Word Embeddings and Neural Language Models

David Belanger
CS 585
Question:

How can we use unsupervised data improve accuracy on a supervised task?
Question:

What is the “Distributional Hypothesis” (from last lecture)?
Answer:

- “You shall know a word by the company it keeps.” (Firth, 57)

- Words with similar roles in text have similar meanings.

- This is why unsupervised learning works in nlp.
COOCCURRENCE COUNT DATA
The “context” of a token

Target word: blue
Context words: red

She told the story, however, with great spirit among her friends; for she had a lively, playful disposition, which delighted in anything ridiculous.

(source: Pride and Prejudice)
The “context” of a token

Target word: blue
Context words: red

She told the story, however, with great spirit among her friends; for she had a lively, playful disposition, which delighted in anything ridiculous.

(source: Pride and Prejudice)
The “context” of a token

Target word: blue
Context words: red

She told the story, however, with great spirit among her friends; for she had a lively, playful disposition, which delighted in anything ridiculous.

(source: Pride and Prejudice)
The “context” of a token

Target word: blue
Context words: red

She told the story, however, with great spirit among her friends; for she had a lively, playful disposition, which delighted in anything ridiculous.

(source: Pride and Prejudice)
Contexts In Terms of Parses

(root) John saw a dog yesterday which was a Yorkshire Terrier

(nltk.org)

(Ryan McDonald Thesis)
Context Types

Each possible context is a tuple.

– Trigram context: (the,dog)
– Unigram context: (the) or (dog)
– Parse context: (red_amod,ran_nsubj)
Context Count Vector

- Represent word type i, as a vector V_i

$$V_i = [0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 1]$$

- Value in index $k = \#\text{times context type } k \text{ occurred.}$
Example

• Find contexts containing “art”

\[V_i = [0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 1] \]

A collection of _

_ is a creation

structure of_

an exhibition of _

Vi is very long, but very sparse.
Question:

Example sentence:
The dog caught the frisbee.

What are 3 reasonable ways to define context, and what are the vectors for “caught” in each?
Question:

What do ‘art’ and ‘pharmaceuticals’ have in common?

What are contexts that they would both have?
What are contexts that they wouldn’t share?
Comparing Context Vectors

<table>
<thead>
<tr>
<th>common contexts for “art” but not “pharmaceuticals” [7394 total]</th>
<th>common contexts for both “art” and “pharmaceuticals” [165 total]</th>
<th>common contexts for “pharmaceuticals” but not “art” [206 total]</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘m into _</td>
<td>areas such as _</td>
<td>a greater amount of _</td>
</tr>
<tr>
<td>‘s interested in _</td>
<td>_ prices of _</td>
<td>standards for _</td>
</tr>
<tr>
<td>A collection of _</td>
<td>_ storage of _</td>
<td>marketer of _</td>
</tr>
<tr>
<td>_ has been described by</td>
<td>_ producers of _</td>
<td>market for _</td>
</tr>
<tr>
<td>study in _</td>
<td>_ designed for</td>
<td>prescriptions for _</td>
</tr>
<tr>
<td>_ have been shown in</td>
<td>_ the provision of _</td>
<td>the supply of _</td>
</tr>
<tr>
<td>The knowledge of _</td>
<td>_ sold in</td>
<td>the availability of _</td>
</tr>
<tr>
<td>_ is a commodity</td>
<td>_ the same way as _</td>
<td>advertising for _</td>
</tr>
<tr>
<td>_ is a creation</td>
<td>_ are among</td>
<td>the appropriate use of _</td>
</tr>
<tr>
<td>_ is a world</td>
<td>The production of _</td>
<td>shipment of _</td>
</tr>
<tr>
<td>an exhibition of _</td>
<td>the analysis of _</td>
<td>a cocktail of _</td>
</tr>
<tr>
<td>the commercialization of _</td>
<td>advances in _</td>
<td>classes of _</td>
</tr>
<tr>
<td>the confinement of _</td>
<td>specialising in _</td>
<td>a complete inventory of _</td>
</tr>
<tr>
<td>_ is cast in</td>
<td>a career in _</td>
<td>_ related downloads</td>
</tr>
<tr>
<td></td>
<td>_ stolen from</td>
<td>new generations of _</td>
</tr>
</tbody>
</table>
Comparing Vectors

\[D_{\text{Euclidean}}(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2} \]

\[D_{\text{Manhattan}}(x, y) = \sum_{i} |x_i - y_i| \]

Dot Product: \(x^\top y = \sum_{i} x_i y_i \)

\[\cos(x, y) = \frac{x^\top y}{\sqrt{x^\top x \sqrt{y^\top y}}} \]
Vector-Space Interpretation of Distributional Hypothesis

Two words are similar if their context vectors are similar.
Question:

What does it mean for two words to be similar?

