Lecture 16: Probabilistic CFG Parsing

Intro to NLP, CS585, Fall 2014
http://people.cs.umass.edu/~brenocon/inlp2014/
Brendan O’Connor
Fill in the CYK dynamic programming table to parse the sentence below. In the bottom right corner, draw the two parse trees.

```
s → NP VP
NP → NP PP
VP → V NP
VP → VP PP
PP → P NP
NP → she
NP → fish
NP → fork
NP → chopsticks
V → eats
V → fish
P → with
```

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

she eats fish with chopsticks
• (Solution slide removed for web; see the piazza resources page)
• OK, we can track ambiguities. But how to resolve them?
• Need to prefer certain trees/derivations to others.
Another example

A minimal grammar permits 36 parses!

Broad-coverage grammars permit millions of parses of moderate-size sentences.
PCFGs

- P(words, tree) = product of all expansion probs
- For each nonterminal, possible expansions sum to 1
\[P(\text{tree} \mid \text{words}) = \frac{1}{Z} P(\text{tree, words}) \]

\[P(\text{tree, words}) = \text{product of all expansion probs} \]
Major Research Questions

✓ What’s the right representation?
✓ What’s the right model?

(We’ve talked about one representation and one model.)

• How to learn to parse empirically?
• How to make parsers fast?
• How to incorporate structure downstream?
Decoding Algorithms

• Suppose I have a PCFG and a sentence.
• What might I want to do?
 – Find the most likely tree (if it exists).
 – Find the k most likely trees.
 – Gather statistics on the distribution over trees.

• Should remind you of FS models!
Probabilistic CKY

Input: PCFG $G = (\Sigma, N, S, R)$ in CNF and sequence $w \in \Sigma^*$

Output: most likely tree for w, if it exists, and its probability.

$$C(X,i,i) = \langle p(X \rightarrow w_i), \text{null} \rangle$$

$$C(X,i,j) = \begin{cases} \max_{Y,Z \in N, k \in [i+1,j-2]} C(Y,i,k) \cdot C(Z,k + 1,j) \cdot p(X \rightarrow Y,Z), & \\
\& \arg\max \ C(Y,i,k) \cdot C(Z,k + 1,j) \cdot p(X \rightarrow Y,Z) & \end{cases}$$

$$\text{goal} = C(S,1,|w|)$$

[Slides: Noah Smith]
Resist This Temptation!

• CKY is not “building a tree” bottom-up.
• It is scoring partial hypotheses bottom-up.
• You can assume nothing about the tree until you get to the end!
HMM and PCFGs

- PCFGs are a generalization of HMMs

<table>
<thead>
<tr>
<th>Decoding</th>
<th>Sequence</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoding</td>
<td>Viterbi</td>
<td>CKY</td>
</tr>
<tr>
<td>Complexity</td>
<td>linear in sent. length</td>
<td>cubic in sent. length</td>
</tr>
</tbody>
</table>
Learning from Data

1. Where do the **rules** come from?
2. Where do the rule **probabilities** come from?

First answer: Look at a huge collection of trees (a treebank).

\[X \rightarrow \alpha \text{ is in the grammar iff it’s in the treebank.} \]

\[p(\alpha \mid X) \text{ is proportional to the count of } X \rightarrow \alpha. \]
Penn Treebank (Marcus et al. 1993)

- A million tokens of parsed sentences from the Wall Street Journal
- There’s also parses of the Brown corpus -- fiction, essays, etc. -- but researchers usually ignore it
- Parsed by experts (trained annotators), with consensus process for disagreement
- The structure looks like what you’d expect from a PCFG.
 - Traces ... usually ignored by most parsers
 - Tends to be “flat” where there’s controversy
Example Tree

((S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP
 (NP (CD 61) (NNS years))
 (JJ old))
 (, ,))
 (VP (MD will)
 (VP (VB join)
 (NP (DT the) (NN board))
 (PP-CLR (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .))

[Slides: Noah Smith]
Evaluating Parsers

• Take a sentence from the test set.
• Use your parser to propose a **hypothesis** parse.
• Treebank gives you the **correct** parse.
• How to compare?
 – {unlabeled, labeled} × {precision, recall}
 – crossing brackets statistics
 – evalb (http://nlp.cs.nyu.edu/evalb)
• Significance testing …
Issues

• This same dataset has been intensively used since 1993 for English parsing research
 • Why might this be an issue?
• Treebanks for other languages may require different grammatical conventions; quality varies
• It’s pretty easy to find issues in English PTB, though quality seems reasonably high
• Issue: domain transfer
Training Parsers In Practice

• Transformations on trees
 – Some of these are generally taken to be crucial
 – Some are widely debated
 – Lately, people have started learning these transformations

• Smoothing (crucial)

• We will come back to this as we explore some current state-of-the-art parsers.
Problems with PCFGs
Modern statistical parsers

- PCFG assumptions are too strong. How to improve?
 - Transform the training data
 - splitting/“annotating” non-terminals
 - Automatically learn better splits with EM ("Berkeley parser")
 - Discriminative whole-tree features -- typically have to use re-ranking
- Or, shift-reduce parsing: completely alternative approach to constituency parsing
 - Seems to be fastest with best accuracy, right now at least??
 - Zhang’s zpar, or a similar one within the Stanford parser software

- Next week: direct dependency parsing
Non-terminal splits

- Annotate a nonterminal symbol its parent/grandparent/sibling
- Relaxes PCFG independence assumptions

```
(a) S
   NP  VP
   PRP VBD NP
  I   need DT NN
       a  flight
(b) S
   NP\S  VP\S
   PRP VBD NP\VP
  I   need DT NN
       a  flight
```
Non-terminal splits

- Left: still incorrect
- Right: split preterminal. "if" prefers to be sentential complement.
• stopped here
Latent-variable PCFG

- Want to automatically learn the splits!
- Latent-variable PCFG: augment training data with latent states. Learn with EM. Use “split-merge” training to vary number of latent states.
- NP_1, NP_2, NP_3...
- [Petrov (2009), still used today in open-source Berkeley parser]
Discriminative re-ranking

- Take top-K trees from a PCFG.
- Re-rank them with log-linear model that can use whole-tree features: e.g. “does this NP contain 15-20 words”?
- This model is more powerful than a PCFG.
- But by itself, inference is intractable.
- BLIPP parser [Charniak and Johnson 2005]: might still be the most accurate English parser
- Re-ranking is a very powerful general technique in NLP
How good are parsers now?

- Labeled precision/recall: 90-93% F1 score
- Whole tree accuracy: much less!
- Which ambiguities or errors matter for what types of tasks?