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Abstract. SafeGen is a meta-programming language for writing stati-
cally safe generators of Java programs. If a program generator written in
SafeGen passes the checks of the SafeGen compiler, then the generator
will only generate well-formed Java programs, for any generator input.
In other words, statically checking the generator guarantees the correct-
ness of any generated program, with respect to static checks commonly
performed by a conventional compiler (including type safety, existence of
a superclass, etc.). To achieve this guarantee, SafeGen supports only lan-
guage primitives for reflection over an existing well-formed Java program,
primitives for creating program fragments, and a restricted set of con-
structs for iteration, conditional actions, and name generation. SafeGen’s
static checking algorithm is a combination of traditional type checking
for Java, and a series of calls to a theorem prover to check the validity
of first-order logical sentences constructed to represent well-formedness
properties of the generated program under all inputs. The approach has
worked quite well in our tests, providing proofs for correct generators or
pointing out interesting bugs.

1 Introduction

Program generators can play an important role in automating software engineer-
ing tasks. A large amount of research has concentrated on meta-programming
tools for writing program generators more conveniently or safely [4, 5, 15, 7, 13,
11, 2, 6, 3, 17, 18]. Nevertheless, such tools have not enjoyed much practical adop-
tion. Programming language designers typically find meta-programming to be
too unwieldy and undisciplined to be added as a general-purpose language fea-
ture. Working programmers who routinely use and write generators seem to find
that advanced meta-programming infrastructure adds very little to what they
can do with simple, text-based tools. For instance, many tens of thousands of
programmers worldwide use code templates in the text-based XDoclet tool [12]
to generate code for interfacing with J2EE application servers.

If a sophisticated meta-programming tool is to become mainstream, it should
offer significant value-added for the generator programmer, comparable to the
value added by high-level programming languages over assembly programming.
In this paper, we explore one possible direction for adding such value. We present



SafeGen: a meta-programming language that offers static guarantees on the cor-
rectness of the generator, yet is expressive enough for many practical appli-
cations. That is, a generator written in SafeGen is analyzed statically and its
correctness is examined under all possible legal inputs, where the user specifies
what constitutes a legal input. If the analysis succeeds, the generator is guaran-
teed to only produce well-formed Java code. This addresses a common problem
in generator development and a major reason why meta-programming often ap-
pears too unwieldy and undisciplined: a generator may have bugs that cause it
to produce illegal programs but only under certain inputs. Such bugs can stay
undetected for a long time and may only be found by end users and not by the
generator writer.

To achieve well-formedness guarantees, SafeGen has an easy-to-analyze lan-
guage for describing generators. This offers restricted syntax for describing con-
trol flow, iteration, and name generation. Inputs to a SafeGen generator are
limited to legal Java programs. That is, SafeGen generates programs by exam-
ining existing Java programs at a level comparable to that of Java reflection. All
of SafeGen’s reasoning is done in a logic that deals with reflective entities (e.g.,
methods of a class, argument types of a method, etc.), as opposed to, say, integer
numbers. Intuitively, this makes SafeGen ideal for XDoclet-like [12] tasks. For
instance, SafeGen is appropriate for going over an existing Java class and creat-
ing a delegator, or wrapper, or interface, or GUI class that will work correctly
with the original class. In contrast, SafeGen is not appropriate for generation
tasks such as creating specialized versions of the FFT transformation for specific
matrix sizes and dimensions.

SafeGen statically checks the legality of code templates by combining tradi-
tional Java type checking algorithms with automated proofs of the validity of
logical sentences. That is, SafeGen expresses the structure of the generator as a
collection of first-order logic formulas, treated as axioms. Further axioms, also in
first-order logic, encode standard properties of Java at the static checking level
(e.g., the fact that a final class cannot be extended). Finally, correctness condi-
tions of the generator are described as first-order logic conjectures. SafeGen uses
an automated theorem prover, SPASS [16], to attempt to prove these correctness
conditions under all inputs, based on the axioms.

SafeGen’s contribution to the meta-programming research community is its
novel approach of combining logic on reflexive properties of valid programs with
program generation, to guarantee the legality of programs that are not generated
until the run-time of the generator. This approach makes SafeGen the only meta-
programming tool we know of that both guarantees at the compile time of the
generator the type-correctness of the generated program, and allows generation
of arbitrary pieces of code (potentially with references to free variables and
unknown types). SafeGen also shows that despite the restriction on control flow
and name generation, this approach still allows the expressiveness that is useful
for many program generation needs. This general logic-based approach is not
limited to SafeGen’s current target language, Java, but could be applied to other
languages.



