
SPIRE: Scalable Processing of RFID Event Streams

Richard Cocci
Department of Computer Science

University of Massachusetts Amherst
rcocci@cs.umass.edu

Yanlei Diao
Department of Computer Science

University of Massachusetts Amherst
yanlei@cs.umass.edu

Prashant Shenoy
Department of Computer Science

University of Massachusetts Amherst
prashant@cs.umass.edu

Abstract—Radio Frequency Identification (RFID)
technology is gaining acceptance in an increasing number of
applications for tracking and monitoring purposes. While
RFID raises the potential to provide unprecedented visibility
in various application domains, data management techniques
that are capable of handling massive amounts of data
generated by large RFID deployments are still lacking. The
sheer volume of data generated in such deployments could
easily overwhelm existing information systems. Moreover, the
transformation from raw RFID readings into meaningful,
actionable information in real-time poses another significant
challenge. In this paper, we present the design of the SPIRE
system that aims to manage enormous volumes of RFID data
and provide fast data information transformation. In
addition, we outline our research plan to refine this design
and evaluate its performance in a simulated large-scale RFID
supply chain scenario.

I. INTRODUCTION
The past few years have witnessed the emergence of an

important trend: physical objects are tagged individually
and subsequently sensed in various locations at various
times. Radio Frequency Identification technology lies in
the very heart of this trend. RFID tagging and sensing in
combination with ubiquitous networking will soon enable
an information infrastructure that collects real-time data of
physical objects and delivers high-value content to a wide
spectrum of user communities. Examples of emerging user
communities include supply chain management [11],
healthcare [11], pharmaceuticals [11], postal services [14],
and surveillance [15], just to name a few. With driving
forces such as the Food and Drug Administration (FDA)’s
recommendation to use RFID to combat counterfeit drugs
[26] and Wal-Mart’s mandate to tag cases by its suppliers
[21], uses of an RFID-based information infrastructure will
soon permeate many aspects of everyday life.

Our research focuses on developing an RFID-based
information infrastructure that offers two key functions:
real-time monitoring of real-world activities and object
track-and-trace on large scales. Real-time monitoring is
enabled by the infrastructure’s ability to sift relevant
information out of the flood of RFID data immediately
after it emerges. In retail and inventory management, for
example, such timely, relevant information is needed to
detect shoplifting activities, out-of-stocks, misplaced
inventory, etc. This infrastructure also allows information
to be collected from various sources and integrated into a

broader view to support object track-and-trace, i.e.,
reporting the history of location and condition of objects.
Take food and drug distribution, example track-and-trace
queries include “has this medicine been exposed to
temperature over its regulatory range during the
distribution?” or “does this beef come from an area with a
recent outbreak of the mad cow disease?” In the
foreseeable future, this infrastructure will further facilitate
the development of new everyday applications such as the
“smart medicine cabinet” that monitors human access for
medical compliance, detects interaction between medicines,
measures temperature and humidity, infers expired and
spoiled medicines from past and current condition, and
alerts users when a type of medicine is recalled by its
manufacturer.

While the database community has made significant
progress in developing data management systems suited for
related domains such as stream processing
[2][5][6][9][23][25] and information integration
[10][13][17][20], an RFID-based information infrastructure
presents two fundamental challenges which have not been
sufficiently addressed:

Data-information mismatch for monitoring: Data
streams emanating from RFID devices carry primitive
information about the tag affixed to an object, its location,
and the time of sensing, which is essentially a core dump of
the sensing of a physical world. RFID-based monitoring
applications, however, require meaningful, actionable
information (e.g., shoplifting, out-of-stocks) that is defined
by unique complex logic involving filtering, pattern
matching, aggregation, and recursive pattern matching.
Such logic has not been a focus of existing stream systems
[2][5][6][9][23][25] and sensor networks [7][18][19][29],
and remains under-addressed in recent event systems
[1][3][8][15][25]. To resolve the mismatch between data
and information, it is critical to have a processing
component residing on RFID streams that performs
complex data-information transformation.

