CKY (11/12)

CS 585, Fall 2015
Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor
College of Information and Computer Sciences
University of Massachusetts Amherst
CKY

Grammar
Adj -> yummy
NP -> foods
NP -> store
NP -> NP NP
NP -> Adj NP

For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..<j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] (Recognizer)
 ... or ...
 add (A,B,C, k) to cell [i,j] (Parser)

Recognizer: per span, record list of possible nonterminals

Parser: per span, record possible ways the nonterminal was constructed.
For cell \([i,j]\) (loop through them bottom-up):
For possible splitpoint \(k=(i+1) .. (j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B \; C\),
\add A to cell \([i,j]\) \((\text{Recognizer})\)
... or ...
\add (A,B,C, k) to cell \([i,j]\) \((\text{Parser})\)
For cell [i,j] (loop through them bottom-up)
 For possible splitpoint k=(i+1)..(j-1):
 For every B in [i,k] and C in [k,j],
 If exists rule A -> B C,
 add A to cell [i,j] (Recognizer)
 ... or ...
 add (A,B,C, k) to cell [i,j] (Parser)
Grammar

- Adj -> yummy
- NP -> foods
- NP -> store
- NP -> NP NP
- NP -> Adj NP

CKY

For cell \([i,j]\) (loop through them bottom-up)

For possible splitpoint \(k = (i+1)\ldots(j-1)\):

- For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
 - If exists rule \(A \rightarrow B\ C\),
 - **add** \(A\) to cell \([i,j]\) (**Recognizer**)
 - or ...
 - **add** \((A,B,C,\ k)\) to cell \([i,j]\) (**Parser**)
Grammar
- Adj -> yummy
- NP -> foods
- NP -> store
- NP -> NP NP
- NP -> Adj NP

For cell \([i,j]\) (loop through them bottom-up)
For possible splitpoint \(k=(i+1)\)..<\(j-1\):
 For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
 If exists rule \(A -> B C\),
 add \(A\) to cell \([i,j]\) (Recognizer)
 ... or ...
 add \((A,B,C, k)\) to cell \([i,j]\) (Parser)

Recognizer: per span, record list of possible nonterminals

Parser: per span, record possible ways the nonterminal was constructed.
For cell \([i,j]\) (loop through them bottom-up):
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B C\),
\begin{align*}
&\text{add } A \text{ to cell } [i,j] \quad (\text{Recognizer}) \\
&\quad \text{... or ...} \\
&\quad \text{add } (A,B,C, k) \text{ to cell } [i,j] \quad (\text{Parser})
\end{align*}
For cell $[i,j]$ (loop through them bottom-up)

For possible splitpoint $k = (i+1)..(j-1)$:

For every B in $[i,k]$ and C in $[k,j]$,

If exists rule $A \rightarrow B \; C$,

add A to cell $[i,j] \quad \text{(Recognizer)}$

... or ...

add $(A,B,C, \; k)$ to cell $[i,j] \quad \text{(Parser)}$
Grammar
- Adj -> yummy
- NP -> foods
- NP -> store
- NP -> NP NP
- NP -> Adj NP

For cell [i,j] (loop through them bottom-up)
For possible splitpoint $k=(i+1)\ldots(j-1)$:
For every B in [i,k] and C in [k,j],
If exists rule $A \rightarrow B\; C$,
- **add** A to cell [i,j] (**Recognizer**)
- ... or ...
- **add** $(A,B,C,\; k)$ to cell [i,j] (**Parser**)

Recognizer: per span, record list of possible nonterminals

Parser: per span, record possible ways the nonterminal was constructed.
For cell \([i,j]\) (loop through them bottom-up)

For possible splitpoint \(k=(i+1)\ldots(j-1)\):

For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),

If exists rule \(A \rightarrow B C\),

\[
\text{add } A \text{ to cell } [i,j] \quad (\text{Recognizer})
\]

... or ...

\[
\text{add } (A,B,C, k) \text{ to cell } [i,j] \quad (\text{Parser})
\]
For cell $[i,j]$ (loop through them bottom-up)
For possible splitpoint $k=(i+1)..(j-1)$:
For every B in $[i,k]$ and C in $[k,j]$,
If exists rule $A \rightarrow B \ C$,
\[\text{add } A \text{ to cell } [i,j] \quad \text{(Recognizer)}\]
... or ...
\[\text{add } (A,B,C, k) \text{ to cell } [i,j] \quad \text{(Parser)}\]

Grammar
- Adj \rightarrow yummy
- NP \rightarrow foods
- NP \rightarrow store
- NP \rightarrow NP NP
- NP \rightarrow Adj NP

Recognizer: per span, record list of possible nonterminals

Parser: per span, record possible ways the nonterminal was constructed.
For cell \([i,j]\) (loop through them bottom-up)
 For possible splitpoint \(k=(i+1)\ldots(j-1)\):
 For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
 If exists rule \(A \rightarrow B \ C\),
 \textit{add} \(A\) to cell \([i,j]\) \(\textup{(Recognizer)}\)
 \ldots or \ldots