2 Motivation and Background

One can question whether static checking of a generator is a valuable feature.
After all, once the generator is used, the generated program will be checked
statically before it runs. So why try to catch these errors before the program
is even generated? The answer is that static checking is not intended to detect
errors in the generated program or even errors in the generator input, but errors
in the generator itself. Although these errors will be detected at compile-time of
the generated program, this is at least as late as the run-time of the generator.
Thus, static legality checking for generators is analogous to static typing for
regular programs. It is a desirable property because it increases confidence in the
correctness of the generator under all inputs (and not just the inputs with which
the generator was tested). To see the problem in an example, consider a program
generator that emits programs depending on two input-related conditions: (We
use MAJ [18] syntax: code inside a quote, ‘[...], is generated. The unquote
operator, #[...], is used to splice the result of an evaluated expression inside
quoted code.)

if (pred1()) emit( ‘[int i;] );
...
if (pred2()) emit( ‘[i++;] );

If, for some input, pred2 does not imply pred1, the generator can emit the refer-
ence to variable i without having generated the definition of i. This is an error
in the generator. However, it might not surface until after the generator writer
has tested and widely deployed the generator. This error will then be detected by
some random user. It should be the responsibility of a good meta-programming
language to prevent such errors by statically examining the generator.

The problem of guaranteeing the well-formedness of generated programs is
essentially a problem of analyzing the control-flow and data-flow of the generator.
For instance, in the above code fragment, the question is whether there is a valid
program path that reaches the second emit statement without passing through
the first. Similarly, consider a generator that introduces two new names in the
same lexical context:

emit( ‘[ int #[name1], #[name2]; ] );

For static well-formedness checking, we need to know that name1 and name2 do
not hold the same value (or we will end up with an illegal duplicate variable
definition in the generated program). This is a data-flow property.

We should note that an interesting special case of program generation already
offers strong legality guarantees for generated programs. Specifically, multi-stage
languages, such as MetaML[13], MetaOCaml[7] or MetaD[10] guarantee that the
generated program is type-correct by statically checking the generator. In this
sense, multi-stage languages represent the state of the art in static safety checking
of generators. Nevertheless, staging applies restrictions on the structure of the
generator and prohibits the expression of code templates in arbitrary fragments.



Both of our above code examples are not possible in a multi-stage language. In
the first example, identifiers in generated code (e.g., i) cannot refer to generated
variable definitions that are not in an enclosing lexical scope inside the generator
text. This is a drawback, even if the final program is expressible in a multi-stage
language: ideally, a good meta-programming language should allow its user to
express a generator in the style the user finds most convenient. In the second ex-
ample, it is not possible in a multi-stage language to have the name of a generated
definition vary depending on generator input.(Concretely, in MetaOCaml syn-
tax, we cannot write, .<let .~name:int = 0 in .~name + .~name)>., since
binding instances cannot be escaped. Similarly, we cannot escape a type, e.g.,
.<let i:.~typename = 0 in i+i>.)

These restrictions mean that multi-stage languages are ideal for program
specialization where the entire code to specialize is available, but not program
generation where the generated program may be partial and may need to cooper-
ate with other parts whose structure is not known until generator run-time. For
example, a common generation task for J2EE applications is to take as input an
arbitrary Java class and produce a Java interface that contains all of the class’s
public methods [14]. In this case, there is no code to specialize that is statically
known to the generator. If the generator is to reason about the well-formedness
of its output, it needs to do so using abstract properties of yet-unknown program
entities, such as “no two methods in the input class can have the same type sig-
natures”. This is exactly the kind of program generation that SafeGen intends to
support.1 From a technical standpoint, the problem is harder than multi-stage
programming, since there are no restrictions as to how the control and data-flow
of the generator can influence the contents of the generated program parts.

3 SafeGen Design

In this section we describe the main design of the SafeGen language. We first
give a high-level overview of SafeGen and then present the language in detail.

3.1 Overview of the Approach

Before we discuss the specifics of the SafeGen language, we will offer a quick
example of what SafeGen can do, which will hopefully illuminate the role of all
the distinct language features described in detail in the next sections. As we
have not yet defined all the elements of SafeGen syntax and functionality, we
will appeal to the reader’s intuition for our example.

A basic, but not too interesting, SafeGen generator is the following:

1 We expect that the general approach used in SafeGen could also apply to program
specialization tasks. Nevertheless, as mentioned earlier, SafeGen’s current input lan-
guage and reasoning engine is limited to reflection-like properties, and cannot apply
to, say, generating specialized numerical code for a given array size and dimensions.



#defgen makeInterface (Class c) {
interface I {
#foreach(Method m : MethodOf(m,c)) { void #[m] (); }

}
}

The elements of this definition are as follows. The generator is called
makeInterface. It accepts a Java class as its argument. It generates an interface
named I (this name may be modified at generator runtime if the generator is
used multiple times in the same lexical context). For each method of the input
class, the generator produces a void, no-argument method by the same name in
the generated interface.