Incomplete, insufficient data for track-and-trace: To
support track-and-trace, an RFID-based information
infrastructure needs to integrate data from various types of
devices, such as RFID readers and wireless sensors, and
numerous distributed data sources. Unlike traditional data
warehousing [4][12] and information integration
[10][13][17][20], this process is significantly complicated

by two unique problems of RFID technology: a) missing
data is common, and b) readers often overlap in read ranges
resulting in duplicated readings of the same tag at different
locations. These problems result in a tremendous need for
filtering and smoothing techniques to improve the quality
of data that is initially incomplete.

Besides the above challenges, the information
infrastructure also faces the following performance
requirements:

Scalability: Large deployments of RFID devices will
create unprecedented volumes of data. For example, when
Wal-Mart tags goods at the individual item level, it could
create as much as 7 million terabytes of data in a single day
[24]. This sheer volume of data is an obstacle in itself and
all aspects of RFID data management must be designed to
account for this challenge.

Low-latency: Despite the volume of data, RFID data
processing needs to be fast. This is crucial for monitoring
applications that require up-to-the-second information to
prevent loss in value and mitigate harm to life, property,
and the environment. Data integration, inference, and track-
and-trace querying are also often required to be performed
with low-latencies.

In this paper we present the architecture and technical
overview of SPIRE, a distributed system designed to
address the challenges discussed above through the
following methods:

Data Cleaning: To improve data quality and reader
reliability we introduce a layer directly above the readers,
the purpose of which is to filter out abnormal and corrupted
readings, remove duplicate readings, and smooth readings
to assist in recreating missing data from imperfect readers.

Data Compression: To reduce overall data volume
originating from the readers, we introduce compression
techniques designed to reduce the number of tag readings
recorded, while at the same time supporting precise
location tracking and event detection.

Event Processing: To extract meaningful information
from the raw RFID tag data, we employ an event processor
operating over a stream of tag readings to search for user
specified trends. For instance, a user could define a query
to monitor the incoming compressed tag readings to detect
patterns that indicate a specific tag may have disappeared
from a warehouse. If sufficient events are observed to
satisfy the query, the event processor reports a warning
indicating the object attached to that specific tag might
have been misplaced or stolen.

Another key feature of SPIRE is our effort to resolve an
inherent tension between compression and event processing
for anomaly detection: the former aims to remove large
amounts of raw data for scalable processing, while the
latter requires sufficiently detailed data to provide timely,
precise information. One focus of our research is to devise
architectural and algorithmic solutions to resolve this
tension.

Distributed Event Processing: Scalability is achieved
through the combination of our compression techniques
with a distributed architecture that allows for each
installation of the system at a different location to operate
independently. Compression and initial event processing
are carried out at the local level, and then integrated on a
global scale where further event processing can occur to
monitor data at the enterprise level. By compressing the
local tag data and transforming it into a series of events, the
data volume is reduced to a scale which can become
manageable for a large central repository.

Section 2 of this paper details the overall system
architecture of SPIRE, while section 3 provides a more
detailed description of the various system components.
Section 4 describes the design of a simulator we have
created to generate sample RFID data from a supply chain
scenario in order to test the features of SPIRE. Since this is
a sample application which we have chosen as an initial
trial for SPIRE, some of the system specifics have been
developed with a supply chain scenario in mind. Our
techniques, however, are general enough to be applicable to
a wide spectrum of monitoring and tracking applications.

II. ARCHITECTURE
Our architecture described here is an extension to that

used for a demo application in [13]. The architecture of a
local SPIRE system is shown in Figure 1 and consists of
three distinct layers.

The bottom layer contains physical RFID devices (e.g.,
tags, readers). The RFID data returned from the readers is
passed to the middle layer, which contains multiple sub-
layers for data cleaning, compression, and event generation.
The output from the middle layer is a stream of events,
which is then fed to the third layer where event processing
takes place. A key component of the third layer is a
complex event processor that monitors the event stream to
deliver timely notifications to the user and archive events
into the event database. SPIRE allows the user to query the
resulting event database by either sending ad-hoc queries or
writing continuous queries that combine stream processing
and database access. These components are described in
more detail below. This initial discussion focuses on a
single localized instance of SPIRE, such as a single
warehouse in terms of a supply chain. Section D elaborates
further on extending this architecture to a global distributed
system capable of enterprise scale querying and data
management.

