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Overview

Motivation: Jointed skeletons are compact shape representations that are
useful for shape analysis, recognition, modeling, and animation.

Goal: Given a single input 3D model, our method produces an animation
skeleton tailored for its structure, geometry and underlying part mobility.

| [Baran et al. 2007]
Example of a 3D model and

its animation skeleton

Animated model

Challenges: Predicting joints from a single shape snapshot without any extra
information is under-constrained; A good skeleton should capture the
mobility of underlying articulating parts; User control is often desirable to
determine the level-of-detail of the output skeleton.

Earlier work: Fits pre-defined
hand-crafted skeletal templates with
fixed sets of joints to a 3D model.
Limited to specific shape classes.
Does not handle geometric and
structural variability of input shapes.
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Our method

Our approach: a deep learning approach for predicting animation skeletons
trained on a large repository of rigged 3D models.

Key ideas of our method:

* Simultaneously predicts joints & bones through a 3D hourglass architecture.

 Combines multiple geometric cues including mesh, surface, volumetric features
from the input 3D shape to predict an animation skeleton.

* Allows user control to synthesize skeletons with varying level-of-detail via a
single, optional input parameter.

* Learns a generic model: our method extracts plausible skeletons for a large
variety of input shapes, such as humanoids, quadrupeds, birds, fish, and so on.
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Method

Input features: the shape is discretized into a 883
volumetric grid. Voxels store the Signed Distance
Function (SDF) representation of the shape
augmented with principal surface curvature
information, local shape diameter, and mesh
vertex density.
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Architecture: stacked 3D hourglass module predicting joint and bone probabilities.
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Training: we generate target joint & bone  Loss: L = z M[v](L;[v] + Ly[v])
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L;, Lp: cross entropies for joints & bones

M: mask (zero for voxels outside the shape)

probabilities by placing a Gaussian
distribution for each joint & bone voxel.

Skeleton extraction:
(a) non-maximum suppression
to obtain joints

(b) Prim’s algorithm to extract
a minimum spanning tree
minimizing a cost function
over candidate edges based on

bone probabilities. p
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Results

Dataset: 3193 rigged models mined from the Models Resource repository
Average number of joints per character: 26.4
We split our dataset into 80% for training (2,554 models), 10% for hold-out

validation (319 models), and 10% for testing (319 models).
CD-joint/joint2bone: Chamfer distance
between predicted joints and reference

Method |CD-joint|CD-joint2bone | MR-pred  MR-ref joints/bones.
Pinocchio| 7.4% 5.8% 355.8% |45.9% | MR-pred/ref: the percentage of
[L1-median| 5.7% 4.4% 479% | 63.2% | predicted/reference joints whose
Ours 4.6 % 3.2% 62.1% |68.3% | distance to their nearest reference

/predicted ones is lower than a

prescribed tolerance (50% of local
shape diameter In our experiments).

Quantitative evaluation for all methods
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Artist-created Ours Pinocchio L1-median

Comparisons of different methods for representative test characters. The green ones
indicate the artist-created skeletons.
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User control: Adjusting a single user
parameter controls the granularity of the
~ skeleton. Red boxes highlight changes in
~ the output skeleton.
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Results gallery

For paper, code and dataset, please visit our project page:
https://people.cs.umass.edu/~zhanxu/projects/AnimSkelVolNet/