Although this generator is almost trivial, it is still challenging to determine
automatically whether it will output a valid interface for every input class. For
example, do all the declared methods have unique signatures? In its attempt to
prove that the generated code is well-formed, SafeGen relies on three kinds of
knowledge: assumptions about the input (in this example there are none other
than the fact that it is a class), general knowledge of Java typing, and the
assumption that the input comes from a well-formed Java program (e.g., the
input class, c, has methods with legal names). SafeGen uses the SPASS theorem
prover to attempt to prove well-formedness properties of the output under any
possible input. All knowledge that SafeGen has about the program is expressed
as first-order logic sentences. For instance, the following formula states that any
two members (either classes or interfaces) in a well-formed Java package need to
have different names. (We show here the formula in SPASS syntax in order to
be concrete about the level of interfacing with the theorem prover.)

formula(forall([c1, c2],
implies(and(equal(DeclaringPackage(c1),DeclaringPackage(c2)),

equal(Name(c1), Name(c2))),
equal(c1,c2))),
MEMBERS_IN_PACKAGE_DIFF_NAME).

The well-formedness conjectures that SafeGen tries to prove are also ex-
pressed as logic sentences. For instance, the following is a conjecture that states
that generated methods cannot have the same name and type signatures if they
are in the same class.

forall([m1, m2],
implies(and(method(m1),

method(m2),
equal(DeclaringClass(m1), DeclaringClass(m2)),
equal(Name(m1), Name(m2)),
equal(Formals(m1), Formals(m2))),

equal(m1, m2)))

In fact, this conjecture cannot be proven for the above generator, makeInterface.
All generated methods have the same signature and methods can have the same



names, since the same method name can be overloaded in the input class, c.
Therefore, in this example we see that the output is potentially ill-formed.

3.2 Language Design

We describe next the syntax and main concepts of the SafeGen language. The
language is described through short examples, followed by a longer example in
the end. For a more thorough exposition, the syntax is shown in Figure 2 in the
Appendix.

Cursors. The two main concepts in the SafeGen language are those of a cursor
and a generator. A cursor is a variable ranging over all entities satisfying a first-
order logic formula over the input program. Thus, the input program is viewed
as a collection of logical facts about its type declarations. For instance, a cursor
expression in SafeGen would be:

Method m : MethodOf(m,c) & Public(m) & !Abstract(m)

This cursor, m, describes all non-abstract, public methods in class c (c is a
cursor assumed to have been defined earlier). In general, the values of cursors
are type-system-level entities in the input program (methods, arguments, classes,
interfaces, etc.). The logic predicates used to build cursors can be viewed best
as a reflection mechanism over Java programs. SafeGen has several predefined
predicates that correspond to Java reflection information and the user can create
new predicate symbols that represent arbitrary first-order logic formulas over the
predefined predicates. Since the logical sub-language used to define cursors in
SafeGen is a standard first-order logic, we postpone describing its specifics in
detail until later in the paper.

Generators. A SafeGen generator is a way to express Java code fragments.
Generators are defined with the #defgen primitive. For example, a trivial gen-
erator, always producing a constant piece of code, is:

#defgen trivialGen () {
class C { public void meth() {} }

}

A generator can receive input parameters that are either cursors or predicates
describing constraints on the inputs. For instance, the following defines a gen-
erator that accepts a single non-abstract class as argument. (The body of the
generator is elided.)

#defgen myGen (Class c : !Abstract(c)) { ... }

Similarly, one can define a new predicate that constrains the input of the gener-
ator:

#defgen myGen (input(Class c) => !Abstract(c)) { ... }



The above line defines a new predicate, called input, that is used to describe
properties of the generator input values—namely that they are non-abstract
classes. Note that (unlike predicate definitions that we will see later) the “im-
plies” (=>) operator is used for predicates defining generator inputs: the input
is not all classes that are non-abstract, just some classes that are guaranteed to
be non-abstract.

A SafeGen generator interfaces with the outside world through Java reflection
entities and strings. For instance, a generator that takes a Class argument, as
above, is implemented as a Java method that accepts a java.lang.Class object
as argument.

The body of a generator (enclosed in {...} delimiters) can contain any
legal Java syntax. This Java code is “quoted”—that is, it gets generated when
the generator executes. Quoted code can also contain three SafeGen constructs
that serve as “escapes”: they direct the control and data-flow of the generator,
allowing configuration of the generated code. These three SafeGen constructs
are #[...] (pronounced “unquote”), #foreach and #when.

The #[...] operator is used for adding fragments of Java code inside a larger
fragment. For instance, a generator can integrate the output of another. More
interestingly, a generator can derive code fragments by applying several built-in
functions on cursors. Available functions are: Name, Type, Formals, ArgNames,
ArgTypes, and Modifiers. Consider the example of the following generator:

#defgen myGen (Class c : !Abstract(c)) {
#[c.Modifiers] class #[c.Name] { }

}

This generates a new (empty) class with the same name and modifiers as the
input class.