Physical Device Layer: The physical device layer
consists of RFID readers, antennas, and tags. RFID readers
scan their surrounding areas in regular intervals and return
a reading for each tag detected in the form of (Tag ID,
Reader ID, Timestamp).

Cleaning, Compression, and Association Layer: The
middle layer serves three important functions. First, it
copes with idiosyncrasies of readers and performs data
cleaning, such as filtering and smoothing. This is important

as RFID readings are known to be inaccurate and lossy.
Our data cleaning component leverages state-of-the-art
solutions for data cleaning described in [16], [27], and [28].
Second, it uses two compression techniques to effectively
reduce data volume between the readers and the event
processor, which otherwise could be quickly overwhelmed
by the sheer volume of data originating from the readers.
Third, it uses attributes such as product name, expiration
date, and saleable state to create events. These additional
attributes are necessary for supporting various classes of
tracking and monitoring queries which may be run over the
events. Technical details of these three sub-layers are
elaborated further in section III.

Complex Event Processor: The complex event
processor supports continuous long-running queries over an
input data stream. In our system we are utilizing the SASE
[28] stream processing engine and query language to
express and process these queries. Our complex event
processor performs three important functions:
• For each monitoring task, such as detection of missing

items, the user writes a query and registers it as a
continuous query with the complex event processor.
The event processor immediately starts executing the
query over the RFID stream and returns a result (e.g., a
notification) to the user every time the query is

satisfied. Such processing continues until the query is
deleted by the user.

• Transformation rules for data archiving are also
registered as continuous queries with the event
processor. These queries can be used to remove
duplicate data and transform data to the format
required for archival. The resulting events are streamed
to the event database for storage.

• The event processor can further handle complex
continuous queries that integrate stream processing and
database lookup; upon detection of an event of interest,
these queries require database access to retrieve
additional information. The event processor supports
these queries by first detecting the event, then sending
a subquery to the database, combining information
retrieved from the database with that obtained from the
stream, and finally returning a complete result to the
user.

Sections 3.3 and 4 elaborate further upon how we plan to
utilize the complex event processor to automatically detect
anomalous supply chain conditions, such as missing and
copied tags.

Event Database: SPIRE contains a persistent storage
component to both support querying over historical data
and allow query results from the stream processor to be

Figure 1: SPIRE Architecture at the Local Level

Querying over history

RFID
Devices

Event
Database

(SQL)

Results

(SASE)
Continuous

queries

(SQL)
Ad hoc
queries

Querying over streams

Complex Event

Processor
(SASE)

Results

Filtering and Smoothing

Tags

Readers

Event
Stream

User
Interface

Communication over socket

Deduplication

Time Conversion

Temporal Smoothing

Anomaly Filtering

Tag Readings

Data Compression

Association and Event
Generation

Cleansed Tag
Readings

Cleansed and
Compressed

Tag Readings

Containment Compression

Location Compression

Data
Compression

Filtering and
Smoothing

combined with this historical data. As mentioned in the
previous section, RFID stream data is transformed using
rules declared with the complex event processor for
archiving. SPIRE supports rules that create location and
containment records in the event database. More details
about these rules and events can be found under the
compression and event generation portions of section 3.

III. TECHNICAL COMPONENTS
After presenting an overview of the SPIRE system

architecture, we now focus on several key technical
components described below.
A. FILTERING AND SMOOTHING

Given that RFID readers are inherently imperfect at
recording all tags present, SPIRE implements cleaning
techniques to improve the quality of the raw data. This
Filtering and Smoothing sub-layer accomplishes two goals,
filtering out invalid tag readings and smoothing tag
readings to fill missing gaps in the data. Internally, this sub-
layer consists of four components:
1) Anomaly Filtering: Removal of readings which are

spurious or contain truncated tag IDs.
2) Temporal Smoothing: The system decides whether an

object was present at time t based not only on the
reading at time t, but also on the readings of this object
in a window size of w before t. Using this heuristic a
new reading may be created, helping to fill in gaps
where a tag was missed by a reader. Readings created
from previous smoothings are not considered when
determining whether or not to create a new smoothed
reading at a given time t.

3) Time Conversion: A timestamp is appended to each
reading based on a logical time unit that is set as a
system configuration parameter, ensuring that all
readings are recorded using the same unit of time
measurement.

