.

The automatic workaround mechanism exemplifies how activities, previously
performed decoupled from running system instances by software developers simi-
lar to development activities, are now performed at run-time by a managing sub-
system in a self-adaptive software system. Another example is the failure analysis
activity, where failure causes are analyzed. In traditional maintenance, the fail-
ure report is analyzed by developers while in a self-adaptive software system,
the managing subsystem analyzes the failure to find alternative workarounds. In
general, compared to traditional SE processes, adding a managing subsystem af-
fects how activities in lifecycle phases are defined and connected. The automatic
workarounds approach exemplifies three effects:

– Migrating activities from one phase to another —the analyzing failure reports
activity is (partially) moved from development-time (maintenance) phase to
run-time. This (partially) delegates the developer’s responsibility for this ac-
tivity to a self-adaptation mechanism in the self-adaptive system and it is an
example of the effects on the activities’ timeline.

– Introducing new activities in other lifecycle phases — introducing the auto-
matic workaroundmechanism requires that additional activities are performed
in the development andmaintenance phases. One example is the identification
of equivalent operations. Whenever some behavior is “assigned” to the auto-
matic workaround mechanism, equivalent operations for this behavior must
be identified.

– Defining new lifecycle phase inter-dependencies — the automatic workaround
mechanism searches for equivalent operations, executes them, and lets the
users evaluate the results. This is repeated either until the user approves the
results, and thus the workaround, or until no more equivalent operations could
be found. If this is the case, the mechanism is not able to provide a
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solution to the problem. The only fallback available is to generate a failure re-
port and send it to the maintenance organization where it will be dealt within
the traditional maintenance activity. This exemplifies how traditional mainte-
nance activities integrate with run-time activities, for instance, as information
providers or as fallback activities if run-time activities do not succeed.

3.2 Understanding a Self-Adaptive Software System’s Lifecycle

Understanding how software is best developed, operated, and maintained is a
pervasive research challenge in the SE field. During the last two decades we
have witnessed the development of ultra-large-scale, integrated, embedded, and
context-aware software systems that have introduced new challenges
concerned with system development, operation, and maintenance. For instance,
dynamic environments may change systems’ goals, the systems’ inherent com-
plexity makes it difficult for external parties to be responsible for the operation,
and finally, the vast number of systems makes the operations task too com-
plex for a single centralized machine or a system operator. One answer to these
advances is to instrument software systems with managing systems that make
them more autonomous. This autonomy means that systems take over some of
the responsibilities previously performed by other roles in the software lifecycle,
such as sensing failures and automatically recovering from them.

An SE process is a workflow of activities that are performed by roles and that
use and produce artifacts in order to develop, operate, and evolve a software sys-
tem. In general, we conceive two extreme poles of SE processes [27,28]. One pole
corresponds to a traditional, off-line lifecycle process where the system itself has
no on-line process activities, that is, no activities are performed by the running
system. In contrast, the other pole describes a process with almost all activities
performed on-line by the system at run-time. The distinction between off-line
and on-line process activities is pivotal for the design of self-adaptive software
systems as it enables engineers to design more sophisticated self-adaptation ca-
pabilities. In practice, a process for a self-adaptive software system is positioned
in between these two extreme poles, due to cost and benefits trade-offs.

The research we envision has as its goal a generic process engineering frame-
work for self-adaptive software systems that provides reasoning support based
on the relative costs and benefits for individual design decisions. The framework
should include a library of reusable process elements (i.e., activity, role, and
artifact definitions). With its built-in support for reasoning, the framework as-
sociates value (costs and benefits) with these process elements. These will guide
and support engineers in understanding, specifying, analyzing, tuning, and en-
acting an SE process for a concrete self-adaptive system. The framework is based
on process modeling, where models specify processes. Such process descriptions
materialize how a self-adaptive software system is developed and how its man-
aging system behaves at run-time. By reifying a process in models, a framework
will promote discussions about the process and its design. In the long term, it
will promote reuse and even automated analysis of processes [45], which will
further support a better understanding of a self-adaptive system’s lifecycle.
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The key research challenge is the design of the process engineering frame-
work for self-adaptive software systems, which includes three corner-stone com-
ponents: (i) A library containing definitions of reusable process elements; (ii)
Support for specification of concrete self-adaptive software systems’ processes;
and (iii) Support for reasoning, analysis, and tuning of such process specifications
based on their relative costs and benefits.

Definitions of process elements for the library as well as process specifica-
tions should be based on an existing framework, such as the Software & Systems
Process Engineering Metamodel Specification (SPEM) [43]. SPEM provides a
modeling language for process specifications including, among others, lifecycle
phases, milestones, roles, activities, and work products. Research needs to iden-
tify required extensions to SPEM in order to model specifics of processes for
self-adaptive systems, like the phases when process elements are employed and
their inter-relationships to elements in other lifecycle phases. For example, in
the automatic workarounds approach, we identified the analyze failure report
activity as one activity that may be performed as part of a regular maintenance
phase or at run-time. Another example is to model dependencies between phases
(e.g., an activity can only be performed at run-time if another activity has been
performed at development-time). In addition, research on how to integrate no-
tions of value, that is, costs and benefits, into SPEM concepts is key. Extensions
to SPEM will provide a language for the process engineering framework. A lan-
guage to define process elements for the library, to model concrete processes for
self-adaptive software systems, and to analyze and tune these processes.

