Supplementary Material:
Modeling Addiction in terms of fluctuating neurotransmitters
within the reward system

1. General
The bounding function $\sigma(x)$ is defined as follow:

$$\sigma(x) = \begin{cases}
0 + \varepsilon |x| & \text{if } x < 0 \\
x & \text{if } x \in [0,1] \\
1 - \varepsilon |x| & \text{if } x > 1
\end{cases}$$

where ε is a random value, $\in [-0.05, 0.05]$.

Notations
Unless otherwise specified, the following holds for the entire document:

- d is a time steps counter used by the continuous processes, which resets to 1 at every time t where the value $G(t)$ changes from a state $G(t) = 0, < 0, \text{ or } > 0$ to another state t_G is the time when $G(t)$ last changed state
- ε_X is a random value applied to process X, $\varepsilon_X \in [-0.05, 0.05]$
- τ_G is a binary variable, defined as:
 - $\tau_G = 0$ if maladaptive behavior where never expressed
 - $\tau_G = 1$ if maladaptive behavior where already expressed at least once
- ω_X is the weight of the process X, $\omega_X \in [0, 1]$
- M_X is the upper bound asymptote of the process X, $M_X \in [\mu_X, 1] \subseteq [0, 1]$
- μ_X is the lower bound asymptote of the process X, $\mu_X \in [0, M_X \subseteq [0, 1]$
- Π_X is a temporal constant which influences the behavior of the process X, $\in \mathbb{N}^+$
- β, γ and γ_n are constants $\in \mathbb{R}^+$
- $P_X(t)$ is the uniformly distributed random function of process X, $P_X(t) \in [0, 1]$
- θ_X is the constant probability that the discrete process X occurs at time t, $\theta_X \in [0, 1]$
- d_A is a time steps counter used by the discrete processes, which resets to 1 when a discrete process is triggered (each discrete process has a distinct counter of this type)
- δ_X is a constant for the discrete process X, $\in \mathbb{N}^+$
- ρ_X is a constant for the discrete process, $\rho_X \in [0, 1]$
- Δ_i and Δ_d are the constant magnitudes of the discrete process’s memories increases and decreases, $\{\Delta_i, \Delta_d\} \in \mathbb{N}^+$ (different for each process)
Table 1: Behaviors of the continuous processes with respect to \(G(t) \) and \(d \), when \(\tau_G = 1 \). The sign \(\rightarrow \) stands for constant, and the signs \(\nearrow \) and \(\searrow \) stand for exponentially increasing and decreasing.

<table>
<thead>
<tr>
<th>(G(t - 1))</th>
<th>(G(t - 1) < 0)</th>
<th>(G(t - 1) > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall d)</td>
<td>(\forall d \leq \Pi_X)</td>
<td>(d > \Pi_X)</td>
</tr>
<tr>
<td>(DA_p(t))</td>
<td>(\rightarrow)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{PFC,p}(t))</td>
<td>(\rightarrow)</td>
<td>(/)</td>
</tr>
<tr>
<td>(DA_p(t))</td>
<td>(\rightarrow)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{PFC,p}(t))</td>
<td>(/)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{PFC,c}(t))</td>
<td>(/)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{Amg,c}(t))</td>
<td>(/)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{HPFC,c}(t))</td>
<td>(/)</td>
<td>(/)</td>
</tr>
<tr>
<td>(DA_c(t))</td>
<td>(\rightarrow)</td>
<td>(/)</td>
</tr>
<tr>
<td>(GL_{PFC,ic}(t))</td>
<td>(/)</td>
<td>(/)</td>
</tr>
</tbody>
</table>

About the continuous processes In Table 1 are summarized the continuous processes with respect to \(G(t) \) and the counter \(d \), when \(\tau_G = 1 \). The tendency of drug-seeking behavior \(G(t) \) is the output of the model, the variable \(\tau_G \) describe whether the virtual subject already expressed maladaptive behavior, and the counter \(d \) is reset to 1 at every time \(t \) where the value \(G(t) \) changes state, from \(G(t) = 0 \), \(G(t) < 0 \), or \(G(t) > 0 \) to another state. When \(\tau_G = 0 \) these processes stay constant over time (\(\rightarrow \)).

About the discrete processes The following list describe when these processes can be triggered:

- \(\Lambda_{DP} \) can be triggered at time \(t \) if \(\tau_G = 1 \), \(G(t-1) \geq 0 \), and \(P_{DP} \leq \theta_{DP} \). This process influences \(DA_p(t) \) and \(GL_{PFC,p}(t) \).
- \(\Lambda_{DC} \) can be triggered at time \(t \) if \(\tau_G = 1 \), and \(P_{DC} \leq \theta_{DC} \). This process influences \(GL_{PFC,d}(t) \), \(GL_{Amg,d}(t) \), \(GL_{HPFC,d}(t) \), and \(DA_c(t) \).
- \(\Lambda_S \) can be triggered at time \(t \) if \(\tau_G = 1 \), \(G(t-1) \geq 0 \), and \(P_S \leq \theta_S \). This process influences \(DA_p(t) \) and \(GL_{PFC,p}(t) \).
- \(\Lambda_R \) can be triggered at time \(t \) if \(\tau_G = 1 \), \(G(t-1) \leq 0 \), and \(P_R \leq \theta_R \). This process influences \(GL_{PFC,ic}(t) \).
2. Continuous processes

