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Abstract. We discuss the FC++ library, a library for functional pro-
gramming in C++. We give an overview of the library’s features, but
focus on recent additions to the library. These additions include the de-
sign of our “lambda” sublanguage, which we compare to other lambda
libraries for C++. Our lambda sublanguage contains special syntax for
programming with monads, which we also discuss in detail. Other re-
cent additions which we discuss are “infix function syntax” and “full
functoids”.

1 Introduction

FC++]7,8] is a library for functional programming in C++. We have recently
added a number of new features to the FC++ library, most notably an expression
template library for creating a lambda sublanguage. The lambda sublanguage
contains special syntax for programming with monads in the style of Haskell.
We focus our discussion on the design of this portion of the library (Section 5
and Section 6), but begin with a run-down of the features of FC++ (Section 2
and Section 3) as well as some important implementation details (Section 4).

2 Overview

In FC++, programmers define and use functoids. Functoids are the FC++ rep-
resentation of functions; we will discuss them in more detail in Section 4. The
latest version (v1.5) of the FC++ library supports a number of useful features,
including

— higher order, polymorphic functoids (“direct” functoids)

— lazy lists

— a large library of functoids, combinators, and monads (most of which dupli-
cate a good portion of the Haskell Standard Prelude[2])

— currying

— infix functoid syntax

dynamically-bound functoids (“indirect” functoids)



— a small library of effect combinators

— interfaces to C++ Standard Library data structures and algorithms via it-
erators

— ways to transform methods of classes and normal C++ functions into func-
toids

— reference-counted “smart” pointers for memory management (used internally
by, e.g., our lazy list data structure)

We’ll briefly discuss each of these features in the next section. Later on we will
discuss

— special syntax to mimic functional language constructs, including lambda, let,
and letrec, as well as do-notation and comprehensions for arbitrary monads

in detail.

The FC++ library is about 9000 lines of C++ code, and is written with
strict conformance to the C++ standard[4], which makes it portable to all of
the major brands of compilers.

3 Short Examples of various features

FC++ functoids can be simultaneously higher order (able to take functoids
as arguments and return them as results) and polymorphic (template functions
which work on a variety of data types). For example, consider the library function
compose (), which takes two functoids and returns the composition:

// compose( f, g )(args) == f£( g(args) )

We could define a polymorphic functoid addSelf (), which adds an argument to
itself:

// addSelf( x ) == x + x

We could then compose addSelf with itself, and the result would still be a
polymorphic functoid:

int x = 3;

std::string s = "foo";
compose( addSelf, addSelf )( x ) // yields 12
compose( addSelf, addSelf )( s ) // yields "foofoofoofoo"

Section 4 describes the infrastructure of these “direct functoids”, which enables
this feat to be implemented.

FC++ defines a lazy list data structure called List. Lists are lazy in that
they need not compute their elements until they are demanded. For example,
the functoid enumFrom() takes an integer and returns the infinite list of integers
starting with that number:

enumFrom( 1 ) // yields infinite list [1, 2, 3, ...]

A number of functoids manipulate such lists; for instance map () applies a func-
toid to each element of a list:



map( addSelf, enumFrom( 1 ) ) // yields infinite list [2, 4, 6, ...]

The FC++ library defines a wealth of useful functoids and data types. There
are named functoids for most C++ operators, like

plus(3,4) // 3+4 also minus, multiplies, etc.

There are many functoids which work on Lists, including map. Most of the
List functions are identical those defined in Haskell[2]. Additionally, a num-
ber of basic functions (like the identity function, id), combinators (like £1ip:
flip(f) (x,y)==£(y,x)), and data types (like List and Maybe; Maybe will be
discussed in Section 6) are designed to mimic exactly their Haskell counterparts.
We also implement functoids for such C++ constructs as constructor calls and
new calls:

construct3<T>() (x,y,2) // yields T(x,y,z)
new2<T>() (x,y) // yields new T(x,y)

and many more (some of which are described below).

Functoids are curryable. That is, we can call a functoid with some subset of
its arguments, returning a new functoid which expects the rest of the arguments.
Currying of leading arguments can be done implicitly, as in

minus(3) // yields a new function "f(x)=3-x"

Any argument can be curried explicitly using the placeholder variable _ (defined
by FC++):

minus (3,_) // yields a new function "f(x)=3-x"
minus (_,3) // yields a new function "f(x)=x-3"

We can even curry all N of a function’s arguments with a call to curryN(Q),
returning a thunk (a zero-argument functoid):

curry2( minus, 3, 2 ) // yields a new thunk "f()=3-2"

FC++ functoids can be called using a special infix syntax (implemented by
overloading operator™):

x “f° y // Same as f(x,y). Example: 3 "plus” 2

This syntax was also inspired by Haskell; some function names (like plus) are
more readable as infix than as prefix.

FC++ defines indirect functoids, which are function variables which can be
bound to any function with the same (monomorphic) signature. Indirect func-
toids are implemented via the FunN classes, which take N template arguments
describing the argument types, as well as a template argument describing the
result type. For example:

// Note: plus is polymorphic, the next line selects just "int" version
Fun2<int,int,int> f = plus;

£(3,2); // yields 5

f = minus;

£(3,2); // yields 1



Indirect functoids are particularly useful in the implementation of callback li-
braries and some design patterns[11].

The FC++ library defines a number of effect combinators. An effect combi-
nator combines an effect (represented as a thunk) with another functoid. Here
are some example effect combinators:

// before(thunk,f)(args) == { thunk(); return f(args); }
// after(g,thunk) (args) == { R r = g(args); thunk(); return r; }

An example: suppose you've defined a functoid writeLog() which takes a string
and writes it to a log file. Then

before( curryl( writeLog, "About to call foo()" ), foo )

results in a new functoid with the same behavior as foo(), only it writes a
message to the log file before calling foo().

FC++ interfaces with normal C++ code and the STL. The List class imple-
ments the iterator interface, so that lists can work with STL algorithms and other
STL data structures can be converted into Lists. The functoid ptr_to_fun()
transforms normal C++ function pointers into functoids, and turns method
pointers into functions which take a pointer to the receiver object as an extra
first object. Here are some examples, which use currying to demonstrate that
the result of ptr_to_fun is a functoid:

ptr_to_fun( &someFunc ) (x) (y) // someFunc(x,y)
ptr_to_fun( &Foo::meth ) (aFooPtr) (x) // aFooPtr->meth(x)

FC++ comes with its own reference-counted smart pointers: Ref and IRef.
Ref<T> works just like a T*, only with reference counting. IRef<T> implements
intrusive reference counting; an efficient form of reference counting which requires
supportive help from the type being used (here, T). Internally, the library uses
IRefs in the implementation of Lists and indirect functoids.

