Project discussion

CS 585, Fall 2015
Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor
• Midterm moved to 10/20
• HW1 grades coming this weekend
• Ex2&3 handed back (up front) - should be recorded “Received” in Moodle
• (Extra HW0 submissions still being processed, done soon)
Project

• Either *build* natural language processing systems, or *apply* them for some task.

• Use or develop a dataset. Report empirical results or analyses with it.

• Different possible areas of focus
 • Implementation & development of algorithms
 • Defining a new task or applying a linguistic formalism
 • Exploring a dataset or task
Project

- Groups of 1-3: we encourage size 2
- We expect more work with more team members

Proposal: 2-4 page document outlining the problem, your approach, possible dataset(s) and/or software systems to use. Must cite and briefly describe at least two pieces of relevant prior work (research papers). Describe scope of proposed work.

Progress report: Longer document with preliminary results

Presentations: In-class and short

Final report
NLP Research

• All the best publications in NLP are open access!
 • Conference proceedings: ACL, EMNLP, NAACL (EACL, LREC...)
 • Journals: TACL, CL
 • NLP and NLP-related work appears in other journals/conferences too (data mining, machine learning, AI, information retrieval, etc.)

• Reading tips
 • Google Scholar
 • Find papers
 • See paper’s number of citations (imperfect but useful correlate of paper quality) and what later papers cite it
 • Authors’ webpages (find researchers who are good at writing and whose work you like)
 • Misc. NLP research reading tips:
 http://idibon.com/top-nlp-conferences-journals/
A few examples
A few examples

• Detection tasks
 • Sentiment detection
 • Sarcasm and humor detection
 • Emoticon detection / learning
A few examples

- Detection tasks
 - Sentiment detection
 - Sarcasm and humor detection
 - Emoticon detection / learning
- Structured linguistic prediction
 - Targeted sentiment analysis (i liked __ but hated __)
 - Relation, event extraction (who did what to whom)
 - Narrative chain extraction
 - Parsing (syntax, semantics, discourse...)

Thursday, October 8, 15
A few examples

- Detection tasks
 - Sentiment detection
 - Sarcasm and humor detection
 - Emoticon detection / learning
- Structured linguistic prediction
 - Targeted sentiment analysis (I liked __ but hated __)
 - Relation, event extraction (who did what to whom)
 - Narrative chain extraction
 - Parsing (syntax, semantics, discourse...)
- Text generation tasks
 - Machine translation
 - Document summarization
 - Poetry / lyrics generation (e.g. recent work on hip-hop lyrics)
A few examples

- Detection tasks
 - Sentiment detection
 - Sarcasm and humor detection
 - Emoticon detection / learning
- Structured linguistic prediction
 - Targeted sentiment analysis (I liked __ but hated __)
 - Relation, event extraction (who did what to whom)
 - Narrative chain extraction
 - Parsing (syntax, semantics, discourse...)
- Text generation tasks
 - Machine translation
 - Document summarization
 - Poetry / lyrics generation (e.g. recent work on hip-hop lyrics)
- End to end systems
 - Question answering
 - Conversational dialogue systems (hard to eval?)
- Predict external things from text
 - Movie revenues based on movie reviews ... or online buzz? http://www.cs.cmu.edu/~ark/movie$-data/
- Visualization and exploration (harder to evaluate)
 - Temporal analysis of events, show on timeline
 - Topic models: cluster and explore documents
- Figure out a task with a cool dataset
 - e.g. Urban Dictionary
Science question answering

- a “full-stack” sort of task ... 8th-grade science textbook input, question-answering output
- https://www.kaggle.com/c/the-allen-ai-science-challenge
Sources of data

• All projects must use (or make, and use) a textual dataset. Many possibilities.
 • For some projects, creating the dataset may be a large portion of the work; for others, just download and more work on the system/modeling side

• SemEval and CoNLL Shared Tasks:
 dozens of datasets/tasks with labeled NLP annotations
 • Sentiment, NER, Coreference, Textual Similarity, Syntactic Parsing, Discourse Parsing, and many other things...
 • e.g. SemEval 2015 ... CoNLL Shared Task 2015 ...
 • https://en.wikipedia.org/wiki/SemEval (many per year)
 • http://ifarm.nl/signll/conll/ (one per year)

• General text data (not necessarily task specific)
 • Books (e.g. Project Gutenberg)
 • Reviews (e.g. Yelp Academic Dataset https://www.yelp.com/academic_dataset)
 • Web
 • Tweets
Tools

- Tagging, parsing, NER, coref, ...
 - spaCy (Eng-only, no coref) http://spacy.io/
 - Twitter-specific tools (ARK, GATE)
- Many other tools and resources
 - tools ... word segmentation ... morph analyzers ...
 - resources ... pronunciation dictionaries ... wordnet, word embeddings, word clusters ...
- Long list of NLP resources
 https://medium.com/@joshdotai/a-curated-list-of-speech-and-natural-language-processing-resources-4d89f94c032a
Things to do with a log-linear model

$$p(y|x) = \frac{1}{Z} \exp \left(\theta^T f(x, y) \right)$$

$G(y)$

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>x</th>
<th>y</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature extractor</td>
<td>Text Input</td>
<td>Output</td>
<td>Feature weights</td>
</tr>
</tbody>
</table>

Decoding/Prediction

$$\arg \max_{y^* \in \text{outputs}(x)} G(y^*)$$

given \hspace{2cm} given \hspace{2cm} obtain \hspace{2cm} given

(just one) \hspace{2cm} (just one)

Parameter Learning

given \hspace{2cm} given \hspace{2cm} given \hspace{2cm} obtain

(many pairs) \hspace{2cm} (many pairs)

Feature Engineering (Human-in-the-loop)

fiddle with \hspace{2cm} during \hspace{2cm} given \hspace{2cm} given \hspace{2cm} obtain

experiments \hspace{2cm} (many pairs) \hspace{2cm} (many pairs) \hspace{2cm} in each experiment