4) Deduplication: Removal of duplicates, which can be
caused either by a redundant setup, where two readers
monitor the same logical area, or when an item resides
in overlapping read ranges of two separate readers.

While cleaning provides a more reliable data stream, it
does introduce potential implications towards data
accuracy. A short window size has a propensity towards
false negatives, a missed reading for a tag which was
actually present, as it becomes more likely for a tag to miss
being read for the entirety of the window. Likewise, a long
window size has a propensity towards creating false
positives, a created reading for a tag which was not actually
present, as a single reading during a long window could
result in many added readings for a tag which has already
moved from the reader. The interested reader may refer to
[16] for an in-depth discussion on the effects of window
size on RFID tag smoothing. Any configuration for SPIRE
should balance the effects of the window size against

application requirements to determine what window setting
is best suited for the intended use.

B. DATA COMPRESSION

After the raw tag readings have been cleansed they are
passed to the Compression sub-layer. This sub-layer
examines the readings and attempts to reduce the volume of
data as much as possible, while minimizing inaccuracies,
before passing the tag data onto the event generation phase.
The Compression sub-layer utilizes two varieties of
compression, location compression and containment
compression.
1) LOCATION COMPRESSION

When a tag is first observed at a new reader, an event
is generated to indicate the tag’s arrival. If the tag sits at the
same physical location for an extended period of time, it
will be repeatedly read by the same reader for the extent of
its stay. Each of these readings generates no new
information, other than to confirm that the tag has not
moved from its most recent location. As such, it is possible
to condense this entire series of readings into a single
reading with a time range indicated by a start and end
timestamp. To avoid unnecessary access to the event
database, a cache is used to record RFID tags currently
located at each reader according to most recent
observations. When new readings are performed, this cache
is used to identify tags which might no longer be located at
each reader. If a tag is missed at a reader x times, an event
is generated to indicate that the tag has left the reader. Here
x is a configurable system parameter that represents the
threshold for the number of times a tag may be missed at a
reader before a location timeout occurs.

This method of compression is particularly effective
for a supply chain in situations such as shelved tags, where
a given tag may remain at the same location for a long
period of time. The challenge presented by this
compression method is establishing a good value for the
timeout threshold. If the threshold is set too low, then too
many false movements will be reported and more events
will be generated than necessary. If the threshold is set too
high, the tag will be recorded as remaining at a location for
potentially many readings after it has moved on. The value
of the window size chosen for smoothing should also be
taken into account when choosing the threshold. A large
smoothing window will reduce the likelihood that a false
movement will occur, but may also cause a tag to extend its
location entry beyond the point at which the tag actually
left the reader. An effective balance between window size
and location timeout threshold will need to be established
for any application, based on the application’s specific
requirements and tolerances.
2) CONTAINMENT COMPRESSION

Our second compression method exploits the fact that
tagged objects often move together in groupings. For
example, in a supply chain a case of products may be

packaged where both the case and every product inside
have an RFID tag attached. If this containment relationship
between the case and its products can be appropriately
captured, it becomes possible to use just the case tag to
represent the location for both the case and all of the
products within. In order to create these containment
relationships, one of two options can be used: 1) specific
readers physically configured so that only one tag of a
highest containment level will be present at a time (i.e.
there can be multiple product tags present, but only one
case tag when creating the containment relationship
described above), 2) containment relationships will have to
be manually entered as they are created. Obviously option 1
is more desirable than option 2, and SPIRE is being
designed so that output from these identified readers can be
utilized to automatically create containment relationships
through generated events.

After a containment relationship has been established,
the benefit provided is that location records no longer need
be directly kept for all tagged objects contained within
another tagged object. Instead, a location record for the
containing tag is sufficient to indicate that both itself and
all tags contained within it were present. In order to keep
containment records current, when a new reading is
performed the containment records for each observed tag
are validated based on what other tags are currently located
at the reader. For example, if tag A is currently recorded in
the event database as containing tag B, when a reading is
observed for tag A a check will be performed to ensure that
tag B is also present. If enough consecutive readings are
observed where A is observed without B, or vice versa, this
containment relationship will be considered stale and an
event will be generated to end the relationship. As with the
location compression caching mechanisms will be used for
checking the containment relationships to reduce the
amount of direct queries handled by the event database.
There is also a possibility that specific locations could be
configured to automatically end containment relationships,
such as at areas where pallets are unloaded in a supply
chain warehouse, but the details of this need to be further
explored.