4 Where is the magic?

In the previous section we saw how functoids can be used. Nevertheless, we have
not shown you how the polymorphic functoids inside FC++ are implemented or
how to define your own polymorphic functoids. In this section we show how func-
toids are defined, and how they gain the special functionality FC++ supports
(like currying and infix syntax).

4.1 Defining polymorphic functoids

To create your own polymorphic functoid, you need to create a class with two
main elements: a template operator () and a member structure template named
Sig. To make things concrete, consider the definition of map (or rather, the class
Map, of which map is a unique instance) shown in Figure 1. This definition uses the
helper template FunType, which is a specialized template for different numbers
of arguments. For two arguments, FunType is essentially:



struct Map {
template <class F, class L>
struct Sig : public FunType<F,L,List<typename F::template
Sig<typename L::ElementType>::ResultType> > {};

template <class F, class T>

typename Sig<F, List<T> >::ResultType

operator() ( const F& f, const List<T>& 1 ) const {
if( null(l) )

return NIL;
else
return cons( f(head(1)), curry2(Map(), £, tail(1)) );
}
} map;

Fig. 1. Defining map in FC++

template <class A1, class A2, class R> struct FunType {
typedef R ResultType; typedef Al ArglType; typedef A2 Arg2Type; };

We can now analyze the implementation of Map. The operator () will allow
instances of this class to be used with regular function call syntax. What is
special in this case is that the operator is a template, which means that it can
be used with arguments of multiple types. When an instance of Map is used with
arguments f and 1, unification will be attempted between the types of £ and 1,
and the declared types of the parameters (const F&, and const List<T>&). The
unification will yield the values of the type parameters F and T of the template.
This will determine the return type of the functoid.

Now, let’s examine the Sig member class of the Map class. By FC++ con-
vention, the Sig member should be a template over the argument types of the
function you want to express (in this case the function type F and the list type
L). The Sig member template is used to answer the question “what type will
your function return if I pass it these argument types?” The answer in the Map
code is:

List< F::5ig<L::ElementType>: :ResultType >

(we have elided the typename and template keywords for readability). This
means: “map returns a List of what F would return if passed an element like
the ones in list L”.

In Haskell, one would express the type signature of map as:

map :: (a -> b) —> [a] —> [b]

The Sig members of FC++ functoids essentially encode the same information,
but in a computational form: Sigs are type-computing compile-time functions
that are called by the C++ unification mechanism for function templates and
implement the FC++ type system. This type system is completely independent



from the native C++ type system—map’s type as far as C++ is concerned is just
class Map. Other FC++ functoids, however, can read the FC++ type informa-
tion from the Sig member of Map and use it in their own type computations.
The map functoid itself uses that information from whatever functoid happens to
be passed as its first argument (see the F: :Sig<L: :ElementType>: :ResultType
expression, above).

4.2 Using the FullN wrappers to gain functionality

The definition of map in the previous subsection creates what we call a “basic
direct functoid” in FC++. However, a number of features of functoids (such as
currying and infix syntax, which we saw in Section 3, and lambda-awareness,
which will shall describe in Section 5) only work on so-called “full functoids”.
Transforming a normal functoid into a full functoid is easy. For example, to
define map as a full functoid, we change the definition from Figure 1 from

struct Map { /* ... */ } map;
to

struct XMap { /* ... */ };

typedef Full2<XMap> Map;

Map map;

That is, FullN<F> is the type of the full functoid created out of the basic N-
argument functoid F. The FullN template classes serve as a wrapper around
basic functoids. They add all of the FC++ features we are accustomed to (such
as currying and infix syntax) to the basic functoid.

Full functoids are a new feature of the FC++ library. Legacy code can pro-
mote its basic functoids into full functoids either by making the minor modifi-
cation to the definition described above, or within an expression by calling the
functoid makeFullN(), which takes an N-argument basic functoid as an argu-
ment and returns the corresponding full functoid as a result.

5 Lambda

Lambda is no stranger to C++. There are a number of existing C++ libraries
which enable clients to create new, anonymous functions on-the-fly. Some such
libraries, like the C++ STL[12] and its “binders”, or previous versions of FC++,
allow the creation of new functoids on-the-fly only either by binding some sub-
set of a functions arguments to values (currying) or by using combinators (like
compose). Other libraries, like the Boost Lambda Library[5] and FACT![13] en-
able the creation of arbitrary lambdas by using expression templates.



5.1 Motivation

We were motivated to implement lambda by our interest in programming with
monads. Experience with previous versions of FC++ made it clear that arbitrary
lambdas are a practical necessity if one wants to program with monads. Older
versions of FC++ had a number of useful combinators which made it possible
to express most arbitrary functions, but lambda makes it practical by making
it readable. For example, while implementing a monad, in the middle of an
expression you might discover that you need a function with this meaning;:

lambda(x) { f(g(x),h(x)) }

It is possible to implement this function using combinators (without lambda),
but the resulting code is practically unreadable:

duplicate(compose (flip(compose) (h) , compose(f,g)))

Alternatively, you can define the new functoid at the top level, give it a name,
and then call it:

struct XFoo {
template <class X> struct Sig : public FunType<X,
typename RT<F<typename RT<G,X>::ResultType,
typename RT<H,X>::ResultType>::ResultType> {};
template <class X>
typename Sig<X>::ResultType operator()( const X& x ) comnst {
return f(g(x),h(x));
}
};
typedef Fulli<XFoo> Foo;
Foo foo;
// later use "foo"

but clearly this is way too much work, especially when the function in question is
a one-time-use (“throwaway”) function. Lambda is the only reasonable solution
when you need to define short, readable, arbitrary functions on-the-fly.

5.2 Problematic issues with expression-template lambda libraries

Despite the advantages to lambda, we have always maintained a degree of wari-
ness when it comes to C++ lambda libraries (or any expression template library),
owing to the intrinsic limitations and caveats of using expression templates in
C++. The worrisome issues with expression template libraries in general (or
lambda libraries in particular) fall into four major categories:

— Accidental/early evaluation. The biggest problem with expression tem-
plate lambda libraries comes from accidental evaluation of C++ expressions.
Consider a short example using the Boost Lambda Library:

int all = {5, 3, 8, 4 };
for_each( a, at+4, cout << _1 << "\n" );



The third argument to for_each() creates an anonymous function to print
each element of the array (one element per line). The output is what we
would expect:

B 00w o

If we want to add some leading text to each line of output, it is tempting to
change the code like this:

int a[] = { 5, 3, 8, 4 };
for_each( a, at+4, cout << "Value: " << _1 << "\n" );

But (surprise!), the new program prints the added text only once (rather
than once per line):

Value: 5
3
8
4
This is because “cout << "Value: "” is a normal C++ expression that

the C++ compiler evaluates immediately. Only expressions involving place-
holder variables (like _1)! get “delayed” from evaluation by the expression
templates. These accidents are easy to make, and hard to see at a glance.