Functions Name and Type only generate one identifier, while Formals gener-
ates an array of 〈ArgType,ArgName〉 pairs, separated by commas. Functions
ArgNames, ArgTypes, and Modifiers generate arrays of values, with ArgNames’s
output separated by commas. Clearly, not all functions can be applied to all
cursors. Formals, ArgNames, and ArgTypes can only be applied to Method cur-
sors. SafeGen also allows the syntax #[c] on a cursor c. This is a shortcut for
#[c.Name].

The control flow of the generator is affected by primitives #foreach and
#when, allowing iteration and conditional execution, respectively. SafeGen logic
formulas determine iteration and conditional generation—thus, all iteration ter-
minates and can only be over elements of the generator input.

The #foreach construct takes as argument a cursor definition. Inside the
body of the #foreach, the cursor name can be used to refer to the current
element in the range of the formula used to define the cursor. For instance,
consider the following generator:

#defgen addFields (Class c) {
#foreach ( Field f : FieldOf(f,c) ) { int #[f]; }

}



This creates a sequence of definitions of integer variables, each named after a
field in the input class, c.

The #when construct’s syntax is #when ( LOGIC ) { CODE_TEMPLATE }, op-
tionally followed by #else { CODE_TEMPLATE }. That is, #when takes a logic
formula as a parameter. If the formula evaluates to true at run-time, the first
code template is generated. Otherwise, the code template following the #else
is generated. In the example below, the argument to the generator is a set of
Java interfaces (with no other constraints on them). If the set is not empty, then
the “implements” clause gets generated, followed by all the names of interfaces.
Otherwise, nothing gets generated.

#defgen maybeImplements ( input(Interface i) => true ) {
#when ( exists (Interface in) : input(in) ) {

implements #foreach(Interface i) { #[i] }
}

}

Note that the above example also indicates that the generator’s model ignores
low-level separator tokens. I.e., our generators operate on abstract syntax trees,
not parse trees. Thus, when the #foreach construct above generates multiple
interface names, they get added to an AST. But when actual code is generated,
they will be separated by commas, as Java requires.

User-Defined Predicates. For modularity and code reuse, SafeGen also allows
definitions of new predicates both inside and outside the body of a generator.
#defpred is used to give a name to a frequently used logic formula. The following
example declares a predicate myPred that can be used in logic formulas, just like
built-in predicates:

#defgen myGen ( ... ) {
#defpred myPred ( Class c ) = Public(c) & !Final(c); ...

}

Name Management and Hygiene. In the body of a generator, identifiers
that correspond to generated definitions are hygienically renamed to avoid name
conflicts. For instance, consider the following generator:

#defgen renameGen (input(Method m) => (m.Type = int) & noArg(m)) {
#foreach( Method m: input(m) ) { int result = #[m](); }

}

(For convenience, the generator uses a predicate noArg, which we can define
using #defpred. This constrains the input methods to accept no arguments.)

The result of the above generator will not be multiple definitions of variable
result. Instead, at generation time, the actual variables generated will have
fresh names. Any references to these variables under the same cursor (or a cur-
sor defined over a sub-range) will be consistently renamed to refer to the right



variable. Since the renaming is only performed at the final output phase (i.e.,
when all generators have been called and the result is a complete Java com-
pilation unit) SafeGen can tell which identifiers need renaming. Sometimes, a
generator writer might indeed want to specify a name for a particular declara-
tion, without renaming. In these cases, we provide the keyword #name["..."].
The identifier between quotes is generated as is.

Predicates, Cursors, and Logic in Detail. The logic underlying Safe-
Gen is a sorted logic, with the basic sorts being: Class, Interface, Method,
Constructor, Field, Identifier. Accordingly, all variables and constants in
our domain are of one of these sorts. SafeGen does not provide any built-in
constants. However, the user implicitly “creates” constants of the Identifier
sort as needed. For example, if a user wishes to find all classes that implements
java.io.Serializable, she writes the logical sentence:

forall (Class c) : (exists (Interface i) :
( InterfaceOf(i, c) & i.Name = "java.io.Serializable"))

java.io.Serializable is then declared as a constant in the domain during the
compilation process.

The syntax for SafeGen logical sentences closely follows the syntax for first-
order logic sentences (with the addition of sorts for declared variables). SafeGen
provides logical operators forall, exists, =, &, | , =>, !, which correspond to
all the operators available in first-order logic. The full list of available predicates
and functions is shown in Figure 3 in the Appendix. For readers unfamiliar with
first order logic syntax, please refer to Figure 2, rule LOGIC for details.