There are some tradeoffs to consider when utilizing
containment compression. First, the ability to create
containment relationships depends on the capacity to
configure a special reader setup such that only one tag of a
highest containment level is read at a time. In more
controllable situations such as a supply chain warehouse
this may be a reasonable assumption. However, in some
applications it may not be possible to guarantee that such a
setup is possible, making it challenging to establish new
containment relationships.

Second, it is not always possible to directly verify a
containment relationship. For instance, if two cases with
products are located on a shelf by the same reader, it is
impossible to tell if a product moved from the first case to
the second based solely on the reader output. All that is

able to be confirmed is that the containment relationship
has not definitely changed. The containment change would
not be noticed until one of the cases left the shelf and the
containment relationship became marked as stale.

Finally, similar to location compression, the number of
consecutive readings before a relationship is marked as
stale needs to be carefully chosen. If the value is too low,
many false containment changes might be unnecessarily
recorded. If the value is too high, a stale containment
relationship may persist for too long and introduce
inaccuracies into the data record.

C. EVENT PROCESSING

The event processing phase of SPIRE contains two
stages. The first receives the cleansed and compressed tag
readings and transforms them into an event stream. The
second phase is the complex event processor, which
monitors this event stream to search for events which
satisfy user defined continuous queries. Provided below is a
further description of each of these phases.
1) EVENT GENERATION

After compression of the tag readings has completed,
events can be generated and sent to the complex event
processor to record useful RFID tag observations that have
been made. For example, when a tag first arrives at a
reader, an event will be created such as StartLocation(Tag
A, Location B, Timestamp). Likewise, when this tag leaves
this reader an EndLocation event will be created to mark
this change in location as well. Similar events can also be
used to start and end containment relationships. These
events are monitored by the complex event processor to
attempt matches with the user defined queries.
Furthermore, they are also stored directly in the event
database, after being transformed into the desired schema,
to create a historical record for each tag of the movements
and containment changes that it has experienced. Directly
querying these events for a specific tag ID allows for track-
and-trace information regarding the entire history of that
ID.

An important step in event generation is to obtain
additional attributes beyond tag ID and location defined in
the schema. Potentially, attributes (e.g., product name,
expiration date, etc.) can be retrieved from a tag’s user-
memory bank, from a service such as the EPC Object
Name Service (ONS) [22], or through the use of a localized
repository that holds a copy of the information. As we are
not yet sure which option we will explore for retrieving
these attributes, this area remains an open issue.
2) COMPLEX EVENT PROCESSING

As described above in section 2, the complex event
processor is used to allow a user to specify custom
continuous queries over both the incoming event stream
and historical data. Queries specified in the SASE language
adhere to the following syntax:

[FROM <stream name>]
EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]
[RETURN <return event pattern>]

The semantics of the language are briefly described as

follows: The FROM clause provides the name of an input
stream. If it is omitted, the query refers to a default system
input. The EVENT, WHERE and WITHIN clauses form
the event matching block. The event clause specifies an
event pattern to be matched against the input stream. The
WHERE clause, if present, imposes value-based constraints
on the events addressed by the pattern. The WITHIN clause
further specifies a sliding window over the event pattern.
The event matching block transforms a stream of input
events to a stream of new composite events.

 Finally, the RETURN clause transforms the stream of
composite events into the desired format for final output. It
can select a subset of attributes and compute aggregate
values, similar to the SQL SELECT clause. It can also
specify the output stream and the type of events in the
output. Additionally, the RETURN clause is capable of
invoking further database operations for retrieval and
update functionality.