— Capture semantics (lambda-specific). Since C++ is an effect-ful lan-
guage, it matters whether free variables captured by lambda are captured
by-value or by-reference. The library must choose one way or the other, or
provide a mechanism by which users can choose explicitly.

— Compiler error messages. C++ compilers are notoriously verbose when it
comes to reporting errors in template libraries. Things are even worse with
expression template libraries, both because there tend to be more levels
of depth of template instantiations, and because the expression templates
typically expose clients to some new/unfamiliar syntax, which makes it more
likely for clients to make accidental errors. Indecipherable error messages
may make an otherwise useful library be too annoying for clients to use.

— Performance. Expression template libraries sometimes take orders of mag-
nitude longer to compile than comparably-sized C++ programs without ex-
pression templates. Also, the generated binary executables are often much
larger for programs with expression templates.

For the most part, these problems are intrinsic to all expression template libraries
in C++. As a result, when we set out to design a lambda library for FC++, we
kept in mind these issues, and tried to design so as to minimize their impact.

1 Additionally, one can use other special constructs defined by BLL. In the example
above, we could get the desired behavior by calling the BLL function constant ()
on the literal string, to delay evaluation.



5.3 Designing for the issues

Here are the design decisions we have made to try to minimize the issues de-
scribed in the previous subsection.

— Accidental/early evaluation. Since the problem itself is intrinsic to the
domain, the only way to “attack” this issue is prevention. That is, we cannot
prevent users from making mistakes, but we can try to design our lambda
to make these mistakes less common and/or more immediately apparent. To
this end, we have designed the lambda syntax to be minimalist and visually
distinct:

e Minimalism. Rather than overload a large number of operators and
include a large number of primitives, we have chosen a minimalist ap-
proach. Thus we have only overloaded four operators for lambda lan-
guage (array brackets for postfix function application, modulus for infix
function application, comma for function argument lists, and equality for
“let” assignments). Similarly, apart from lambda, the only primitives we
provide are those for let, letrec, and if-then-else expressions. These
provide a minimal core of expressive power for lambda, without over-
burdening the user with a wide interface. A narrow interface seems more
likely to be remembered and thus less error-prone.

e Visual distinctiveness. Rather than trying to make lambda expres-
sions “blend in” with normal C++ code, we have done the opposite.
We have chosen operators which look big and boxy to make lambda ex-
pressions “stand out” from normal C++ code. By convention, we name
lambda variables with capital letters. By making lambda expressions
visually distinct from normal C++ code, we hope to remind the user
which code is “lambda” and which code is “normal C++7, so that the
user won’t accidentally mix the two in ways which create accidents of
early evaluation.

— Capture semantics (lambda-specific). The FC++ library passes argu-
ments by const& throughout the library. Effectively this is just another (per-
haps efficient) way of saying “by value”. As a result, FC++ lambdas capture
free variables by value. As with the rest of the FC++ library, the user can
explicitly choose reference semantics by capturing pointers to objects, rather
than the capturing objects themselves.

— Compiler error messages. Meta-programming can be used to detect some
user errors and diagnose them “within the library” by injecting custom er-
ror messages[9,10] into the compiler output. Though many kinds of errors
cannot be caught early by the library (lambdas and functoids can often be
passed around in potentially legal contexts, but then finally used deep within
some template in the wrong context), there are a number of common types
of errors that can be nipped in the bud. The FC++ lambda library catches
a number of these types of errors and generates custom error messages for
them.

— Performance. There seems to be little that we (as library authors) can do
here. As expression template libraries continue to become more popular, we



can only hope that compilers will become more adept at compiling them
quickly. In the meantime, clients of expression template libraries must put
up with longer compile times and larger executables.

Thus, given the intrinsic problems/limitations of expression template libraries,
we have designed our library to try to minimize those issues whenever possible.

5.4 Lambda in FC++

We now describe what it looks like to do lambda in FC++. Figure 2 shows some
examples of lambda. There are a few points which deserve further attention.

// declaring lambda variables
LambdaVar<i> X;
LambdaVar<2> Y;
LambdaVar<3> F;

// basic examples
lambda(X,Y) [ minus[Y,X] ] // flip(minus)
lambda(X) [ minus[X,3] 1] // minus(_,3)

// infix syntax
lambda(X,Y) [ negate[ 3 Y%multipliesy X ] %plus% Y ]

// let
lambda(X) [ let[ Y == X %plus% 3,
F == minus[2]

1.in[ F[Y] 1]

// if-then-else
lambda(X) [ ifO[ X %less% 10, X, 10 ] ] // also ifl, if2

// letrec
lambda(X) [ letrec[ F == lambda(Y)[ ifi[ Y %equal’ O,
15
Y Jmultipliesy F[Y/minus%1] ]
1.in[ F[X] 1 1] // factorial

Fig. 2. Lambda in FC++

Inside lambda, one uses square brackets instead of round ones for postfix
functional call. (This works thanks to the lambda-awareness of full functoids,
mentioned in Section 4.) Similarly, the percent sign is used instead of the carat
for infix function call. These symbols make lambda code visually distinct so that
the appearance of normal-looking (and thus potentially erroneous) code inside
a lambda will stand out. Since operator [] takes only one argument in C++,



we overload the comma operator to simulate multiple arguments. Occassionally
this can cause an early evaluation problem, as seen in the code here:

// assume f takes 3 integer arguments
lambda(X) [ f[1,2,X] ] // oops! comma expression "1,2,X" means "2,X"
lambda(X) [ £[11[21[X] 1 // ok; use currying to avoid the issue

Unfortunately, C++ sees the expression “1,2” and evaluates it eagerly as a
comma, expression on integers.? Fortunately, there is a simple solution: since all
full functoids are curryable, we can use currying to avoid comma. The issues
with comma suggest another problem, though: how do we call a zero-argument
function inside lambda? We found no pretty solution, and ended up inventing
this syntax:

// assume g takes no arguments and returns an int
// lambda(X) [ X Yplush gll 1 // illegal: gl[] doesn’t parse
lambda(X) [ X %plus) g[_*_1 1 // _*_ means "no argument here"

It’s better to have an ugly solution than none at all.

