

Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets

Zhan Xu UMass Amherst Yang Zhou
UMass Amherst

Evangelos Kalogerakis *UMass Amherst*

Karan Singh
University of Toronto

Overview

Motivation: Jointed skeletons are compact shape representations that are useful for shape analysis, recognition, modeling, and animation. **Goal:** Given a single input 3D model, our method produces an animation skeleton tailored for its structure, geometry and underlying part mobility.

[Baran et al. 200]

Animated model

Challenges: Predicting joints from a single shape snapshot without any extra information is under-constrained; A good skeleton should capture the mobility of underlying articulating parts; User control is often desirable to determine the level-of-detail of the output skeleton.

Earlier work: Fits pre-defined hand-crafted skeletal templates with fixed sets of joints to a 3D model. Limited to specific shape classes. Does not handle geometric and structural variability of input shapes.

Our approach: a deep learning approach for predicting animation skeletons trained on a large repository of rigged 3D models.

Key ideas of our method:

- Simultaneously predicts joints & bones through a 3D hourglass architecture.
- Combines multiple geometric cues including mesh, surface, volumetric features from the input 3D shape to predict an animation skeleton.
- Allows **user control** to synthesize skeletons with varying level-of-detail via a single, optional input parameter.
- Learns a **generic model**: our method extracts plausible skeletons for a large variety of input shapes, such as humanoids, quadrupeds, birds, fish, and so on.

Method

Input features: the shape is discretized into a 88³ volumetric grid. Voxels store the Signed Distance Function (SDF) representation of the shape augmented with principal surface curvature information, local shape diameter, and mesh vertex density.

Architecture: stacked 3D hourglass module predicting joint and bone probabilities.

Training: we generate target joint & bone probabilities by placing a Gaussian distribution for each joint & bone voxel.

Skeleton extraction:

- (a) **non-maximum suppression** to obtain joints
- (b) Prim's algorithm to extract a minimum spanning tree minimizing a cost function over candidate edges based on bone probabilities.

Loss: L =

ed joints MST with Euclidean distances as costs

MSTusi

 $M[v](L_j[v] + L_b[v])$

 L_i , L_b : cross entropies for joints & bones

M: mask (zero for voxels outside the shape)

MST using our bone probabilities

Results

Dataset: 3193 rigged models mined from the Models Resource repository Average number of joints per character: 26.4

We split our dataset into 80% for training (2,554 models), 10% for hold-out validation (319 models), and 10% for testing (319 models).

Method	CD-joint	CD-joint2bone	MR-pred	MR-ref
Pinocchio	7.4%	5.8%	55.8%	45.9%
L1-median	5.7%	4.4%	47.9%	63.2%
Ours	4.6%	3.2%	62.1%	68.3%

Quantitative evaluation for all methods

CD-joint/joint2bone: Chamfer distance between predicted joints and reference joints/bones.

MR-pred/ref: the percentage of predicted/reference joints whose distance to their nearest reference /predicted ones is lower than a prescribed tolerance (50% of local shape diameter in our experiments).

Comparisons of different methods for representative test characters. The green ones indicate the artist-created skeletons.

User control: Adjusting a single user parameter controls the granularity of the skeleton. Red boxes highlight changes in the output skeleton.

Results gallery

For paper, code and dataset, please visit our project page: https://people.cs.umass.edu/~zhanxu/projects/AnimSkelVolNet/