The first framework component, defining reusable elements for the generic
library, requires a solid understanding of SE processes, self-adaptive systems,
and the influential factors such as benefits and costs to a self-adaptive system.
This understanding is materialized by those elements that define processes, ac-
tivities, roles, or artifacts, and is persisted and shared as knowledge, such as
best-practices, in the library. Thus, the library supports the understanding and
specification of concrete processes by reusing the library’s knowledge and element
definitions, which is addressed by the second component.

Starting with an abstract conceptual model of the self-adaptive software
to be developed and the goals and the environments of the system, an engi-
neer instantiates the library to create a process model for the specific product.
The process engineering framework provides methods for decision support and
product/process analysis that will assist in the instantiation task. Self-adaptive
behavior introduces a complicated bi-directional dependency relation between
process modeling and software design. The framework’s methods will have to
take several factors into consideration including the type of adaptation required
at run-time, the associated costs and benefits, and the consequences for other
lifecycle activities. In our example, there is a design decision (to use the auto-
matic workaroundmechanism) that introduces additional activities as part of the
development activities (defining the scope of the mechanism, i.e., which opera-
tions should be covered by the mechanism, and identifying equivalent operations
for this defined scope).
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The third framework component explicitly addresses the product/process anal-
ysis and tuning to obtain an enactable process specification that appropriately
fits the specific product and the product’s goals and environments. A typical sen-
sitivity point is the degree of adaptation and evolution support at run-time. Any
design decision concerned with self-adaptive behavior must analyze, for instance,
the overhead it introduces. Is the overhead acceptable or not? If not, are pre-
computed adaptations possible to tune the process by reducing the overhead?
As stated in [4], run-time validation and verification may not match the require-
ments of efficiency to allow the systems to timely react according to changes.
This exemplifies that software design and process analysis/tuning are not iso-
lated activities, and it promotes the continuous integration of design decisions
and process analysis/tuning throughout a self-adaptive software system’s lifecy-
cle.

Finally, it is likely that an engineer uses the three components of the process
engineering framework iteratively and concurrently rather than sequentially. For
example, while specifying a process, an engineer does not find a suitable process
element definition in the library, and thus, new definitions will be created and
possibly added to the library. Or during product/process analysis, an engineer
identifies the need for process optimization, and searches the library for more
suitable process element definitions that could be used to tune the process.
Like software development processes, the process of using the framework itself
is characterized by incremental, iterative, and evolutionary principles.

Another dimension that should be considered from the beginning is the de-
gree of automation. An absolute requirement is that the process is based on
and uses models throughout the lifecycle. Since the system evolves at run-time,
these models may also have to evolve (model evolution) and thus, models need
to be accessible at run-time, either on-line or off-line [6]. The availability of
run-time models makes it possible to use them as interfaces for monitoring [57]
and adapting [56] a running system, and to perform what-if analyses and con-
sultations [6] (e.g., to test adaptations at the level of models before actually
adapting the running system). In addition, process activities must be based on
up-to-date models. Changes in a run-time model allow to some extent for the
dynamic derivation of new capabilities to respond to situations unforeseen in
the original design. Not all need to be new, we envisage the use of a library of
model transformation strategies [4] to derive system models as well as keeping
the process up-to-date with respect to the running system and vice versa. As
an initial step, model synchronization techniques have already been applied at
run-time to keep multiple system models providing different views on a running
system up-to-date and consistent to each other [56,57].

3.3 Research Challenges

The different problems and dimensions highlighted in the previous sections can
be summarized as research challenges in process comprehension, process model-
ing, and process design.
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First, dynamic environments change the system’s goals. As a consequence
we need proper means to fully comprehend the characteristics of self-adaptive
software systems and the key characteristics of their lifecycles to enhance design
& modeling, optimization, and enactment of such systems and processes. For
example, more autonomy calls for the capability of self-reacting to anomalous
situations. Both probing and reacting must be properly planned, designed, and
implemented, and they also require that some activities, which were traditionally
performed before releasing the system, be shifted to run-time.

To fully comprehend how software processes change when developing a self-
adaptive system also requires that influential factors are identified and under-
stood. Identification of these factors is essential. Factors are costs and benefits
related to self-adaptation capabilities. Less complex capabilities may be sup-
ported even in a primarily off-line process while more advanced, complex self-
adaptation capabilities call for processes where a majority of the activities are
performed on-line.

These two challenges impose a proper formalization of the software processes
to allow involved parties to fully understand the roles, activities, and artifacts at
each stage, but also to increase knowledge and foster reuse. Since some solutions
for process definition already exists and SPEM is imposing as one of the most
interesting/promising solutions, one should analyze it to understand what can
be defined through the standard model, and identify required extensions of this
model to take the specifics of processes for self-adaptive systems into account.

Another challenge associated with processes for self-adaptive software systems
is the fact that processes need to be generated dynamically at run-time since
changes affecting the system, its context and goals may require processes to
adapt. However, to deal effectively with the variability associated with software
adaptation, it is also necessary to adapt the processes that actually manage the
dynamic generation of processes for handling the uncertainty of the changes.
This calls for the need to have reflective processes in which a process is adapted
by reflecting on itself and its goals. Since off-line and on-line activities might
influence each other, another challenge that is identified is the need to consider
how the initial development-time design rationale can affect the processes being
generated at run-time. The reverse is also crucial, there is the need to incorporate
into off-line activities the decisions being made during run-time since they would
provide insightful knowledge about the operational profile of the system.