The if-then-else construct deserves discussion, as we provide three versions:
if0,if1,and if2. if0 is the typical version, and can be used in most instances. It
checks to make sure that its second and third arguments (the “then” branch and
the “else” branch) will have the same type when evaluated (and issues a helpful
custom error message if they won’t). The other two ifs are used for difficult type-
inferencing issues that come from letrec. In the factorial example at the end
of Figure 2, for example, the “else” branch is too difficult for FC++ to predict
the type of, owing to the recursive call to F. This results in if0 generating an
error. Thus we have if1 and if2 to deal with situations like these: if1 works
like i£0, but just assumes the expression’s type will be the same as the type of
the “then” part, whereas if2 assumes the type is that of the “else” part. In the
factorial example, if1 is used, and thus the “then” branch (the int value 1) is
used to predict that the type of the whole if1 expression will be int.

Having three different ifs makes the lambda interface a little more compli-
cated, but the alternatives seemed to be either (1) to dispose of custom error
messages diagnosing if-then-elses whose branches had different types, or (2) to
write meta-programs to solve the recursive type equations created by letrec
to figure out its type within the library. Option (1) is unattractive because the
compiler-generated errors from non-parallel if-then-elses are hideous, and option
(2) would greatly complicate the metaprogramming in the library and slow down
compile-times even more. Thus we think our design choice is justified. Of course,
in the vast majority of cases, 1f0 is sufficient and this whole issue is moot; only
code which uses letrec may need if1 or if2.

5.5 Naming the C++ types of lanbda expressions

Expression templates often yield objects with complex type names, and FC++
lambdas are no different. For example, the C++ type of

% Some C++ compilers, like g+, will provide a useful warning diagnostic (“left-hand-
side of comma expression has no effect”), alerting the user to the problem.



// assume: LambdaVar<1> X; LambdaVar<2> Y;
lambda(X,Y) [ (3 Ymultiplies) X) %plus% Y ]

is
fcpp: :Full2<fcpp::fcpp_lambda: :Lambda2<fcpp::fcpp_lambda: :exp::
Call<fcpp::fcpp_lambda: :exp::Call<fcpp::fcpp_lambda::exp: :Value<
fcpp: :Full2<fcpp::impl::XPlus> >,fcpp::fcpp_lambda::exp::CONS<
fcpp: :fcpp_lambda: :exp::Call<fcpp::fcpp_lambda::exp::Call<fcpp::
fcpp_lambda: :exp: :Value<fcpp::Full2<fcpp: :impl::XMultiplies> >,
fcpp: :fcpp_lambda: :exp::CONS<fcpp::fcpp_lambda::exp::Value<int>,
fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp
::fcpp_lambda: :exp: :LambdaVar<1>,fcpp: :fcpp_lambda: :exp: :NIL> >,
fcpp: :fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp
::fcpp_lambda: :exp: :LambdaVar<2>,fcpp: :fcpp_lambda: :exp::NIL> >,1,2> >

In the vast majority of cases, the user never needs to name the type of a
lambda, since usually the lambda is just being passed off to another template
function. Occasionally, however, you want to store a lambda in a temporary
variable or return it from a function, and in these cases, you’ll need to name
its type. For those cases, we have designed the LEType type computer, which
provides a way to name the type of a lambda expression (LE). In the example
above, the type of

lambda(X,Y)[ (3 Ymultiplies’ X) Y%plus¥b Y ]
// desugared: lambda(X,Y)[ plus[ multiplies[3][X] 1[Y] ]

is
LEType< LAM< LV<1>, LV<2>,
CALL<CALL<Plus,CALL<CALL<Multiplies,int>,LV<1> > >,LV<2> > > >::Type
The general idea is that
LEType< Translated_LambdaExp >::Type

names the type of LambdaExp. Each of our primitive constructs in lambda has a
corresponding translated version understood by LEType:

CALL [ (function call)
LV LambdaVar
IF0,IF1,IF2 if0[],if1[],if2[]
LAM lambda() []

LET let[].in[]

LETREC letrec[].in[]

BIND LambdaVar == value

With LEType, the task of naming the type of a lambda expression is still oner-
ous, but LEType at least makes it possible. Without the LEType type computer,
the type of lambda expressions could only be named by examining the library
implementation, which may change from version to version. LEType guarantees
a consistent interface for naming the types of lambda expressions.

Finally, it should be noted that if the lambda only needs to be used monomor-
phically, it is far simpler (though potentially less efficient) to just use an indirect
functoid:



// Can name the monomorphic "(int,int)->int" functoid type easily:
Fun2<int,int,int> f = lambda(X,Y) [ (3 %multiplies¥% X) %plus% Y I;

5.6 Comparison to other lambda libraries

Here we briefly compare our approach to implementing lambda to that of the
other major lambda libraries for C++: the Boost Lambda Library (BLL)[5] and
FACT![13].2

Boost Lambda Library Whereas FC++ takes the minimalist approach, BLL
takes the maximal approach. Practically every overloadable operator is sup-
ported within lambda expressions, and the library has special lambda-expression
constructs which mimic the control constructs of C++ (like while loops, switches,
exception handling, etc). The library also supports making references to vari-
ables, and side-effecting operators like increment and assignment. Lambda is
implicit rather than explicit; a reference to a placeholder variables (like _1)
turns an expression into a lambda on-the-fly.

BLL’s approach makes sense given the “target audience”; the Boost libraries
are designed for everyday C++ programmers. These are people who are familiar
with C++ constructs, and who are hopefully C+-+-savvy enough to avoid most
of the pitfalls of an expression-template lambda library. In contrast, FC++ is de-
signed to support functional programming in the style of languages like Haskell.
A number of our users come from other-language backgrounds, and aren’t too fa-
miliar with the intricacies of C++. Thus FC++’s lambda is designed to present a
simple interface with syntax and constructs familiar to functional programmers,
and to shield users from C++-complexities as much as possible.

FACT! FACT!, like FC++, is designed to support pure functional programming
constructs. Lambda expressions always perform capture “by value” and the re-
sulting functions are typically effect-free. Like FC++, FACT! has an explicit
lambda construct; the user can define his own names for placeholder variables,
but conventionally names like x and y are used. FACT! defines few primitive con-
trol constructs in its lambda sublanguage (just where for if-then-else). Like BLL,
however, FACT! overloads many C++ operators (like +) for use in lambda ex-
pressions. Thus FACT!’s interface is relatively simple and minimal, but lambda
expressions are not as visually distinctive as they are in FC++.