Example. We can now consider a non-trivial generator written in SafeGen.
This is a realistic example, yet one that is short enough to study here and to
use later for illustrating SafeGen’s static checking process. The generator in
Figure 1 takes a set of non-abstract classes as input and creates subclasses of
the input classes with methods that just delegate to the superclasses’ methods.
(As explained earlier, the identifier Delegator is going to be renamed for each
of the generated classes as to not induce name conflicts.)

3.3 Static Checking

We can now see how our approach can reason about a generator and guarantee
that it produces well-formed programs under all inputs. Every well-formedness
property of the output program is expressed as a logical formula. For instance,
consider again our Section 2 example generator, for which we want to guarantee
that a generated reference is always bound to a definition:

if (pred1()) emit( ‘[int i;] ); ... if (pred2()) emit( ‘[i++;] );

The above example written in SafeGen is:



1. #defgen makeDelegator ( input(Class c) => !Abstract(c) ) {

2. #foreach( Class c : input(c) ) {

3. public class Delegator extends #[c] {

4. #foreach(Method m : MethodOf(m, c) & !Private(m)) {

5. #[m.Modifiers] #[m.Type] #[m] ( #[m.Formals] ) {

6. return super.#[m](#[m.ArgNames]);

7. }

8. }

9. }

10. }

11. }

Fig. 1. A generator that generates a delegator class for an input class.

#when(logic_1) { int i; } ... #when(logic_2) { i++; }

where logic_1 and logic_2 are first-order logic formulas defined using built-
in predicates and functions. Checking whether variable i is declared before use
becomes checking the validity of the logical implication logic_2 → logic_1.
If the theorem prover proves validity, we know that under any input to the
generator, the variable i would always be declared before it is used.

Other program well-formedness properties are also expressible in a similar
fashion. Determining how to translate a given program property into a logical
sentence is the role of the SafeGen implementation, described in the next section.

We should be explicit in that implementing checks for all well-formedness
properties of Java programs is a heavy engineering task. SafeGen currently does
not support all possible checks but we believe the omission is just a matter of en-
gineering. 2 The currently supported checks in SafeGen are fairly representative
in difficulty of the task and correspond to many valuable program correctness
properties (e.g., method typechecking). Specifically, the currently fully supported
tests are for the following properties.

– A declared super class exists.
– A declared super class is not final.
– Method argument types are valid.
– A returned value’s type is compatible with the method return type.
– The return statement for a void-returning method has no argument.

2 Any computable property can be expressed as the validity of a first-order logic for-
mula. The only question is whether a theorem prover can reason about such prop-
erties effectively. For several yet-unsupported properties (i.e., properties for which
SafeGen does not generate conjectures automatically) we have hand-produced logic
formulas corresponding to example SafeGen programs and we have confirmed that
we can reason about them in SPASS effectively. For instance, the conjecture in Sec-
tion 3.1 was hand-produced, although our longer example in the Appendix (Figure 4)
was automatically produced by the SafeGen compiler.



Notably missing checks include access control (e.g., no access to “private”
variables outside class); checking for subtyping restrictions (e.g., a non-abstract
class supplies definitions for all its superclass’s abstract methods); checking for
referring only to defined variables; checks for duplicate definitions; checking for
correct declaration of exceptions; etc. We expect that many of them will be fully
supported soon.

4 SafeGen Implementation

The most interesting part of the SafeGen implementation is the static checker.
Therefore in this section we discuss how SafeGen produces axioms and proof
obligations for a theorem prover, based on the structure of the SafeGen program.

4.1 SafeGen Static Checking

Although the SafeGen checking algorithm is not a traditional type-checker, it is
easiest to present it in terms of type-checking, where both the names and the
types of the various entities can depend on logic predicates.

SafeGen has two type-checking processes. One is type checking for the meta-
language: legality of references to meta-variables, meta-level predicates, func-
tions, and generators. (Meta-variables are either cursors or logic variables intro-
duced by an exists or forall quantifier.) The second but much more complex
one, is type checking for templated Java code. SafeGen’s type system keeps two
separate environments to support these two processes: the meta scope, for the
generator, and the object scope, for the generated program.

Environment. A meta scope keeps track of meta level declarations: gener-
ators, predicates, and variables. A new meta scope is created by the follow-
ing keywords: #defgen, #defpred, #foreach, #when, and quantifier keywords
forall and exists. With the exception of #when, all of the keywords above cre-
ate new meta-variable declarations. In addition to keeping track of declarations,
#foreach and #when meta scopes are also associated with the logical sentences
under which they are created. Each meta scope is linked to at most one parent
meta scope. For example, in Figure 1, the meta scope created by #foreach on
line 4 has the #foreach scope created on line 2 as a parent. The declarations in
parent meta scopes are visible in the children scopes.