A SPEM-like solution is the enabler for defining a suitable library of generic,
reusable process elements. The availability of these elements would turn the def-
inition of suitable software processes, for the different self-adaptive systems, into
the assembly of pre-existing blocks with a significant gain in terms of quality,
speed, and accuracy of delivered solutions. Orthogonally, it would also allow for
the analysis and tuning of designed processes to obtain enactable solutions that
appropriately fit different products given their specific stakeholders’ goals and
environments in which they operate. Accurate analysis and optimization capa-
bilities are mandatory to oversee the actual release of these processes, but they
are also important to govern evolution since it is foreseeable that these processes
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must evolve in parallel with developed systems. Processes must remain aligned
and consistent with the corresponding systems and with the environments in
which these systems operate. Adequate design support for self-adaptive systems
and their lifecycle processes, where value and trade-offs are central, is a remain-
ing grand challenge for engineering self-adaptive software systems.

4 Decentralization of Control Loops

Control loops have been identified as crucial elements to realize the adaptation of
software systems [17,30,48]. As outlined in the the former road map [15], a single
centralized control component may realize the adaptation of a software system,
or multiple control components may realize the adaptation of a composite of
software systems in a decentralized manner. In a decentralized setting, the overall
system behavior emerges from the localized decisions and interactions. These two
cases of self-adaptive behavior, in the form centralized and decentralized control
of adaptation are two extreme poles. In practice, the line between the two is
rather blurred, and development may result in a compromise. We illustrate this
with a number of examples.

Adaptation control can be realized by a simple sequence of four activities:
monitor, analyze, plan, and execute (MAPE). Together, these activities form
a feedback control system from control theory [47]. A prominent example of
such adaptation control is realized in the Rainbow framework [19]. Hierarchi-
cal control schemes allow management or the complexity of adaptation when
multiple concerns (self-healing, self-protection, etc.) have to be taken into ac-
count. In this setting, higher level adaptation controllers determine the set values
for the subordinated controllers. A prominent example of a hierarchical control
schema is the IBM architectural blueprint [25]. In a fully decentralized adapta-
tion control schema, relatively independent system components coordinate with
one another and adapt the system when needed. An example of this approach
is discussed in [21] in which component managers on different nodes automat-
ically configure the system’s components according to the overall architectural
specification.

These examples show that a variety of control schemas for self-adaptive sys-
tems are available. Our interest in this section is twofold: first, we are interested
in understanding the drivers to select a particular control schema for adaptation;
and second, we are interested in getting better insight in the possible solutions
to control adaptation in self-adaptive systems. Both the drivers and solutions
are important for software engineers of self-adaptive system to choose the right
solution concerning centralized or decentralized control. In the remainder of this
section, we report on our findings concerning this endeavor and outline some
of the major research questions we see to achieve that a systematic engineering
approach for designing centralized or decentralized control schemes for software
adaptation.
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4.1 Distribution versus Decentralization

Before we elaborate on the problems and possible solutions of different control
schemas in self-adaptive systems, we first clarify terminology. In particular, we
want to clarify the terms distribution and decentralization, two terms that are
often mixed by software engineers in the community of self-adaptive systems,
leading to a lot of confusion.

Textbooks on distributed systems (e.g., [51]) typically differentiate between
centralized data (in contrast to distributed, partitioned, and replicated data),
centralized services (in contrast to distributed, partitioned, and replicated ser-
vices) and centralized algorithms (in contrast to decentralized algorithms).

Our main focus with respect to decentralization is on the algorithmic as-
pect. In particular, with decentralization we refer to a particular type of con-
trol in a self-adaptive software system. With control, we mean the decision
making process that results in actions that are executed by the self-adaptive
system. In a decentralized system there is no single component that has the
complete system state information, and the processes make adaptation deci-
sions based only on local information. In a centralized self-adaptive system
on the other hand, decisions regarding the adaptations are made by a single
component.

With distribution, we refer to the deployment of a software system to the
hardware. Our particular focus of distribution here is on the deployment of the
managed software system. A distributed software system consists of multiple
software components that are deployed on multiple processors that are connected
via some kind of network. The opposite of a distributed software system is a
system consisting of software that is deployed on a single processor.

From this perspective, control in a self-adaptive software system can be
centralized or decentralized, independent of whether the managed software is
distributed. In practice, however, when the software is deployed on a single
processor, the adaptation control is typically centralized. Similarly, decentral-
ized control often goes hand in hand with distribution of the managed software
system.

The existing self-adaptive literature and research, in particular those with
a software engineering perspective, have by and large tackled the problem of
managing either local or distributed software systems in a centralized fash-
ion (e.g., [19,25,44]). While promising work is emerging in decentralized con-
trol of self-adaptive software (e.g., [11,21,39,58,59]), we believe that there is
a dearth of practical and effective techniques to build systems in this
fashion.

It is important to highlight that the adaptation control schema we consider
here (from centralized to decentralized control) is just one dimension of the de-
sign space of a distributed self-adaptive system. Other aspects of the design space
include the actual distribution of the MAPE components, the distribution of the
data and supporting services required to realize adaptation, the mechanisms for
communication and coordination, etc.
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4.2 Drivers for Selecting a Control Schema for Adaptation

Two key drivers for selecting the right control schema for adaptation in self-
adaptive systems are the characteristics of the domain and the requirements of
the problem at hand.