6 Monads

Monads provide a useful way to structure programs in a pure functional language.
Using monads, it is relatively straightforward to implement things like global

3 The FACT! library, like FC++, includes features other than lambda, e.g. functions
like map() and foldl() as well as data structures for lazy evaluation. BLL, on the
other hand, is concerned only with lambda.



state, exceptions, I/0O, and other concepts common to impure languages that
are otherwise difficult to implement in pure functional languages[6, 14].
Supporting monads in FC++ is an interesting task for a number of reasons:

— Many interesting functional programs and libraries use monads; monad sup-
port in FC++ makes it easier to port these libraries to C++.

— Monads in Haskell take advantage of some of that language’s most expres-
sively powerful syntax and constructs, including type classes, do-notation,
and comprehensions. Modelling these in C++ helps us better understand
the relationship between the expressive power of these languages.

— Monads provide a way to factor out some cross-cutting concerns, so that
local program changes can have global effects. (We discuss a few example
applications that illustrate this.)

In the next subsection, we give a short introduction to monadic programming
in Haskell. Next we discuss the relationship between type classes in Haskell and
concepts in C++; understanding this relationship facilitates the discussion in
the rest of this section. Then we discuss how we have implemented monads in
FC++. We end with some example applications of monads.

6.1 Introduction to monads in Haskell

We briefly introduce a small portion of the Haskell programming language,*
as its type system provides perhaps the most succinct and transparent way to
understand the details of what a monad is. For the moment, know that a monad
is a particular kind of data type, which supports two operations (named unit
and bind) with certain signatures that obey certain properties. We shall return
to the details after a short digression with Haskell.

In Haskell, the declaration o :: T says that object o has type T. Basic type
names (like Int) start with capital letters. Lowercase letters are used for free
type variables (parametric polymorphism — e.g. templates). The symbol [T]
represents a list of T objects. The symbol -> separates function arguments and
results. The symbol -- starts a comment. Here are a few examples.

X :: Int -- X is an integer
addl :: Int -> Int -- addl is a function from Int to Int
plus :: Int -> Int -> Int -- plus takes two Ints and returns an Int

-- (0r, equivalently, plus takes one Int, and returns a function
-- which takes an Int and returns an Int. Currying is built in.)

id :: a->a -- id takes any type of object and returns
-- an object of the same type

map :: (a -> b) -> [a] -> [b] -- map is a polymorphic function of two

4 Haskell programmers will note that we are fudging some of the details of Haskell to
simplify the discussion.



-- arguments; it takes a function from type a to type b, and a
-- list of objects of type a, and returns a list of b objects

Free type variables can be bounded by “type classes” (described shortly). For
example, a function to sort a list requires that the type of elements in the list
are comparable with the less-than operator. In Haskell we would say:

sort :: (0rd a) => [a] —> [a]

That is, sort is a function which takes a list of a objects and returns a list of a
objects, subject to the constraint that the type a is a member of the Ord type
class. Type class Ord in Haskell represents those types which support ordering
operators like

class Ord a where
== :: a -> a -> Bool

< :: a —-> a —> Bool
<= :: a -> a -> Bool
-- etc.

We say that a type T is an instance of type class C when the type supports the
methods in the type class. For example, it is true that

instance Ord Int -— Int is an instance of Ord

Given this overview of Haskell’s types and type classes, we can now describe
monads. A monad is a type class with two operations:

class Monad m where
bind :: ma->(a->mb) ->mb
unit :: a -> m a

In this case, instances of monads are not types, but rather they are “type con-
structors”. These are like template classes in C++; an example is a list. In C++
std::1list is not a type, but std: :1ist<int> is. The same holds for Haskell; []
is not a type, but [Int] is. In the code describing the monad type class above,

m is a type constructor.
It turns out that lists are instances of monads:

instance Monad [] where
bind m k = concat (map k m) -- don’t worry about these
unit x = [x] —-- definitions yet

-— in the list monad

-— bind :: [a]l] -=> (a -> [b] ) -> [b]

-- unit :: a -> [a]

As another example, consider the Maybe type constructor. The type “Maybe a”
represents a value which is either just an a object, or else nothing. In Haskell:

data Maybe a = Nothing | Just a

-- Examples of variables
x :: Maybe Int



x = Just 3
y :: Maybe Int
y = Nothing

Maybe also forms a monad with this definition:

instance Monad Maybe where

bind (Just x) k = k x -- don’t worry about
bind Nothing k = Nothing -- these definitions
unit x = Just x -= yet

-- in the Maybe monad
-- bind :: Maybe a -> ( a -> Maybe b ) -> Maybe b
-- unit :: a -> Maybe a

A refinement of the Monad type class is MonadWithZero:

class (Monad m) => MonadWithZero m where
zero :: m a

The zero element of a monad is a value which is in the monad regardless of
what type was passed to the monad type constructor. For lists, the empty list
([) is the zero. For Maybe, the zero is Nothing. Not all monads have zeroes,
which is why MonadWithZero is a separate type class.

Monads with zeroes can be used in comprehensions with guards. Compre-
hensions are a special notation for expressing computations in a monad. Haskell
supports comprehensions for the list monad; an example is

[ x+ty | x <- [1,2,3], y <~ [2,3], x<y ]
-- results in [3,4,5]

This list comprehension could be interpreted as “the list of values x plus y, for
all x and y where x is selected from the list [1,2,3] and y is selected from the list
[2,3], and where x is less than y”. The desugared version of the Haskell code is:

-- (\z -> z+1) is Haskell lambda syntax: (lambda(Z)[ Z %plusy 1 1)
-- backquotes are Haskell’s infix syntax: (x ‘f¢ y == f x y)
[1,2,3] ‘bind¢ (\x ->
[2,3]  ‘bind* (\y ->
if not (x<y) then zero
else unit (x+y) ))

The translation from the comprehension notation to the desugared code is straight-
forward. Starting from the vertical bar and going to the right, the expressions
of the form “var <- exp” turn into calls to bind and lambdas, and guards
(boolean conditions) are transformed into if-then-else expressions which return
the monad zero if the condition fails to hold. After all expressions to the right
of the vertical bar have been processed, the expression to the left of the vertical
bar gets unit called on it to lift the final computed value back into the monad.