One specific use that we intend for the complex event
processor in our system is the automated detection of
anomalies. As a supply chain example, consider the
following query in the SASE language which could be used
to identify objects that have potentially disappeared from a
warehouse:

EVENT SEQ(PACKAGING_READING x,

!(EXIT_READING y))
WHERE x.TagId = y.TagId
WITHIN 12 hours
RETURN x.TagId, x.ProductName, x.TimeStamp

This query would monitor for any tag which entered the

packaging stage in a warehouse, where shipments are
grouped together, and created a location reading at the
packaging reader, but did not create a location reading at
the exit door within the next 12 hours. Thus, this tag
disappeared from the packaging area and did not leave the
warehouse through a standard exit point, indicating that the
object attached to this tag may potentially have been
misplaced or stolen. The RETURN clause specifies the
required information for a notification regarding this event.
For further information on the SASE query language and
the complex event processor itself, or a detailed
demonstration of SASE being used in a retail store
scenario, refer to [13] and [28].

The above query provides only one example of an
automated anomaly which a user might be interested in
monitoring. Other supply chain anomalies that could be
monitored include the appearance of unknown tags, the
appearance of duplicated tag IDs, tagged objects being
incorrectly located near each other (e.g., items containing
nuts being located next to an item without a nut allergy
warning), or any of a multitude of other possibilities.

A potential issue which requires further investigation is
the tension between our compression techniques and the
ability of our complex event processor to detect anomalies.
For instance, if a continuous query was being run to
monitor a supply chain for duplicated tag IDs, the
complexity would be greatly increased due to containment
compression. Since location update events are no longer
being created for all tags, the performance of the complex
event processor could be compromised. If the original
version of the duplicated tag was currently stored inside
another container, in order to detect this cloned tag a search
would have to performed on not only the location records
but on the containment records as well. The appropriate
containment record would then need to be joined with
additional containment and location records to finally
obtain the location of the contained tag. This tension
between our compression techniques and anomaly
detection is a salient challenge to address. We plan to
explore additional algorithms and solutions to strike a
balance between the compression and performance so that
significant amounts of data can be compressed while
allowing efficient detection of anomalies.

D. GLOBAL PROCESSING

Up to this point the architecture and processing of
SPIRE has been described solely in the terms of a single
localized system. However, an additional extension upon
this infrastructure would be to combine various disparate
locations in a distributed system, allowing for location
tracking and automated query processing at an enterprise
level. Through the use of a web service, a centralized query
system could provide for easy accessibility to real time and
historical data across an entire distributed network of
locations. At the enterprise level would be an additional
centralized event processor to consolidate events from
various local data stores and run continuous queries at the
enterprise level over these events. An example of such a
query would be to detect a copied EPC tag which was
present simultaneously in more than one warehouse. The
central repository would also serve as a service to provide
global track-and-trace data that could show the history of a
tag moving through different localized data stores, such as
an item moving through multiple warehouses in a supply
chain.

In order to perform these continuous queries at the
global level it will be necessary to replicate the event
information from the local event databases to the global
event database in a timely fashion. This is an area of
ongoing research, but our initial findings indicate that the
compression techniques may be effective enough at
reducing data volume at the local level to make feasible
direct replication of the events from the local event
databases to a global event database. These results are
preliminary, but encouraging towards the general
scalability of SPIRE.

IV. RFID SUPPLY CHAIN SIMULATOR
To assist in testing the capabilities of SPIRE, we have

created a simulator capable of generating artificial RFID
tag data from an entire retail supply chain. The following
lists some of the assumptions made in our simulation:
• Three types of RFID tagged objects are used: pallets,

cases, and products.
• Pallets contain cases which contain products.

• When a pallet reaches a warehouse the cases are
removed from the pallet and placed onto shelves,
where they will wait for some user specified amount of
time.

• When the cases are ready to be removed from the
shelves, they are sent to a packaging area and grouped
into new pallets.

• These new pallets are recorded and then sent off on a
simulated truck to another warehouse.

• The products are not removed from the cases at this
time, though enabling this feature would require only a
simple change to the simulator.

The user is able to specify locations in the supply chain
where RFID tagged objects originate, where they are
drained from the system, and the links between all of the
warehouses in the system. Each link between two
warehouse locations is given a specific distance and
probability that it will be used. The simulation will run for
an allotted amount of time, placing new objects into the
supply chain at the designated creation locations and
routing the existing items through the warehouses until they
reach locations that are designated to drain objects from the

Figure 2: Integration of Simulator with
Existing System Architecture

Simulator

Generated
Anomalies

Anomaly
Record

File

Tag ID

0xA19473B309C23784E182C0AC

Reader ID Timestamp

92315620 41543565 1166405594519

Reader ID

The hardware emulation layer
serves as a façade through
which SPIRE can interact

normally as if it were
contacting an ordinary reader.