Domain Characteristics. Specific properties of the domain may put con-
straints on the selection of a particular control schema for adaptation. We give
a number of example scenarios.

– In open systems, it might be the case that no trustworthy authority exists
that can realize central control.

– When all information that is required for realizing adaptations is available
at the single node, a centralized control schema may be easy to realize.
However, in other settings, it might be very difficult or even unfeasible to
get centralized access to all the information that is required to perform an
adaptation.

– The communication network may be unreliable causing network disruptions
that require decision making for adaptations based on local information only.

Requirements of the Problem at Hand. Stakeholder requirements may
exclude particular solutions to realize adaptations.

If optimization is high on the priority list of requirements, a centralized ap-
proach may be easier to develop and enables optimization to be rather straight-
forward. On the other hand, in a decentralized approach, meeting global goals is
known to be a complex problem. Hence, we have to compromise on the overall
optimality in most cases.

For systems in which guarantees about system wide properties are crucial,
fully decentralized solutions can be very problematic. Decentralized control
imposes difficult challenges concerning consistency, in particular in distributed
settings with unreliable network infrastructures. However, if reaction time is a
priority, exchanging all monitored data that is required for an adaptation may
be too slow (or too costly) in a centralized setting.

When scalability is a key concern, a decentralized solution may be preferable.
Control systems with local information scale well in terms of size, and also re-
garding performance as the collection of information and control implementation
are local. In contrast, scalability in a centralized setting is limited as all control
information must be collected and processed at the single control point.

A central control scheme is also less robust as it results in a single point of
failure. In a decentralized setting, when subsystems get disconnected, they may
be able to operate and make decisions based on the local information only, hence
increasing robustness.

4.3 Patterns for Interacting Control Loops

Ideally, we would like to have a list of problem characteristics/requirements
and then match solutions against these. However, in practice, as stakeholders
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typically have multiple, often conflicting requirements, any solution will imply
trade-offs.

We have identified different solutions in the form of patterns of interacting
control loops in self-adaptive systems. Patterns are an established way to capture
design knowledge fostering comprehension of complex systems, and serving as
the basis for engineering such systems. Each pattern can be considered as a
particular way to orchestrate the control loops of complex self-adaptive software
systems, as we explained in Section 2.2.

In order to describe the different patterns, we consider the interactions among
the different phases of control loops realized by the MAPE components. Typi-
cally only the M and E phases interact with the managed system (to observe and
adapt the system respectively). Furthermore, we consider possible peer interac-
tions among phases of any particular type (e.g., interactions between P phases),
and interactions among phases that are responsible for subsequent phases (e.g.,
an A phase interacts with a P phase, or a P phase that interacts with an E
phase). According to the different interaction ways we have identified five differ-
ent patterns that we briefly illustrate in the following.

Pattern 1: Hierarchical Control. In the hierarchical control pattern, the
overall system is controlled by a hierarchical control structure where complete
MAPE loops are present at all levels of the hierarchy. Generally, different levels
operate at different time scales. Lower levels loops operate at a short time scale,
to guarantee timely adaptation concerning the part of the system under their
direct control. Higher levels operate at a longer time scale and with a more global
vision. MAPE loops at different levels interact with each other by exchanging
information. The MAPE loop at a given level may pass to the level above infor-
mation it has collected, possibly filtered or aggregated, together with information
about locally planned actions, and may issue to the level below directives about
adaptation plans that should be refined into corresponding actions.

This pattern naturally fits systems with a hierarchical architecture. However,
independently of the actual system architecture, hierarchical organization of the
control system has been proposed (e.g., in [33]) to get a better separation of
concerns among different control levels.

Pattern 2: Master/Slave. The master/slave pattern creates a hierarchical
relationship between one master that is responsible for the analysis and planning
part of the adaptation and multiple slaves that are responsible for monitoring
and execution. Figure 1 shows a concrete instance of the pattern with two slaves.

In this case, the monitor components M of the slaves monitor the status of the
local managed subsystems and possibly their execution environment and send
the relevant information to the analysis component A of the master. A, in turn,
examines the collected information and coordinates with the plan component P,
when a problem arises that requires an adaptation of the managed system. The
plan component then puts together a plan to resolve the problem and coordinates
with the execute components (E) on the slaves to execute the actions to the local
managed subsystems.
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Fig. 1. Master-slave pattern

The master/slave pattern is a suitable solution for application scenarios in
which slaves are willing to share the required information to allow centralized
decision making. However, sending the collected information to the master node
and distributing the adaptation plans may impose a significant communication
overhead. Moreover, the solution may be problematic in case of large-scale dis-
tributed systems where the master may become a bottleneck.

Pattern 3: Regional Planner. In the regional planner pattern, a (varying)
number of local hosts are hierarchically related to a single regional host. The local
hosts are responsible for monitoring, analyzing and executing, while the regional
host is in charge of the planning part. In this case, the monitor component M
of each local host monitors the status of the managed subsystem and possibly
its execution environment, and the local analysis component A analyzes the
collected information, and reports the analysis results to the associated regional
plan component P. P collects this information from all the hosts under its direct
supervision, thus acquiring a global knowledge of their status. The regional P
is in charge to evaluate the need of adaptation of the managed system and, in
case, to elaborate an adaptation plan to resolve the problem, coordinating its
decisions with other peer regional plan components. The plan can then be put
in action activating the execute components E on the local hosts involved in the
adaptation.