2.1 DA_b - Basal Extracellular DA from the VTA

\[
DA_{b}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1) + \epsilon_X] & \text{if } \tau_G = 0 \\
\sigma[(X(t_G) - \mu_x) \cdot e^{-\gamma_n d} + \mu_x + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) < 0 \\
\sigma[X(t_G) \cdot e^{\beta d} + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \\
\end{cases}
\]

2.2 GL_{PFC,b} - Basal Extracellular Glutamate from the PFC

\[
GL_{PFC,b}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1) + \epsilon_X] & \text{if } \tau_G = 0 \\
\sigma[(X(t_G) - \mu_x) \cdot e^{-\gamma_n d} + \mu_x + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) < 0 \\
\sigma[X(t_G) \cdot e^{\beta d} + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \text{ and } d \leq \Pi_X \\
\end{cases}
\]

2.3 DA_p - Drug-Induced DA from the VTA

\[
DA_{p}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1) + \epsilon_X] & \text{if } \tau_G = 0 \\
\sigma[M_X - [M_X - X(t_G)] \cdot e^{-\gamma_n d} + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) < 0 \\
\sigma[M_X - [M_X - X(t_G + \Pi_X)] \cdot e^{\beta d} + \epsilon_X] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \text{ and } d > \Pi_X \\
\end{cases}
\]
2.4 GLPFC_p - Drug-Induced Glutamate from the PFC

\[GL_{\text{PFC}_p}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1)+\epsilon_X] & \text{if } \tau_g=0 \\
\sigma[M_X-[M_X-X(t_G)] \cdot e^{-\gamma_X d} + \epsilon_X] & \text{if } \tau_g=1 \text{ and } G(t-1)=0 \\
\text{with } \gamma_n=\gamma_1 & \text{if } G(t-1)<0 \\
\text{with } \gamma_n=\gamma_2 & \text{if } G(t-1)>0 \text{ and } d \leq \Pi_X \\
\sigma[M_X-[M_X-X(t_G+\Pi_X)] \cdot e^{\beta d} + \epsilon_X] & \text{if } \tau_g=1 \\
\text{if } G(t-1)>0 \text{ and } d > \Pi_X
\end{cases} \]

2.5 GLN_c - Saliency of Drug-Associated Cues (Glutamate)

GL$\text{N}_c = \{GL_{\text{PFC}_c}, GL_{\text{Amg}_c}, GL_{\text{HPC}_c}\}$

\[GL_{\text{N}_c}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1)+\epsilon_X] & \text{if } \tau_g=0 \\
\sigma[M_X-[M_X-X(t_G)] \cdot e^{-\gamma_X d} + \epsilon_X] & \text{if } \tau_g=1 \text{ and } G(t-1)=0 \\
\text{with } \gamma_n=\gamma_1 & \text{if } G(t-1)<0 \\
\text{with } \gamma_n=\gamma_2 & \text{if } G(t-1)>0 \text{ and } d \leq \Pi_X \\
\sigma[M_X-[M_X-X(t_G+\Pi_X)] \cdot e^{\beta d} + \epsilon_X] & \text{if } \tau_g=1 \\
\text{if } G(t-1)>0 \text{ and } d > \Pi_X
\end{cases} \]
2.6 DA\textsubscript{e} - Saliency of Drug-Associated Cues (Dopamine)

\[DA\textsubscript{e}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1) + \epsilon_x] & \text{if } \tau_G = 0 \text{ or } \tau_G = 1 \text{ and } G(t-1) \leq 0 \\
\sigma\left[M_X - \left[M_X - X(t_G)\right] \cdot e^{-\gamma d} + \epsilon_x\right] & \text{if } \tau_G = 1 \\
\sigma\left[M_X - \left[M_X - X(t_G + \Pi_X)\right] \cdot e^{\beta d} + \epsilon_x\right] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \text{ and } d \leq \Pi_X \\
\sigma\left[M_X - \left[M_X - X(t_G + \Pi_X)\right] \cdot e^{\beta d} + \epsilon_x\right] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0 \text{ and } d > \Pi_X
\end{cases} \]

2.7 GL\textsubscript{pFC,ic} - Harmful Consequences of Drug Consumption

\[GL\textsubscript{pFC,ic}(t) \equiv X(t) = \begin{cases}
\sigma[X(t-1) + \epsilon_x] & \text{if } \tau_G = 0 \text{ or } \tau_G = 1 \text{ and } G(t-1) = 0 \\
\sigma\left[M_X - \left[M_X - X(t_G)\right] \cdot e^{-\gamma d} + \epsilon_x\right] & \text{if } \tau_G = 1 \text{ and } G(t-1) < 0 \\
\sigma\left[M_X - \left[M_X - X(t_G)\right] \cdot e^{\beta d} + \epsilon_x\right] & \text{if } \tau_G = 1 \text{ and } G(t-1) > 0
\end{cases} \]
3. Discrete processes