An object scope is much like a type environment for regular Java type check-
ing. It contains symbol tables for types, variables, and methods. However, there
are two unique elements of our object scope. First, all entries in the symbol table
(e.g., names of variables or method declared in the scope, and the types these
map to) may not be constants but dependent on a cursor over the input program.
Second, each entry in the symbol tables has a link to a meta scope within which
the entry is declared. For example, in Figure 1, class Delegator, declared on
line 3, is an entry in the type table, with a link to the meta scope created on line
2, by #foreach ( Class c : input(c)). This meta scope in turn has a parent



meta scope corresponding to the #defgen in line 1. For an example of an object
scope entry with an unknown name, consider the method declared on line 5 of
Figure 1. The entry in the symbol table will contain the information that the
method name is equal to the value of m.Name and the corresponding meta scope
will be that defined by the #foreach on line 4 (with parent meta scopes those
on lines 2 and 1). Only meta scopes created with #defgen, #foreach, #when can
be linked from object scope entries.

Algorithm. SafeGen’s type checking algorithm involves two phases. Phase I
accomplishes the following two tasks:

1) Fully populate meta scopes and type check the meta language. Type check-
ing the meta language is simply ensuring that a) every use of a meta-variable,
predicate, function, or generator is defined, and b) if a meta variable is used as
an argument to predicates, functions or generator calls, it has the correct type.
For example, if meta-variables m, c are used in predicate MethodOf(m, c), m
should have a Method type, and c should have a Class or Interface type.

2) Collect type information in code templates. Object scopes are partially
populated with only type information for declared types, their methods, fields,
and inner types. No statements are inspected. There is no legality checking done
in this phase. This step is analogous to a conventional type checking algorithm,
where a first pass generates all the type information needed to type check the
statements inside of method bodies and static initializers. After the object scopes
are populated, we generate a logical representation of what is in the object
scopes: a sentence describing the types available, their methods, fields, inner
classes, etc. For the example in Figure 1, the initial segment of this sentence is:

forall([c],
implies(and(Class(c), input(c)),

exists([c’], and(Class(c’), Name(c’)=Delegator, ...)))))

We call this sentence fact. It will be used in Phase II of the type checking
algorithm, as described next.

Phase II is responsible for checking the type correctness of templated Java
code. The algorithm resembles regular Java type checking in that it utilizes
the symbol tables to look up information on variables, methods, and types.
However, the algorithm is complicated by the use of meta-variables and functions
in declarations and references. Therefore, SafeGen’s type system combines the
use of object scope symbol tables with the building of logical sentences using
the meta scopes (i.e., the meta scope associated with the current object scope
and all its parent meta scopes). For example, in Figure 1, we need to check
whether the method call, super.#[m](#[m.ArgNames]) on line 6 is a valid call.
The first step is to look up the superclass of the current class using the symbol
table. However, we find that super does not point to an actual class with its
own symbol tables, but to a meta-variable, #[c]. In order to check whether
super.#[m](#[m.ArgNames]) is a valid call, we must construct a logical sentence
to inquire: under all legal inputs to this generator (any class that is !abstract),



and under the logical context (encoded by the meta scope) in which this method
call is used (namely,
#foreach(Class c:input(c)) {...#foreach(Method m:MethodOf(m,c))} ),
does the class #[c] always have a method with name #[m], and argument types
the type of #[m.ArgNames]? This question is expressed as a logical sentence, test.
The test sentence for the method call super.#[m](#[m.ArgNames]) is shown in
Figure 4 in the Appendix.

We then construct the sentence fact → test, where fact was constructed in
Phase I, as described earlier. fact needs to be the condition in the implication
because it states the existence of classes and methods that test might refer to.
Facts about the well-formedness of generator inputs are also part of the theorem
prover input, supplied as axioms. We next feed this sentence to the theorem
prover to test its validity. The full input to the theorem prover includes the logic
definition (i.e., predicates, functions, sorts), axioms about Java, and the fact →
test conjecture. This is typically many hundreds of lines long.

5 Discussion

Using the Theorem Prover. There are two approaches to using the theorem
prover to verify the correctness properties of code templates. We could construct
a large sentence that is the conjunction of all the type-correctness properties the
templated code should preserve, and ask the prover whether these properties hold
given the facts produced by the code templates. While this approach simplifies
our language implementation by delegating all type checking duties to the the-
orem prover, it has a major disadvantage. The checking would be all-or-nothing
and it would not produce very useful error messages to the users. When one of
the properties in the conjunction fails to be valid due to a contradiction, all we
receive from the theorem prover is a series of syntactic maneuvers that arrived
at the contradiction. It is very difficult to decipher these messages to determine
the exact property that failed. We can only inform the user that somewhere in
their program, there is an error. The problem is exacerbated by spurious errors
due to valid formulas that could not be proven: the user would be unable to tell
that the error is spurious if we just reject the entire program.