Regional planner is a possible solution to the scalability problems with mas-
ter/slave. Regions may also map to ownership domains where each planner is
responsible for the planning of adaptations of its region.

Pattern 4: Fully Decentralized. In this pattern, each host implements a
complete MAPE loop, whose local M, A, P and E components coordinate their
operation with corresponding peer components of the other hosts. Ideally, this
should lead to a flexible sharing of information about the status of the managed
systems, as well as the results of the analysis. The triggering of possible adapta-
tion actions is then agreed on and managed by the local P components, which
then activate their local E components to execute the actions to the local man-
aged subsystems. In practice, achieving a globally consistent view on the system
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status, and reaching a global consensus about suitable adaptation actions is not
an easy task. In this case, it could be preferable to limit the interaction among
peer control components to get some partial information sharing and some kind
of lose coordination. Generally, this may lead to sub-optimal adaptation actions,
from the overall system viewpoint. However, depending on the system at hand
and the corresponding adaptation goals, even local adaptation actions based
on partial knowledge of the global system status may lead to achieve globally
optimal goals (TCP adaptive control flow is a typical example of this).

Fig. 2. Decentralized pattern

Pattern 5: Information Sharing. In this pattern, each host owns local M, A,
P and E components, but only the monitor components M communicates with
the corresponding peer components. Therefore the information collected about
the status of the managed systems is shared among the various monitors, while
the analysis of the collected data and the decision about possible adaptation
actions taken by the plan components P are performed without any coordination
action with the other hosts.

Information sharing is for example useful in peer-to-peer systems where peers
can perform local adaptations but require some global information. One possible
approach to share such global information is by using a gossip approach.

4.4 Outlook

So far, the research community on self-adaptive and autonomic systems has spent
little effort in studying the interactions among components of MAPE loops. Our
position of making the control loops explicit underlines the need for a disciplined
engineering practice in this area. Besides the consolidation of architecture knowl-
edge in the form of different MAPE configurations as patterns, we also need
practical interface definitions (signatures and APIs), message formats, and pro-
tocols. The necessity of such definitions has partially already been appreciated
in the past, e.g., in [37] the authors standardize the communication from the
A to the P component by using standard BPEL (Business Process Execution
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Language) as the data exchange format, but no comprehensive approach exists
so far.

In terms of future research, there are a number of interesting challenges that
need to be investigated when considering different self-adaptive control schemes,
including:

– Pattern applicability — in what circumstances and for what systems are
the different patterns of control applicable? Which quality attribute require-
ments hinder or encourage which patterns? What styles and domains of
software are more easily managed with which patterns?

– Pattern completeness — what is the complete set of patterns that could be
applied to self-management?

– Quality of service analysis — for decentralized approaches, what techniques
can we use to guarantee system-wide quality goals? What are the coordina-
tion schemes that can enable guaranteeing these qualities?

We already mentioned the need for studying other aspects of the design space
of adaptation in self-adaptive software systems, including distribution of the
MAPE components, distribution of the data and supporting services required to
realize adaptation, etc.

Finally, there may be a relationship between the architecture of the managed
system and the architecture of the management system. How do we characterize
this relationship and help us to choose the appropriate management patterns for
the appropriate systems?

5 Practical Run-Time Verification and Validation

In a 2010 science and technology research agenda for the next 20 years, US
Air Force (USAF) chief scientist Werner Dahm identified control science as a
top priority for the USAF [60]. Control science can be defined as a systematic
way to study certifiable validation and verification (V&V) methods and tools
to allow humans to trust decisions made by self-adaptive systems. According
to Dahm, the major barrier preventing the USAF from gaining more capability
from autonomous systems is the lack of V&V methods and tools. In other words
run-time V&V methods and tools are critical for the success of autonomous,
autonomic, smart, self-adaptive and self-managing systems.

While high levels of adaptability and autonomy result in obvious benefits to
the stakeholders of software systems, realizing these abilities with confidence is
hard. Designing and deploying certifiable V&V methods for self-adaptive sys-
tems (SAS) is one of the major research challenges for the software engineering
community in general and the self-adaptive systems community in particular. It
may take a large part of this decade, if not more, investigating these research
challenges to arrive at effective and practical solutions [60].

The V&V roadmap chapter in this book, entitled “Towards Practical
Run-time V&V of Self-Adaptive Software Systems,” provides a vision of open
challenges and discusses run-time V&V challenges from several perspectives:
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(i) contrasting design-time and run-time V&V; (ii) defining adaptation prop-
erties and viability zone dynamics for SAS; (iii) making V&V explicit in the
self-adaptation loops of SAS; (iv) characterizing run-time V&V enablers (i.e.,
requirements at run-time, models at run-time, and smart context); and (v) en-
suring adaptive control.