3.1 Λ_X - General definition

$$\Lambda_X(t) = \begin{cases}
1 & \text{if (*) or } d_{\Lambda}[l, \delta_X] \\
\max(0, \rho_X \cdot \Lambda_X(t-1)) & \text{if } d_{\Lambda}[\delta_X, \pi_X(t)] \\
0 & \text{otherwise}
\end{cases}$$

where

$$\pi_X(t) = \begin{cases}
\pi_X(t-1) + \Delta_i & \text{if (*)} \\
\max(0, \pi_X(t-1) - \Delta_d) & \text{otherwise}
\end{cases}$$

where (*) is the activation condition of the discrete process, as described below.

3.1.1 A_{DP} - Drug Priming
(* stands for: $\tau_G = 1$ and $G(t-1) \geq 0$ and $P_{DP}(t) \leq \theta_{DP}$

3.1.2 A_{DC} - Drug-associated Cues
(* stands for: $\tau_G = 1$ and $P_{DC}(t) \leq \theta_{DC}$

3.1.3 A_S - Stress
(* stands for: $\tau_G = 1$ and $G(t-1) \geq 0$ and $P_S(t) \leq \theta_S$

3.1.4 A_R - Recovery
(* stands for: $\tau_G = 1$ and $G(t-1) \leq 0$ and $P_R(t) \leq \theta_R$
4. Processes integration and output of the model

4.1 Input to the behavioral process

\[
\begin{align*}
n(t) = & \begin{cases}
DA_{b}^{\omega}(t) + GL_{PFC,b}^{\omega}(t) - \overline{DA}_p(t) - & \text{if } \text{mod}(t-1,24)=0 \\
GL_{PFC,p}(t) - GL_{PFC,x}(t) - GL_{Amg,x}(t) - & \text{or } \Lambda_{DP}(t) \neq 0 \text{ or } \Lambda_{DC}(t) \neq 0 \\
GL_{HPC,x}(t) - \overline{DA}_c(t) + GL_{PFC,ic}(t) & \text{or } \Lambda_{S}(t) \neq 0 \text{ or } \Lambda_{R}(t) \neq 0 \\
n(t-1) & \text{otherwise}
\end{cases}
\end{align*}
\]

where

\[
\begin{align*}
DA_{b}^{\omega}(t) &= \omega_{X} \cdot DA_{b}(t) \\
GL_{PFC,b}^{\omega}(t) &= \omega_{X} \cdot GL_{PFC,b}(t) \\
\overline{DA}_p(t) &= \omega_{X} \cdot DA_p(t) + \omega_{DP} \cdot \Lambda_{DP}(t) + \omega_{S1} \cdot \Lambda_{S}(t) \\
\overline{GL}_{PFC,p}(t) &= GL_{PFC,p}(t) + \omega_{DP} \cdot \Lambda_{DP}(t) + \omega_{S2} \cdot \Lambda_{S}(t) \\
\overline{GL}_{N,x}(t) &= GL_{N,x}(t) + \omega_{DC} \cdot \Lambda_{DC}(t) \\
\overline{DA}_c(t) &= DA_c(t) + \omega_{DC} \cdot \Lambda_{DC}(t) \\
\overline{GL}_{PFC,ic}(t) &= GL_{PFC,ic}(t) + \omega_{R} \cdot \Lambda_{R}(t)
\end{align*}
\]

with \(\omega_{DCn} = \{\omega_{DC1}, \omega_{DC2}, \omega_{DC3}\}\) for respectively \(\text{GL}_{PFC,c}, \text{GL}_{Amg,c}\), and \(\text{GL}_{HPC,c}\).

and

At the last active step of the acute processes \(\Lambda_{DP}\) and \(\Lambda_{S}\) (means at \(d_{X}=\pi_X(t)\), with \(X=\{DP,S\}\)) the value of \(DA_p(t)\) is updated.
4.2 [output] G - Tendency of drug-seeking behavior

$$G(t) = \begin{cases}
\tanh(\alpha \cdot G(t-1) + \beta \cdot n(t) - \gamma) & \text{if } \text{mod}(t-1,24) = 0 \text{ or } \Lambda_{DP}(t) \neq 0 \\
& \text{or } \Lambda_{DC}(t) \neq 0 \text{ or } \Lambda_{S}(t) \neq 0 \text{ or } \Lambda_{R}(t) \neq 0 \\
G(t-1) & \text{otherwise}
\end{cases}$$

where

$\alpha, \beta \in [0, 1]$

γ is a constant:

$$\gamma = \frac{1}{2} \alpha - \frac{11}{2} \beta$$

$G(t) \in [-1, 1]$