Therefore, we have chosen a second approach. SafeGen’s type checking algo-
rithm is a combination of traditional Java type checking and calls to the theorem
prover. We make calls to the theorem prover to check the validity of very specific
properties. For example, when we are type-checking a class declaration, and we
reach the declaration of a super class, we make two calls to the theorem prover.
One is to check that the declared super class exists. Another is to check that the
super class is a non-final class. This approach yields simpler logic formulas to
prove. At the same time, we are able to produce very precise error messages to
the user regarding exactly which property the code template failed to establish.

The one disadvantage of our approach is that we must make many calls to
the theorem prover in the process of compiling just one generator. There might
be a potential performance hit depending on how long the theorem prover takes



to return answers. However, as discussed next, we have not yet found this to be
a major cause of concern.

Experience. SafeGen is still work in progress. Nevertheless, we have experi-
mented extensively with the checking process for formulas that correspond to
SafeGen programs. In fact, we first chose example SafeGen programs and ex-
pressed in logic their properties that we wanted to check, before trying different
theorem provers and eventually choosing SPASS.

The choice of theorem prover is largely orthogonal to the overall approach,
and we may switch in the future. The overriding factor we used in choosing a
theorem prover was its ability to arrive at a result without human guidance. We
cannot expect the user of SafeGen to hand-tune the logic whenever the theorem
prover fails. A theorem prover that fails to find either a definite proof of validity
or a counterexample would cause SafeGen to produce lots of spurious warnings
to users. After trying several (4) theorem provers, we chose SPASS because (in
our tests) it demonstrated the best ability to terminate much of the time without
human guidance. With our limited set of example validity tests, SPASS always
finds a proof for the valid sentences. For sentences that are not valid, SPASS
terminates with a decision roughly 50% of the time. It fails to terminate (during
the several minutes we observed it) the other 50% of the time. This means that,
for our examples, SafeGen issues no false positive errors. However, for half of the
true type errors SafeGen reported, SafeGen was only able to report a “possible
error”, because SPASS did not terminate with a decision (i.e., a counterexample)
that the sentence is not valid.

Because SafeGen makes a large number of calls to the theorem prover during
type-checking, the performance of the theorem prover was a consideration, as
well. So far, for the cases that SPASS was able to terminate, it terminates in
under 1 second. This is hardly surprising: most of the properties we want to
prove are quite shallow. For instance, for many type-checking tests, the types and
meta scopes match exactly even though they are complex expressions involving
cursors and logic predicates. Currently we set the time limit for each SPASS
proof attempt at 3 seconds.

It is worth noting that our delegator example in Figure 1 has a bug that
SafeGen readily detects: the superclass method is not always guaranteed to have
a return type. If the return type of method m, called in line 6, is void, then the
statement return super.#[m](#[m.ArgNames]) is not legal. The user should
instead use a #when clause, to detect whether the superclass method has a re-
turnable result and if not to just call it without attempting to return its value.

Another result of our experiments with properties of sample SafeGen gen-
erators is that we tuned our logic to limit its expressiveness but maximize the
number of proofs we can produce completely automatically. That is, when we
find in our examples that a specific pattern causes consistent difficulties in rea-
soning, we remove the logic feature it depends on. For instance, transitivity is
very hard to reason about. The superclass relation is transitive, but instead of
specifying the transitivity fully in our logic axioms, we only expand it three lev-



els. As a result, if the validity of a generator depends on a subtyping relation
between classes more than 3 links away in the subtyping hierarchy, then our
logic cannot express the proof and SafeGen will issue a spurious warning.

Big Picture: Soundness and Why a New Language? The SafeGen static
checking algorithm is sound: if a generator is approved by SafeGen, it is guaran-
teed to be correct (with respect to the supported tests, of course—but with no
fundamental reason why these tests cannot be all possible Java well-formedness
tests). As in any static checking system, however, what matters most is not
soundness but usefulness. After all, soundness is easy to achieve by just rejecting
all programs. In the static checking arena, tools like ESC/Java [8] have garnered
a lot of attention by trying to be useful, even though they are not sound.

We view the soundness argument as tied to another major decision, namely
whether to support a hard-to-analyze programming language like Java as the
meta-language, or to design a small, specialized language like SafeGen. If we
were to implement our checking approach on a meta-programming system built
on top of Java (such as our MAJ system [18]), we would certainly have sacrificed
soundness to achieve usefulness. Java has several language constructs (including
dynamic dispatch, aliasing and assignments, exceptions) that make it hard to
be sound (i.e., guarantee correctness) while allowing a large percentage of the
correct programs. Instead, our choice of creating a new language was largely so
that we could be sound, yet useful. We believe that soundness is not a goal by
itself, yet it is valuable in terms of user perception. Sound static checking mech-
anisms (such as type systems) are much more easily accepted by programmers
than unsound tools (like lint or ESC/Java) because they feel more disciplined.
At the same time, we have aimed at making SafeGen expressive enough for most
program generation tasks that depend on reflection over existing programs.