5.1 Run-Time V&V Research Enablers

Foundational Questions and the Viability Zone. One systematic approach
to control science for adaptive systems is to study V&V methods for the mech-
anisms that sense the dynamic environmental conditions and the target system
behavior, and act in response to these conditions by answering the fundamental
questions: (i) what to validate? (ii) where to measure the aspects to validate?
and (iii) when to validate these aspects? The what refers to the system’s require-
ments and adaptation properties that must be validated and verified. The where
relates to the separation of concerns between the target system and the adapta-
tion mechanism (where V&V must be applied). Finally, the when corresponds
to the stages of the adaptation process in which V&V tasks are to be performed.
The answers to these questions determine the V&V methods that are suitable to
keep a particular adaptive system operating within its viability zone. We define
the viability zone of an adaptive system as the set of possible states in which the
system’s requirements and desired properties are satisfied [3].

Dependency on Dynamic Context Monitoring. Viability zones are highly
dependent on relevant context entities. Relevant context entities provide the
attributes to characterize the dimensions of a viability zone.

Viability zones are dynamic. Every time the adaptation process modifies ei-
ther the target system or the adaptation controller, new variables are added to,
or existing ones are replaced by others in the viability zone. Changes in require-
ments or adaptation goals can affect also the viability zone. Therefore, dynamic
context monitoring is an important requirement for run-time V&V tasks, since
the coherence of the monitoring infrastructure with respect to the system goals
can be compromised. Dynamic context monitoring exploits models and require-
ments at run-time to maintain an up-to-date and explicit relationship between
system requirements and monitoring strategies. This explicit representation and
monitoring allow SAS to recognize changes in requirements and then to trigger
changes in monitoring strategies accordingly [52,54,55].

5.2 Run-Time V&V Research Directions

Software validation and verification (V&V) concerns the quality assessment of
software systems throughout their lifecycle. The goal is to ensure that the soft-
ware system satisfies its functional requirements and meets its expected quality
attributes [7,26]. To establish “certifiable trust” in software systems that adapt
themselves according to contextual and environmental changes at run-time, we
need powerful and versatile V&V methods, techniques, and tools. A promising
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research direction is to ease or relax the traditional software engineering ap-
proach, where we satisfy requirements outright, to a more control engineering
approach, where we regulate the satisfaction of functional and particularly non-
functional requirements using feedback loops [41]. To accomplish this, adaptive
software assesses its own situation with respect to its goals continuously, and uses
different adaptation strategies accordingly. Nevertheless, the system itself must
ensure that its desired behavior is not compromised as a result of the adaptation
process. This is particularly important for safety-critical applications.

Quality assessment of self-adaptive software involves both the immutable and
the adaptive parts of the system. For the immutable parts, traditional V&V
techniques are sufficient. However, for the adaptive parts, the engineering of
self-adaptive software requires the development of new, or the tailoring of tra-
ditional V&V methods to be applied at run-time throughout the adaptation
process. The Models@run-time and Requirements@run-time research commu-
nities provide valuable support for validating and monitoring run-time behav-
ior with respect to the system’s requirements [6,46]. The term control science
is an appropriate term to characterize this research realm that combines self-
adaptation with run-time V&V techniques to regulate the satisfaction of sys-
tem requirements. It is critical for the SEAMS community to develop a control
science involving design-time and run-time V&V methods and techniques for
self-adaptive and self-managing systems with inferential, incremental and com-
positional characteristics that provide adequate confidence levels and certifiable
trust in the self-adaptation processes of such systems.

An important first step towards practical run-time validation and verification
of self-adaptive software systems is to make V&V tasks explicit in the elements of
feedback adaptation loops. This means, for example, to add a V&V component
to every phase of the MAPE-K loop [30]. V&V enablers (i.e., requirements at
run-time, models at run-time, and dynamic context monitoring) provide effective
support to materialize V&V assurances for self-adaptation. Models at run-time
enable the validation and monitoring of run-time behavior by providing on-line
abstractions of the system state and its relevant context [2,5]. Requirements
at run-time provide V&V tasks with on-line representations of the system re-
quirements and adaptation properties throughout the adaptation process [46].
Dynamic context monitoring enables run-time V&V with relevant monitoring
mechanisms that keep track of aspects to validate, even when monitoring re-
quirements change at run-time [54].

5.3 Research Challenges

We argue that the fundamental problems addressed by run-time V&V for self-
adaptive systems are identical to those of traditional, design-time V&V [20].
That is, independent of the self-* adaptation goals, context awareness, and even
uncertainty, V&V fundamentally aims at guaranteeing that a system meets its
requirements and expected properties. One key differentiating factor between
run-time and design-time V&V is that resource constraints such as time and
computing power are more critical for run-time V&V. From these constraints,
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non-trivial challenges arise, and to tackle them we should depart of course from
traditional V&V methods and techniques. On the one hand, these formal V&V
methods are often too expensive to be executed regularly at run-time when
the system adapts due to their time and space complexity. On the other hand,
context-dependent variables are unbound at design time, but bound at run-time.
Thus, performing V&V on these variables at run-time is valuable to reduce the
verification space significantly, even when the SAS system viability zone varies
with context changes. From this perspective, it is crucial to determine precisely
when in the adaptation process these V&V operations are to be performed to
guarantee the system properties and prevent unsafe operation.

V&V Techniques: Desirable Properties. Even though traditional V&V
techniques (e.g., testing, model checking, formal verification, static and run-time
analysis, and program synthesis) have been used for the assessment of quality at-
tributes such as those mapped to adaptation properties by Villegas et al. [53], an
important challenge is their integration into the self-adaptation lifecycle (i.e., at
run-time). This integration requires yet another kind of properties—properties
on V&V techniques—including sensitivity, isolation, incrementality, and com-
posability.