One distinct trace file is
generated for each warehouse

location in the simulation.
Trace
File

Tag ID

0xA19473B309C23784E182C0AC

Reader ID Timestamp

92315620 1166405596625

Hardware
Emulation

Layer

Each tag reading in the trace file will
have a format of (Tag ID, Reader ID,
Timestamp) to replicate the format
returned from an ordinary reader.

SPIRE

Type

Duplicate

Each entry in the anomaly record file will contain
information such as Tag ID, anomaly type, location(s)
where detected, and a timestamp. This example shows
how a duplication anomaly would appear. The exact

format will differ for each type of anomaly.

Location
Readings

Location
Readings

supply chain. All readers in the supply chain have a
customizable read rate and record to a trace file a raw tag
reading containing (Tag ID, Reader ID, Timestamp) for
every tag located at the reader whenever a reading is
performed.

In order to test the complex event processing
capabilities of SPIRE, the simulator allows for the user to
add anomalies into the supply chain at either the warehouse
level or chain wide level. Some currently supported
anomaly types are unexpected removal of tags, insertion of
unknown tags, and duplication of existing tags. We will
add support for more anomaly types in the future as
needed. For each instance of an anomaly created, the user is
able to specify the amount of time between occurrences of
the anomaly, the probability that the anomaly occurs after
this amount of time, the warehouse location where the
anomaly occurs (if applicable), and the type of tag that the
anomaly will occur with (either pallet, case or product).
The anomalous readings will be included in the raw trace
files with all other readings and an additional anomaly
record file is also produced to maintain a listing of all
anomalies which occurred.

As a motivation for future research we intend to take
trace files generated from this simulator to test the
cleansing, compression, and event processing capabilities
of SPIRE. Figure 2 provides a depiction of how the
simulator fits into our existing system architecture. Below
is a summary of how we plan to use the simulator data to
test SPIRE:
• The cleaning functionality can be tested by introducing

randomized imperfections into the simulated readers
and examining how effective our cleaning techniques
are at compensating for the faulty data.

• The compression techniques can be assessed by
examining the volume of events sent to the complex
event processor from the trace, as well as the accuracy
with which these events represent the movements and
containments of the simulated tags.

• The complex event processor can be assessed by
creating continuous queries designed to detect the
anomalies generated by the simulator and comparing
the anomalies detected against the anomaly record log
file.

V. STATUS AND FUTURE WORK
In summary, SPIRE is designed to address the key

challenges that arise in large scale RFID based information
systems. Our techniques for data cleaning, compression,
and event processing collectively deliver an RFID data
event stream that is more reliable, manageable, and
informative than raw readings produced from numerous
RFID readers. While much work still lies ahead to achieve
full implementation of our system, upon completion we
anticipate that SPIRE will provide a scalable solution to
both track-and-trace and user defined continuous queries.

Currently, we are in the process of implementing the
compression sub-layer and finalizing the schema for entries
in the event database. When finished, we will integrate
these features with existing work that has already been
done on the cleaning functionality and the SASE event
processor [28]. At this point we will be able to test a single
warehouse implementation of our system by incorporating
reader data generated by the simulator. With the simulator
trace files as described above in section 4, we will test the
performance, accuracy, and anomaly detection capabilities
of SPIRE using available cluster computing resources in
our department.

As we progress with our implementation we will
reassess our cleaning and compression techniques, altering
them as needed if it is discovered that they interfere with
the ability of the complex event processor to automatically
detect anomalies from the incoming event stream.

Our eventual goal is to extend the single warehouse
design to incorporate multiple local warehouses and one or
more centralized global locations, similar to what one
might find in a distributed supply chain network. At this
point we will seek to test SPIRE’s scalability by utilizing
our simulated supply chain to perform track-and-trace
queries and automated detection of anomalies on a global
scale.

REFERENCES
[1] Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., and

Chandra, T.D. Matching events in a content-based subscription
system. In Proc. of Principles of Distributed Computing, 1999.

