Lecture 3
Classification

CS 585, Fall 2015
Introduction to Natural Language Processing
http://people.cs.umass.edu/~brenocon/inlp2015/

Brendan O’Connor
Your TA: Ari Kobren

- http://people.cs.umass.edu/~akobren/
• Python demo
• Overfitting, pseudocounts
• Intro: logistic regression
Multinomial Naive Bayes

\[P(y \mid w_1..w_T) \propto P(y) \prod_{t} P(w_t \mid y) \]

\begin{align*}
\text{Tokens in doc}
\end{align*}

Parameters: \(P(w \mid y) \) for each document category \(y \) and wordtype \(w \)

\(P(y) \) prior distribution over document categories \(y \)

Learning: Estimate parameters as **pseudocounted** frequency ratios

\[
P(w \mid y, \alpha) = \frac{\#(w \text{ occurrences in docs with label } y) + \alpha}{\#(\text{tokens total across docs with label } y) + V\alpha}
\]

Predictions:

Predict class \(\arg \max_y P(Y = y \mid w_1..w_T) \)

or, predict prob of classes...
Why Pseudocounts?

\[P(y \mid w_1..w_T) \propto P(y) \prod_{t} P(w_t \mid y) \]

Learning: Estimate parameters as **pseudocounted** frequency ratios

\[P(w \mid y, \alpha) = \frac{\#(w \text{ occurrences in docs with label } y) + \alpha}{\#(\text{tokens total across docs with label } y) + V \alpha} \]

- \(\alpha = 0 \quad \Rightarrow \quad ? \)
- \(\alpha = 0.000001 \quad \Rightarrow \quad ? \)
Why Pseudocounts?

\[P(y \mid w_1..w_T) \propto P(y) \prod_{t} P(w_t \mid y) \]

Learning: Estimate parameters as **pseudocounted** frequency ratios

\[P(w \mid y, \alpha) = \frac{\#(w \text{ occurrences in docs with label } y) + \alpha}{\#(\text{tokens total across docs with label } y) + V \alpha} \]

- alpha = 0 => ?
- alpha = 0.000001 ==> ?
- **QUESTION:** as alpha gets higher, posterior probabilities tend to
 - (A) 50%
 - (B) P(y)
 - (C) 100%
 - (D) No common trend
Overfitting

- Overfitting: model cares too much about training data
- To check: held-out data, e.g. Train vs Test
 - Training vs test accuracy: which is higher?
- pseudocount parameter combats overfitting
How to set the pseudocount?

• Split data into train versus test.

• Try different pseudocounts. For each train the model and predict on the held-out data. Choose lambda that does best on test set: e.g. maximizes accuracy or likelihood.

• What values to try? Often we use a grid search
 • e.g. \((2^{-2}, 2^{-1}, \ldots, 2^{4}, 2^{5})\)
Data splitting

• Train vs Test

• Better: use
 • Train: for fitting model \textit{parameters}
 • Dev: for tuning \textit{hyperparameters}
 • Test: reserve for final evaluation

• Cross-validation
Feature engineering

• What’s your word/feature representation?
 • tokenization rules: splitting on whitespace?
 • lowercase same as uppercase?
 • numbers?
 • punctuation?
 • phrases?