According to González et al., sensitivity and isolation refer to the level of
run-time testability that an adaptive software system can support [24]. On the
one hand, sensibility defines the degree to which run-time testing operations in-
terfere with the running system services delivery. That is, the degree in which
run-time V&V may affect the accomplishment of system requirements and adap-
tation goals. Examples of factors that can affect run-time test sensitivity are (i)
component state, not only because run-time tests are influenced by the actual
state of the system, but because the state of the system could be altered as a
result of test invocations; (ii) component interactions, as the run-time testabil-
ity of a component may depend on the testability of the components it interacts
with; (iii) resource limitations, because run-time V&V may affect non-functional
requirements such as performance at undesirable levels; and (iv) availability, as
run-time validation can be performed depending on whether testing tasks re-
quire exclusive usage of components with high availability requirements. On the
other hand, González et al. also define isolation as the means to counteract run-
time test sensitivity. Instances of techniques for implementing test isolation are
(i) state separation (e.g., blocking the component operation while testing takes
place, performing testing on cloned components); (ii) interaction separation (e.g.,
blocking component interactions that may be propagated due to results of test
invocations); (iii) resource monitoring (e.g., indicating that testing must be post-
poned due to resources unavailability); and (iv) scheduling (e.g., planning testing
executions when involved components are less used).

Requirements and Models at Run-Time. Requirements define the objec-
tives of validation and verification for software systems. However, adaptive sys-
tems requirements are dynamic and subject to change at run-time. Thus, these
systems require suitable V&V techniques to cope with the dynamics
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after behavioral and structural changes. From this perspective, the application
of run-time automatic testing techniques to enable adaptive software systems
with self-testing capabilities seems to be a promising approach. An instance of
this approach is the self-testing framework for autonomic computing systems
proposed by King et al. [31]. This framework dynamically validates change re-
quests in requirements using regression testing and customized tests to assess the
behavior of the system under the presence of added components. For this, au-
tonomic managers designed for testing are integrated into the current workflow
of autonomic managers designed for adaptation. Two strategies support their
validation process: (i) safe adaptation with validation, and (ii) replication with
validation. In the first strategy, testing autonomic managers apply an appro-
priate validation policy during the adaptation process where involved managed
resources are blocked until the validation is completed. If the change request
is accepted, the corresponding managed resources are adapted. In the second
strategy, the framework maintains copies of the managed resources for valida-
tion purposes. Thus, changes are implemented on copies, then validated, and
if they are accepted, the adaptation is performed. Testing policies can also be
defined by administrators and loaded into the framework at run-time.

This self-testing approach illustrates the blurred boundaries among the soft-
ware lifecycle phases and the many implications of V&V for self-adaptive software
systems. Some of these implications constitute challenges that arise from require-
ments engineering, and model-driven engineering. First, run-time V&V tasks rely
onon-line representations of the systemand its requirements. Second, requirements
at run-time support requirements traceability to identify incrementally what to
validate, the requirements subset that has changed, and when. Moreover, test case
priority further contributes to refine this incremental validation.Third, for context-
aware requirements, run-time models must explicitly define the mapping between
environmental conditions that must be monitored at run-time, and corresponding
varying requirements. Furthermore, models are useful to support the dynamic re-
configuration of monitoring strategies according to changes in requirements and
the execution environment. The Requirements@run-time and Models@run-time
research communities provide valuable foundations for run-time V&V of
self-adaptive software systems [2,5,46].

Context Uncertainty. To cope with context uncertainty, some of the previ-
ously proposed approaches to manage unexpected context changes, fully auto-
mated or human-assisted, can be exploited. For instance, Murray et al. used
feedback loops to cover, with respect to the system requirements, the broadest
possible range of system states to transition among them by adaptation opera-
tions. Their strategy is to augment robustness by reducing context uncertainty
[42]. The approach by Goldsby and Cheng uses state machines to model adaptive
systems with transitions as system reconfiguration [23]. Inspired by the adapt-
ability of living organisms, they model systems using UML diagrams and apply
digital evolution techniques to generate not only one, but several target states
for a given transition, and then assist the user to select the one most appro-
priate. Thus, they address context uncertainty by generating several possible
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target system states with qualitatively different QoS characteristics, all of them
satisfying the required QoS conditions.

On the side of exhaustive V&V methods, model checking has been used at
design time to verify desired properties or conditions on software systems to
overcome the limitations of testing techniques, based on a correctness specifica-
tion. The well known practical problem of this method is the state explosion,
which implies the representation of all of the states of the system behavior. In
self-adaptive software, this problem is augmented given its changing nature. In
effect, the software structure of this kind of systems is subject to re-configuration
operations (e.g., adding/removing components and their interconnections) in re-
sponse to context changes at run-time. Thus, in contrast to the checking require-
ments of structural static configuration of traditional software, in self-adaptive
systems model checking must be applied to each of the possible configurations
produced by adaptation mechanisms.

The validation and verification of self-adaptive software systems at run-time
is an urgent necessity, and a huge challenge to establish “certifiable trust” in
practical adaptation mechanisms. However, despite the development of run-time
V&V methods is necessary and plays an important role in the quest towards
achieving effective run-time V&V, they are insufficient. To reason effectively
and provide assurances on the behavior of self-adaptive systems at run-time, a
promising approach is to combine control and software engineering techniques.
We aptly termed this combination of foundational theories and principles for
run-time V&V methods control science.