6.2 Haskell’s type classes and C++ template concepts

In the C++ literature, we sometimes speak of template concepts. A concept in
C++ is a set of constraints which a type is required to meet in order to be used
to instantiate a template. For example, in the implementation of the template
function std: :find (), there will undoubtedly be some code along the lines of

if( cur_element == target ) // ...

which compares two elements for equality using the equality operator. Thus, in
order to call std::find() to find a value in a container, the element type must
be EqualityComparable—that is, it must support the equality operator with
the right semantics. We call EqualityComparable a concept, and we say that
types (such as int) which meet the constraints model the concept. Concepts
exist only implicitly in the C++ code (e.g. owing to the call to operator==() in
the implementation), and often exist explicitly in documentation of the library.
Some C++ libraries[9,10] are devoted to “concept checking”, these libraries
check to see that the types used to instantiate a template do indeed model the
required concepts (and issue a useful error message if not).

Haskell type classes are analogous to C++ concepts. However in Haskell they
are reified; there are language constructs to define type classes and to declare
which types are instances of those type classes. In C++, when a certain type
models a certain concept (by meeting all of the appropriate constaints), it is
merely happenstance (structural conformance); in Haskell, however, in addition
to meeting the constraints of a type class interface, a type must be declared
to be an instance of the concept (named conformance). “Concept checking” in
Haskell is built into the language: type classes define concepts, instance declara-
tions say which types model which concepts, and type bounds make explicit the
constraints on any particular polymorphic function.

Understanding this analogy will make the FC++ implementation of monads
more transparent. As we shall see, in the FC++ library, we spell out the con-
cept requirements on monads, in order to make it easier for clients who write
monads to ensure that they have provided all of the necessary functionality in
the templates.

6.3 Comparing monads in FC+4+ to those in Haskell

Let us now illustrate monad definitions in FC++. As a first example, we shall
look at Maybe. The Maybe template class and its associated entities are defined
in Figure 3. NOTHING is the constant which represents an “empty” Maybe, and
just Q) is a functoid which turns a value of type T into a “full” Maybe<T>. (Maybe
is implemented using a List which holds either one or zero elements.)

Next we consider how to make Maybe a monad. Figure 4 describes the general
monad concepts as specified in the FC++ documentation. A monad class must
define the methods unit and bind (with the appropriate signatures); a class
representing a monad with a zero must meet the above requirements as well as
defining a zero element.



/*

*/

struct AUniqueTypeForNothing {};
AUniqueTypeForNothing NOTHING;

template <class T>
class Maybe {

List<T> rep;

public:

};

typedef T ElementType;

Maybe ( AUniqueTypeForNothing ) {}
Maybe () {} // Nothing constructor
Maybe( const T& x ) : rep( cons(x,NIL) ) {} // Just constructor

bool is_nothing() const { return null(rep); }
T value() const { return head(rep); }

struct XJust {

};

template <class T> struct Sig : public FunType<T,Maybe<T> > {};

template <class T>

typename Sig<T>::ResultType

operator() ( const T& x ) const {
return Maybe<T>( x );

}

typedef Fullil<XJust> Just;
Just just;

Fig. 3. The Maybe datatype in FC++

concept Monad {

}

// full functoid with Sig unit :: a -> m a

typedef Unit;

static Unit unit;

// full functoid with Sig bind ::ma > (a->mb) ->mb
typedef Bind;

static Bind bind;

concept MonadWithZero models Monad {

// zero :: m a
typedef Zero; // a value type
static Zero zero;

Fig. 4. Documentation of the monad concept requirements in FC++



struct MaybeM {
typedef Just Unit;
static Unit unit;

struct XBind {
template <class M, class K> struct Sig : public FunType<M,K,
typename RT<K,typename M::ElementType>::ResultType> {};
template <class M, class K>
typename Sig<M,K>::ResultType
operator() ( const M& m, const K& k ) const {
if( m.is_nothing() )
return NOTHING;
else
return k( m.value() );
}
h;
typedef Full2<XBind> Bind;
static Bind bind;

typedef AUniqueTypeForNothing Zero;
static Zero zero;

Fig. 5. Definition of the Maybe monad (MaybeM)

Figure 5 shows how we define the Maybe monad in FC++. Nested in struct
MaybeM we define unit, bind, and zero, as well as typedefs for their types. This
FC++ definition effectively corresponds to the definitions

instance Monad Maybe —— ...
instance MonadWithZero Maybe -- ...

in Haskell.

It should be noted here that the one major difference between monads in
FC++ and monads in Haskell is that, in FC++, there is a distinction between
the monad type constructor (e.g. Maybe) and the monad itself (e.g. MaybeM). We
chose to make this distinction for reasons discussed next.

One advantage to separating the type constructor (Maybe) from the monad
definition (MaybeM) is that, since the monad definition is itself a data type, it
can be used as a type parameter to template functions. As a result, rather than
supporting just list comprehensions (like Haskell does), in FC++ we support
comprehensions in an arbitrary monad, by passing the monad as a template
parameter to the comprehension. For example, the Haskell list comprehension

[ xty | x <- [1,2,3], y <- [2,3], x<y ]
is written in FC++ as

compM<ListM>() [ X Vplush Y |
X <= list_with(1,2,3), Y <= list_with(2,3), guard[ X /less¥% Y ] ]



Note how ListM is passed as an explicit template parameter to the compM func-
tion, which returns a comprehension for that monad. As a result, we can write

compM<MaybeM>() [ X Yplusyk Y | X <= just(2), Y <= just(3) 1]

and perform a comprehension in the Maybe monad. Having a name apart from
the data type constructor to serve as a handle for the monad definition (e.g.
ListM, MaybeM) gives us a convenient way to parameterize monad operations.
(The idea of generalizing comprehensions to arbitrary monads was originally
discussed by Wadler[15].)

There is another advantage to separating the type constructor from the
monad definition. Haskell type classes require algebraic data type constructors
(not type aliases) to work. As a result, we cannot express the identity monad (a
monad wherem a = a) directly in Haskell. Instead we have to fake it by defining
a new data type (which we have chosen to call Identity):

data Identity a = Ident a

instance Monad Identity where -- m a = Identity a
unit x = x
bind mk =k m

where values of type a are wrapped /unwrapped with the value constructor Ident
to make them members of the type Identity a. In FC++, however, we can
define the monad without also having to define a new data type to represent
identities, as seen in Figure 6. The reason for the distinction is perhaps obvious.
Haskell uses type inference, which means it must unambiguously be able to figure
out which monad a particular data type is in. This type inference is not possible
unless there is a one-to-one mapping between algebraic datatype constructors
and monads. In FC++, on the other hand, the user passes the monad explicitly
as a template parameter to constructs like compM. By requiring the user to be
a little more explicit about the types, we gain a bit of expressive freedom (e.g.
being able to do comprehensions in arbitrary monads).