Are “dog” and “tiger” similar?
How about “dog” and “fetch?”
Question:

What are the pros and cons of using a wide window for a token’s context?

Hint: Syntax v.s. Topics.
Question:

We now have a function $\text{sim}(\text{word1,word2})$. How could we use this to improve accuracy in the tasks we’ve discussed in class?
Word-Context Matrix

Distributional hypothesis:

– A word is characterized by its row in this matrix.
– Similar words have similar rows
A document is characterized by the distribution of words in it. Documents are similar if their columns are similar.

LDA Topic Model: this distribution is a mixture of ‘topics’
WORD EMBEDDINGS
Word Embeddings

Sparse Context Vector (10 million+ dimensional):

\[V_i = [0, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, \ldots] \]

Instead represent every word type as a low-dimensional dense vector (about 100 dimensional).

\[E_i = [.253, 458, 4.56, 78.5, 120, \ldots] \]

These don’t come directly from the data. They need to be learned.
Country and Capital Vectors Projected by PCA
Nearest Neighbors

• deals --> checks approvals vents stickers cuts
• warned --> suggested speculated predicted stressed argued
• ability --> willingness inability eagerness disinclination desire
• dark --> comfy wild austere cold tinny
• possibility --> possiblity possibilty dangers notion likelihood
Nearest Neighbors

• deals --> checks approvals vents stickers cuts
• warned --> suggested speculated predicted stressed argued
• ability --> willingness inability eagerness disinclination desire
• dark --> comfy wild austere cold tinny
• possibility --> possibilty possibility dangers notion likelihood
Question:

What are the pros and cons of representing word types with such small vectors?
Answer:

Pro:
 It requires less annotated data to train an ML model on low dimensional features.

Con:
 You can’t capture all of the subtlety of language in 100 dimensions.
Learning Word Embeddings

• Try to recover the cooccurrence matrix.
 – Easily doable using eigen decomposition.

• Treat unsupervised learning as supervised learning.
 – Next word prediction (i.e. language modeling) is a supervised task.
Learning Embeddings by Preserving Similarity

- Given long, sparse context cooccurrence vectors V_i and V_j

- Goal: Choose Embeddings E_i and E_j such that similarity is approximately preserved

\[V_i^\top V_j \approx E_i^\top E_j \]

- Difficulty: need to do this for all words jointly.
- Solution: Use an eigen-decomposition (implemented in every language).
Neural Language Model

Trigram Language Model:

\[P(w_t | w_{t-1}, w_{t-2}) \]

Neural Language Model

\[P(w_t | w_{t-1}, w_{t-2}) = P(E(w_t) | E(w_{t-1}), E(w_{t-2})) \]

The log-likelihood is differentiable. We can optimize the embeddings with gradient descent.
Question:

What do the words ‘spinning’ and ‘repeating’ have in common?

How could we use this to learn better word embeddings?
Morphological Neural Language Model

• Represent every word type as a feature vector.
• Learn an embedding for every feature.
• The embedding for a word is the sum of the embeddings of its features.
Have Questions or Want to Read More?

Post on Piazza
Word Pair - Path

I ate the cake
He ate the burger
Michelle ate the pizza

Word pairs that appear with similar patterns have similar semantic relationships (Turney et al., 2003)

I, He, and Michelle are similar
Cake, Burger, and Pizza are similar
I ate the cake, He ate the burger, Michelle ate the pizza

Path

Word pairs that appear with similar patterns have similar semantic relationships (Turney et al., 2003)

I, He, and Michelle are similar
Cake, Burger, and Pizza are similar
Patterns are similar if they have similar arguments.

Zuckerberg, CEO of Facebook, Zuckerberg, head of Facebook, Zuckerberg, head honcho at Facebook