[2] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,
Hellerstein, J.M., Hong, W., et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[3] Chandy, K.M., Aydemir, B.E., Karpilovsky, E.M., et al. Event webs
for crisis management. In Proc. of the 2nd IASTED Int’l Conf. on
Communications, Internet and Information Technology, 2003.

[4] Chaudhuri, S., and Dayal, U. An overview of data warehousing and
OLAP technology. SIGMOD Record, 26(1), 65-74, March 1997.

[5] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., et al.
Scalable distributed stream processing. In CIDR, 2003.

[6] Cranor, C. D., Johnson, T., Spatscheck, O., and Shkapenyuk, V.
Gigascope: A Stream Database for Network Applications. In
SIGMOD, 647-651, 2003.

[7] Deshpande, A., Guestrin, C., Madden, S., and Hellerstein, J.M, and
Hong, W. Model-Driven Data Acquisition in Sensor Networks. In
VLDB, 588-599, 2004.

[8] Fabret, F., Jacobsen, H.A., Llirbat, Pereira, J., Ross, K.A., and
Shasha, D. Filtering algorithms and implementation for very fast
publish/subscribe systems. In SIGMOD, 115-126, 2001.

[9] Franklin, M.J., Jeffery, S., Krishnamurthy, S., Reiss, F., Rizvi, S.,
Wu, E., Cooper, O., Edakkunni, A., and Hong, W. Design
considerations for high fan-in systems: The HiFi approach. In CIDR,
2005.

[10] Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., and Widom, J. Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS. In Proc. of the AAAI Symposium
on Information Gathering, 61-64, March 1995.

[11] Garfinkel, S. and Rosenberg, B. RFID: Applications, security, and
privacy. Addison-Wesley, 2006.

[12] Gupta, A., and Mumick, I. Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Engineering
Bulletin, 18(2), 3-18, June 1995.

[13] Gyllstrom, D., Wu, E., Chae, H., Diao, Y., Stahlberg, P., and
Anderson, G. SASE: Complex Event Processing over Streams. In
CIDR, 2007.

[14] Harrop, P., and Holland, G. RFID for postal and courier services.
November 2005. http://www.idtechex.com/pdfs/en/R2646Q5829.pdf

[15] Hinze, A. Efficient filtering of composite events. In Proc. of the
British National Database Conference, 207-225, 2003.

[16] Jeffrey, S., Garofalakis, M., and Franklin, M. Adaptive Cleaning for
RFID Data Streams. In VLDB, 2006.

[17] Levy, A.Y., Rajaraman, A., Ordille, J. Querying heterogeneous
information sources using source descriptions. In VLDB, 251-262,
1996.

[18] Madden, S., Franklin, M. J., and Hellerstein, J.M, and Hong, W.
TAG: A tiny aggregation service for ad-hoc sensor networks. In
OSDI, 2002.

[19] Madden, S., Franklin, M. J., and Hellerstein, J.M, and Hong, W. The
design of an acquisitional query processor for sensor networks. In
SIGMOD, 491-502, 2003.

[20] Manolescu, I., Florescu, D., and Kossmann, D. Answering XML
queries on heterogeneous data sources. In VLDB, 241-250, 2001.

[21] MarketWatch. Wal-Mart sees more suppliers adopting RFID.
http://www.rfidgazette.org/walmart/index.html.

[22] MIT Auto-ID Lab. EPC network architecture. January 2006.
http://autoid.mit.edu/CS/files/3/networkarchitecture.

[23] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar,
M., et al. Query processing, approximation, and resource
management in a data stream management system. In CIDR, 2003.

[24] RF Code. The data capture infrastructure platform for the new age of
Auto-ID. http://www.rfcode.com/white_papers.asp.

[25] Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J., Burkhart,
N., et al. Events on the edge. In SIGMOD, 885-887, 2005.

[26] U.S. Food and Drug Administration. Combating Counterfeit Drugs.
February 2004. http://www.fda.gov/oc/initiatives/
counterfeit/report02_04.html

[27] Wang, F. and Liu, Peiya. Temporal management of RFID data. In
VLDB, 1128-1139, 2005.

[28] Wu, E., Diao, Y., and Rizvi, S. High-performance complex event
processing over streams. In SIGMOD, 407-418, 2006.

[29] Yao, Y., and Gehrke, J. Query Processing in Sensor Networks. In
CIDR, 2003.