Of course, SafeGen checking offers no guarantees of completeness: if we find
no proof of the correctness of the generator, it is by no means certain that
it is erroneous. Since first-order logic is undecidable, the proof process will not
always terminate. We have examined the possibility of restricting our language to
a broad but decidable fragment of first-order logic, such as the guarded fragment
[1]. (In fact, SPASS, with the right choice of parameters is a decision procedure
for the guarded fragment [9].) Nevertheless, we believe that this would limit
significantly the expressiveness of our logic. Furthermore, it is not clear whether a
guarantee of termination of the proof process with a decision is a very important
property in practice, unless it is a guarantee of termination in a very short
time, which seems impossible: such decision procedures typically have super-
exponential complexity.

6 Conclusions

In this paper we presented SafeGen, a meta-programming language with the dis-
tinguishing feature that it offers powerful correctness guarantees for generators



expressed in it. SafeGen statically checks its input to guarantee that only well-
formed code will be generated at the generator’s runtime. We demonstrated a
novel approach that combines traditional static type checking with representing
program correctness properties in logic. We believe that SafeGen is expressive
and useful, even though its syntax is restricted so we can represent all program
correctness properties logically. We also believe that the approach of using logic
to control and reason about code generation is one that extends beyond the
implementation of SafeGen. It can be used for a different target language (from
Java), and with a different logic (from one based on Java reflexive properties),
suitable for other broad categories of generation needs.
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Appendix

GENERATOR_DEF : "#defgen IDENT (" ( INPUT )? ") {" CODE_TEMPLATE "}" ;

INPUT : CURSOR_DEC ("," INPUT )*

| INPUT_PRED_DEC ("," INPUT )* ;

CODE_TEMPLATE : JAVACODE

| "#foreach (" CURSOR_DEC ") {" CODE_TEMPLATE "}"

| "#when (" LOGIC ") {" CODE_TEMPLATE "}"

( "#else {" CODE_TEMPLATE "}" )?

| GENERATOR_DEF

| PRED_DEF ;

CURSOR_DEC : METATYPE IDENT ( ":" LOGIC )? ;

METATYPE : "Class" | "Interface" | "Method" | "Constructor" | "Field" ;

INPUT_PRED_DEC: IDENT "(" ( PRED_ARGS )? ") =>" LOGIC ;

PRED_DEF : "#defpred IDENT "(" ( PRED_ARGS )? ") =" LOGIC ;

PRED_ARGS : METATYPE IDENT ("," METATYPE IDENT)* ;

JAVACODE : Java syntax + "#[" + METAEXPR + "]" ;

METAEXPR : IDENT ( "." META_FUN )*

| IDENT "(" ( GEN_ARGS )? ")" ;

GEN_ARGS : IDENT ( "," IDENT )* ;

META_FUN : "Name" | "Type" | "Formals" | "ArgTypes" | "ArgNames" ;

LOGIC : "forall" METATYPE IDENT : "(" LOGIC ")"

| "exists" METATYPE IDENT : "(" LOGIC ")"

| IDENT "=" IDENT

| "!" LOGIC | LOGIC "&" LOGIC | LOGIC "|" LOGIC

| LOGIC "=>" LOGIC ;

Fig. 2. SafeGen syntax



– Unary predicates: Public, Private, Protected, Static, Final, Abstract,
Transient, Strinctfp, Synchronized, Volatile, Native

– Binary predicates: PackageOf, ClassOf, InnerClassOf, InterfaceOf,
SuperClassOf, ConstructorOf, MethodOf, FieldOf, ExceptionOf,
ArgTypeOf

– Functions: Name, Type, Formals, ArgNames, ArgTypes, and Modifiers.

Fig. 3. Available predicates and functions in SafeGen

implies(

forall([c],

implies(

and(input(c), class(c)),

exists([del],

and(class(del),

equal(Name(del), Delegator),

forall([sc], equiv(equal(SuperClass(del), sc), equal(c, sc))),

forall([m],

implies(and(equal(DeclaringClass(m), c), method(m)),

exists([del_meth],

and(method(del_meth),

equal(DeclaringClass(del_meth), del),

equal(Name(m), Name(del_meth)),

equal(RetType(m), RetType(del_meth)),

equal(Formals(m), Formals(del_meth)))))))))),

forall([c],

implies(and(input(c), class(c)),

forall([m],

implies(

and(equal(DeclaringClass(m), c), method(m)),

exists([meth],

and(method(meth), equal(Name(meth), Name(m)),

exists([sc],

and(equal(DeclaringClass(meth), sc),

exists([c’],

and(equal(DeclaringClass(meth), c’),

equal(SuperClass(c’), sc),

equal(Name(sc’), Delegator))))),

equal(Formals(meth), Formals(m)))))))))

Fig. 4. SPASS Conjecture for type-validity of “super” call in example.