 \textit{add} \((A,B,C, \ k)\) to cell \([i,j]\) \(\textup{(Parser)}\)

Recognizer: per span, record list of possible nonterminals

Parser: per span, record possible ways the nonterminal was constructed.
For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,

\[\text{add } A \text{ to cell } [i,j] \quad (\text{Recognizer})\]

... or ...

\[\text{add } (A,B,C, \ k) \text{ to cell } [i,j] \quad (\text{Parser})\]
For cell \([i,j]\) (loop through them bottom-up)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B \ C\),
\textit{add} \(A\) to cell \([i,j]\) \(\textit{(Recognizer)}\)
... or ...
\textit{add} \((A,B,C,\ k)\) to cell \([i,j]\) \(\textit{(Parser)}\)

\textit{Recognizer:} per span, record list of possible nonterminals

\textit{Parser:} per span, record possible ways the nonterminal was constructed.

\begin{itemize}
 \item Grammar
 \begin{itemize}
 \item Adj \(\rightarrow\) yummy
 \item NP \(\rightarrow\) foods
 \item NP \(\rightarrow\) store
 \item NP \(\rightarrow\) NP NP
 \item NP \(\rightarrow\) Adj NP
 \end{itemize}
\end{itemize}
For cell \([i,j]\) (loop through them bottom-up)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B C\),
\(\text{add } A\) to cell \([i,j]\) \(\text{(Recognizer)}\)
\(...\text{ or }...\)
\(\text{add } (A,B,C, k)\) to cell \([i,j]\) \(\text{(Parser)}\)
For cell \([i,j]\) (loop through them bottom-up)

For possible splitpoint \(k=(i+1) \ldots (j-1)\):

For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),

If exists rule \(A \rightarrow B C\),

add \(A\) to cell \([i,j]\) \((\text{Recognizer})\)

... or ...

add \((A,B,C,k)\) to cell \([i,j]\) \((\text{Parser})\)
For cell [i,j] (loop through them bottom-up)
For possible splitpoint k=(i+1)..(j-1):
For every B in [i,k] and C in [k,j],
If exists rule A -> B C,
add A to cell [i,j]
(Recognizer)
... or ...
add (A,B,C, k) to cell [i,j]
(Parser)
For cell \([i,j]\) (loop through them bottom-up)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \to B \ C\),
add \(A\) to cell \([i,j]\) \((\text{Recognizer})\)
... or ...
add \((A,B,C, \ k)\) to cell \([i,j]\) \((\text{Parser})\)
How do we fill in $C(1,2)$?

For cell $[i,j]$
For possible splitpoint $k=(i+1)..(j-1)$:
For every B in $[i,k]$ and C in $[k,j]$,
If exists rule $A \rightarrow B \ C$,
$\textit{add} \ A$ to cell $[i,j]$

Computational Complexity?
For cell \([i,j]\)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B\ C\),
\(\text{add}\ A\ \text{to cell}\ [i,j]\)

How do we fill in \(C(1,2)\)?
Put together \(C(1,1)\) and \(C(2,2)\).
For cell \([i,j]\)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B C\), add \(A\) to cell \([i,j]\)

How do we fill in \(C(1,3)\)?

Computational Complexity?
How do we fill in $C(1,3)$?

One way …

For cell $[i,j]$
For possible splitpoint $k = (i+1) .. (j-1)$:
 For every B in $[i,k]$ and C in $[k,j]$,
 If exists rule $A \rightarrow B C$,
 add A to cell $[i,j]$

Computational Complexity?
For cell \([i,j]\)
For possible splitpoint \(k=(i+1)\ldots(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B C\),
\(\text{add} \ A\) to cell \([i,j]\)

How do we fill in \(C(1,3)\)?

One way …
Another way.

Computational Complexity?
For cell \([i,j]\)
For possible splitpoint \(k=(i+1)..(j-1)\):
For every \(B\) in \([i,k]\) and \(C\) in \([k,j]\),
If exists rule \(A \rightarrow B\ C\),
\textit{add} \(A\) to cell \([i,j]\)

How do we fill in \(C(1,n)\)?

Computational Complexity?
For cell $[i,j]$
 For possible splitpoint $k=(i+1) \ldots (j-1)$:
 For every B in $[i,k]$ and C in $[k,j]$,
 If exists rule $A \rightarrow B \ C$,
 add A to cell $[i,j]$

How do we fill in $C(1,n)$?

$n - 1$ ways!

Computational Complexity?
For cell $[i,j]$
 For possible splitpoint $k=(i+1)\ldots(j-1)$:
 For every B in $[i,k]$ and C in $[k,j]$,
 If exists rule $A \rightarrow B\;C$,
 add A to cell $[i,j]$