6.4 Monads in FC++

The previous subsection introduced FC++ monads. Here we flesh out exactly
what monad support FC++ provides.
FC++ provides functoids for the main monad operations. Specifically:

unitM<SomeMonad> () // SomeMonad’s "unit" functoid
bindM<SomeMonad> () // SomeMonad’s "bind" functoid
zeroM<SomeMonad> () // SomeMonad’s "zero" value

plusM<SomeMonad> () // SomeMonad’s "plus" functoid
bindM_<SomeMonad> () // SomeMonad’s "bind_" functoid

mapM<SomeMonad> () // SomeMonad’s "map" functoid
joinM<SomeMonad> () // SomeMonad’s "join" functoid
liftM<SomeMonad> () // lifts a one-arg function into SomeMonad

1liftM2<SomeMonad>() // lifts a two-arg function into SomeMonad



// Nothing corresponding to Identity data type needed by Haskell
struct IdentityM { // Ma=a

typedef Id Unit;

static Unit unit;

struct XBind {
template <class M, class K> struct Sig : public FunType<M,K,
typename RT<K,M>::ResultType> {};
template <class M, class K>
typename Sig<M,K>::ResultType
operator() ( const M& m, const K& k ) const {
return k(m);
}
};
typedef Full2<XBind> Bind;
static Bind bind;

Fig. 6. Definition of the IdentityM monad

1iftM3<SomeMonad>() // lifts a three-arg function into SomeMonad
bind // "bind" (monad is inferred)
bind_ // "bind_" (monad is inferred)

Many of these have not been previously mentioned; plusM is another function
supported by some monads; bindM_, mapM, joinM, and the 1iftM functions are
common monad operations which are defined in terms of unitM and bindM; bind
and bind_ are described more below.

FC++ supports comprehensions in arbitrary monads, using the general syn-
tax:

compM<SomeMonad>() [ lambdaExp | thing, thing, ... thing ]
where thing is one of

— a gets expression of the form “LV <= lambdaExp” (Translates into a call to
bind)

— a lambda expression (Translates into a call to bind_)

— a guard expression of the form “guard[boolLambdaExp]l” (Translates into
an if-then-else with zero if the test fails)

This is similar to the syntax used by Haskell’s list comprehensions. FC++ also
supports a construct similar to Haskell’s do-notation:

doM[ thing, thing, ... thing ]

where each thing is as before, only guards are no longer allowed. (The lack of
a monad parameter to doM is discussed shortly.)

Clients can define monads by creating monad classes which model the monad
concepts described in the previous subsection (Monad and MonadWithZero). There



is also a MonadWithPlus concept for monads which support plus. Addition-
ally there is another concept called InferrableMonad, which may be modelled
when there is a one-to-one correspondence between a datatype and a monad.
In the case of InferrableMonads, FC++ (like Haskell) can automatically infer
the monad based on the datatype in some cases; constructs like doM and the
functoids bind and bind_ do not need to have a monad passed an an explicit
parameter—they infer it automatically.

The monad syntax is part of FC++’s lambda sublanguage. As with lambda,
we strived for minimalism when implementing monads. The only new operator
overloads are operator| and operator<=, and the only new syntax primitives
are compM, guard, and doM. As with the rest of lambda, we provide LEType
translations so that clients can name the result type of lambda expressions which
use monads:

DOM doM[]

GETS LambdaVar <= value
GUARD guard[]

COMP compM<SomeMonad> () [1]

As with the other portions of 1lambda, FC++ provides some custom error mes-
sages for common abuses of the monad constructs. We followed the same design
principles discussed in Section 5 when implementing monads in FC++.

6.5 Monad examples
There are many example applications which use monads; here we discuss a small

sample to give a feel for what monads are useful for.

Using MaybeM for exceptions One classic example of the utility of monads
comes from the domain of exception handling. Suppose we have written some
code which computes some values using some functions:

x = £(3);
y = g&x);
z = h(x,y);
return z;

(For the sake of argument, let’s say that the functions f, g, and h take posi-
tive integers as arguments and return positive integers as results.) Now suppose
that each of the functions above may fail for some reason. In a language with
exceptions, we could throw exceptions in the case of failure. However in a lan-
guage without an exception mechanism (like C or Haskell), we would typically be
forced to represent failure using some sentinel value (-1, say), and then change
the client code to

x = £(3);
if( x == -1 ) {
return -1;

} else {



y = g(x);
if(y==-1) {
return -1;

} else {
z = h(x,y);
return z;

}

}

This is painful because the “exception handling” part of the code clutters up the
main line code. However, we can solve the problem much more simply by using
the Maybe monad. Let the functions return values of type Maybe<int>, and let
NOTHING represent failure. Now the client code can be written as just

compM<MaybeM>()[ Z | X <= £[3],
Y <= glx],
Z <= h([X,Y] ]

The definitions of unit and bind in the MaybeM monad make the problem trivial;
NOTHING values immediately propogate up through the end of the comprehension,
whereas integers continue on through the computation as desired.

Using ListM for non-determinism Now imagine changing the problem above
slightly; instead of the functions f, g, and h having the possibility of failure,
suppose instead that they are non-deterministic. That is, suppose each func-
tion returns not a single integer, but rather a list of all possible integer results.
Changing the original client code to deal with this change would likely be even
uglier than the original change (which required all the tests for -1). However the
change to the monadic version is trivial:

compM<ListM>()[ z | X <= £[3], -- Note ListM instead of MaybeM
Y <= glX1,
Z <= h[X,Y] ]

The result is a list of all the possible integer values for Z which satistfy the
formulae.

A monadic evaluator Wadler [15] demonstrates the utility of monads in the
context of writing an expression evaluator. Wadler gives an example of an in-
terpreter for a tiny expression language, and shows how adding various kinds
of functionality, such as error handling, counting the number of reduction op-
erations performed, keeping an execution trace, etc. takes a bit of work. The
evaluator is then rewritten using monads, and the various additions are revis-
ited. In the monadic version, the changes necessary to effect each of the additions
are much smaller and more local than the changes to the original (non-monadic)
program. This example demonstrates the value of using monads to structure
programs in order to localize the changes necessary to make a wide variety of
additions throughout a program.