This section discussed important challenges and possible roadblocks for run-
time validation and verification of self-adaptive systems. First, the traceability
of evolving requirements, and run-time representations of system aspects are
crucial for the identification of what to validate and when. Concrete issues con-
cerning the answers to these questions appear when deciding in which phase
of the adaptation loop to implement run-time V&V techniques. Second, these
techniques must exhibit desirable properties thus increasing their complexity.
Third, dynamic instrumentation such as dynamic monitoring is also required to
realize run-time V&V techniques to be implemented throughout the adaptation
process.

The assessment of research approaches on self-adaptive software systems con-
stitutes an important starting point for the development of standardized and
objective certification methods. For this, we believe that the evaluation frame-
work proposed by Villegas et al. provides useful guidance and insights [53]. The
SEAMS community is ideally positioned to conduct ground-breaking control
science research in our quest towards certifiable trust in self-adaptation.

6 Overall Challenges

In this section, we present the overall conclusions of the research roadmap paper
in the context of the major ensuing challenges for our community. First and
foremost, this exercise was not intended to be exhaustive. We decided to focus
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on four major topics identified as key to engineering of self-adaptive software
systems: design space of self-adaptive solutions, software engineering processes
for self-adaptive systems, from centralized to decentralized control, and practical
run-time verification and validation (V&V) for self-adaptive systems. We now
summarize the most important challenges for each topic.

– Design space — a major challenge associated with design space is to infuse a
systematic understanding of the alternatives for adaptive control into the de-
sign process. Since the alternatives could be represented as clusters of design
decisions, another challenge should be the detailed refinement of dimensions
that characterize these clusters in order to provide a complete set of choices
to the developer. Moreover, since dimensions should not be dependent, the
search space for the solution can be reduced by identifying the dependencies
between the different dimensions. Another identified challenge is how to map
a generalized design space into an implementation.

– Processes — there are two key challenges related to software processes for
self-adaptive systems, first, to have a full understanding of the nature of
system, its goals and lifecycle in order to establish appropriate software pro-
cesses, and second, to understand how processes changes and what are the
factors affecting these changes. Another major challenge is the formalization
of processes for understanding the roles, activities, and artifacts at each stage
of the process. This formalization would enable the definition of a library of
generic and reusable entities that could be used across different self-adaptive
software systems, and would also facilitate the analysis and tuning of pro-
cesses according to the system.

– Decentralization of control loops — since the direction taken in this topic
was the identification of patterns for capturing the interaction of control
loops in self-adaptive systems, most of the challenges identified are associated
with patterns. For example, concerning pattern applicability, what are the
circumstances that decide the applicability of patterns, and what application
domains or architectural styles that are better managed by patterns? Also
there is the challenge of identifying a complete set of patterns that could be
applied to the management of self-adaptive systems. Outside the context of
patterns, when considering decentralized approach, a major challenge would
be to identify techniques that can be used for guaranteeing system-wide
quality goals, and the coordination schemes that enable guaranteeing these
qualities.

– Practical run-time verification and validation — three key challenges related
to the run-time verification and validation of self-adaptive software systems
were identified. The first challenge is associated with the need to trace the
evolution of requirements in order to identify what and when to validate,
and the V&V method to be employed. The second challenge is to control
the inevitable complexity that is expected from run-time V&V techniques,
and final challenge is related to the need of providing appropriate dynamic
monitoring when employing run-time V&V techniques.



28 R. de Lemos et al.

There are several topics related to software engineering for self-adaptive systems
that we did not cover, some of which we now mention, and which can be con-
sidered key challenges on their own. First, how to design in an integrated way
self-adaptive system in order to enable them to handle expected and unexpected
changes? For example, when composing systems designs should provide some
elasticity in order to improve their robustness when reacting to changes. An-
other issue related to system design is whether adaptation should be reactive or
proactive. Further, how should competition and cooperation be managed? How
to integrate development-time and run-time V&V in order to provide the neces-
sary assurances before deploying a self-adaptive system? Still related to run-time
V&V, what kind of processes and how these should be deployed in order to man-
age the collection, structuring and analysis of evidence? One of the key activities
of feedback control loops in self-adaptive software systems is decision making,
and its associated adaptation techniques and criteria for balancing, for example,
quality of services, over-provisioning, and cost of ownership. Underpinning all
the above issues is the question what shape should take a comprehensive system
theory, or theories, for self-adaptive software systems [16]? We also did not cover
technologies like model-driven development, aspect-oriented programming, and
software product lines. These technologies might offer new opportunities and ap-
proaches in the development of self-adaptive software systems. Finally, we did not
discuss exemplars — canonical problems and accompanying self-adaptive solu-
tions — which are a likely stepping stone to the necessary benchmarks, methods,
techniques, and tools to solve the challenges of engineering self-adaptive software
systems.

The four topics discussed in this paper outline challenges that our commu-
nity must face in engineering self-adapting software systems. All these challenges
result from the dynamic nature of self-adaptation, which brings uncertainty to
the forefront of system design. It is this uncertainty that challenges the applica-
bility of traditional software engineering principles and practices, but motivates
the search for new approaches for developing, deploying, managing and evolving
self-adaptive software systems.
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