Monadic parser combinators Parsing is a domain which is especially well-
suited to monads. In the Haskell community, “monadic parser combinators” are
becoming the standard way to structure parsing libraries. As it turns out, parsers
can be expressed as a monad: a typical representation type for parser monads is

Parser a = String -> Maybe ( a, String ) -- the monad "Parser"
That is, a parser is a function which takes a String and returns

— (if the parse succeeds) a pair containing the result of the parse and the
remaining (yet unparsed) String, or
— (if the parse fails) Nothing.

Monadic parser combinators are functions which combine parsers to yield new
parsers, typically in ways commonly found in the domain of parsing and gram-
mars. For example, the parser combinator many:

many :: Parser a -> Parser [a]

implements Kleene star—for example, given a parser which parses a single digit
called “digit”, the parser “many digit” parses any number of digits. Monadic
parser combinator libraries typically provide a number of basic parsers (e.g.
charP, which parses any character and returns that character) and combinators
(e.g. plusP, which takes two parsers and returns a new parser which tries to
parse a string with the first parser, but if that fails, uses the second) to clients.
The beauty of the monadic parser combinator approach is that it is easy for
clients to define their own parsers and combinators for their specific needs. A
good introductory paper on the topic of monadic parser combinators in Haskell
is [3]; we implement the examples in that paper in one of the example files that
comes with the FC++ library.

As we have seen in the previous examples, using monads often makes it easy
to change some fundamental aspect of the behavior of the program. For example,
if we have an ambiguous grammar (one for which some strings admit multiple
parses), we can simply change the representation type for the parser like so:

Parser a = String -> [ ( a, String ) ] -- uses List instead of Maybe

and redefine the monad operations (unit, bind, zero, and plus), and then
parsers will return a list of every possible parse of the string. This is all possible
without making any changes to existing client code.

One alternative approach to writing parsing libraries in C++ is that taken
by the Boost Spirit Library[1]. Spirit uses expression templates to turn C++
into a yacc-like tool, where parsers can be expressed using syntax similar to the
language grammar. For example, given the expression language

factor = integer | group // BNF
term = factor (mulOp factor)=*

expression = term (addOp term)#*

group ::= ?(° expression ’)’

one can write a parser using Spirit as



factor = integer | group; // Spirit (C++)
term = factor >> #(mulOp >> factor);

expression = term >> *(addOp >> term);

group = 7(? >> expression >> ’)’;

which is almost just as readable as the grammar. Like yacc, Spirit has a way to
associate semantic actions with each rule.

The results are similar with monadic parser combinators. Using an FC++
monadic parser combinator library, we can write

factor
term

lambda(S) [ (integer %plusP), dereference[&groupl)[S] 1;
factor “chainll” mulOp;

expression = term “chainll” addOp;

group bracket( charP(’(’), expression, charP(’)’) );

to express the same parser. The above FC++ code creates parser functoids by
using more primitive parsers and combining them with appropriate parser com-
binators like chainli1. (Note that, whereas Spirit’s parser rules are effectively “by
reference”, FC++ functoids are “by value”, which means we need to explicitly
create indirection to break the recursion among these functoids. Hence the use
of lambda, dereference, and the address-of operator.) This FC++ parser not
only parses the string, but it also evaluates the arithmetic expression parsed. The
semantics are built into the user-defined combinators like add0p and chainll.
For example,

addOp :: Parser (Int -> Int -> Int)
parses a symbol like ’-? and returns the corresponding functoid (minus). Then,

chainll :: Parser a -> Parser (a -> a -> a ) -> Parser a
-- e.g. p ‘chainlil‘ op

parses repeated applications of parser p , separated by applications of parser op
(whose result is a left-assocative function, which is used to combine the results
from the p parsers). Thus monadic parser combinator libraries allow one to
express parsers at a level of abstraction comparable to tools like yacc or the
Spirit library, but in a way in which users can define their own abstractions (like
chainl1) for parsing and semantics, rather than just using the builtin ones (like
Kleene star) supplied by the tool/library.

Lazy evaluation Previous versions of FC++ supported lazy evaluation in two
main ways: first, via the lazy List class and the functions (like map) that use
Lists, and second, via “thunks” (zero argument functoids, like Fun0<T>). Mon-
ads provide a new, more general mechanism to lazify computations. The datatype
ByNeed<T> and its associated monad ByNeedM can be used to make a computa-
tion lazy. Additionally, the functoid bLift lazifies a functoid by lifting its result
into the ByNeedM monad. For example, we can lazify

X

y

z

£(3);
gx);
h(x,y);



by writing

compM<ByNeedM>() [ Z | X <= bLift[f] [3],
Y <= bLift[g] [X1,
Z <= bLift[h] [X,Y] ]

The result is a ByNeed<int> value, which is a computation that will result in an
int when “forced” by calling bForce. (Conversely, a constant can be turned into
a by-need computation by calling bDelay.) Using values of type ByNeed<T> in
lieu of type T ensures that lazy evaluation occurs: a computation is not performed
until the value is demanded, and once a computation has been run to produce a
value, the value is cached so that further applications of bForce get the cached
value rather than re-running the computation.

In short, the datatype ByNeed<T> combines “thunks” with caching, and the
ByNeedM monad makes syntax sugar like comprehensions available so that client
code working with ByNeed<T> objects need not be concerned with all the “forc-
ing” and “delaying” in the midst of the computation (the monad plumbing
handles this).

Summary The examples given in this section give a sense of the kinds of
applications for which monads are useful. Monads have a wide variety of utilities,
which span varied domains (such as parsing and lists) and a number of cross-
cutting concerns (like lazy evaluation and exception handling). Prior versions of
FC++ implemented a few small monads, but they were extremely burdensome
to express. The expressiveness afforded by the new FC++ syntactic sugar (like
lambda and comprehensions) makes using monads in C++ a practicality for the
first time.

7 Conclusions

We have given an overview of FC++ and described its new features in de-
tail. Full functoids provide a general and reusable mechanism for adding fea-
tures such as curryability, infix syntax, and lambda-awareness to every func-
toid. The lambda sublanguage is designed to minimize the problems common
to all expression-template lambda libraries in C++4. We have discussed the re-
lationship between Haskell type classes and C++ template concepts in order to
help describe how monads can be expressed in FC++. We have demonstrated a
novel syntax for comprehensions which generalizes this construct to an arbitrary
monad. Throughout FC++ and the lambda sublanguage, we have overloaded a
select few operators to provide syntactic sugar for the library and we have used
named functoids like plus to express the actual operations of C++ operators.
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