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Abstract—Radio Frequency Identification (RFID) 
technology is gaining acceptance in an increasing number of 
applications for tracking and monitoring purposes. While 
RFID raises the potential to provide unprecedented visibility 
in various application domains, data management techniques 
that are capable of handling massive amounts of data 
generated by large RFID deployments are still lacking. The 
sheer volume of data generated in such deployments could 
easily overwhelm existing information systems. Moreover, the 
transformation from raw RFID readings into meaningful, 
actionable information in real-time poses another significant 
challenge. In this paper, we present the design of the SPIRE 
system that aims to manage enormous volumes of RFID data 
and provide fast data information transformation. In 
addition, we outline our research plan to refine this design 
and evaluate its performance in a simulated large-scale RFID 
supply chain scenario. 

I. INTRODUCTION 
The past few years have witnessed the emergence of an 

important trend: physical objects are tagged individually 
and subsequently sensed in various locations at various 
times. Radio Frequency Identification technology lies in 
the very heart of this trend. RFID tagging and sensing in 
combination with ubiquitous networking will soon enable 
an information infrastructure that collects real-time data of 
physical objects and delivers high-value content to a wide 
spectrum of user communities. Examples of emerging user 
communities include supply chain management [11], 
healthcare [11], pharmaceuticals [11], postal services [14], 
and surveillance [15], just to name a few. With driving 
forces such as the Food and Drug Administration (FDA)’s 
recommendation to use RFID to combat counterfeit drugs 
[26] and Wal-Mart’s mandate to tag cases by its suppliers 
[21], uses of an RFID-based information infrastructure will 
soon permeate many aspects of everyday life. 

Our research focuses on developing an RFID-based 
information infrastructure that offers two key functions: 
real-time monitoring of real-world activities and object 
track-and-trace on large scales. Real-time monitoring is 
enabled by the infrastructure’s ability to sift relevant 
information out of the flood of RFID data immediately 
after it emerges. In retail and inventory management, for 
example, such timely, relevant information is needed to 
detect shoplifting activities, out-of-stocks, misplaced 
inventory, etc. This infrastructure also allows information 
to be collected from various sources and integrated into a 

broader view to support object track-and-trace, i.e., 
reporting the history of location and condition of objects. 
Take food and drug distribution, example track-and-trace 
queries include “has this medicine been exposed to 
temperature over its regulatory range during the 
distribution?” or “does this beef come from an area with a 
recent outbreak of the mad cow disease?” In the 
foreseeable future, this infrastructure will further facilitate 
the development of new everyday applications such as the 
“smart medicine cabinet” that monitors human access for 
medical compliance, detects interaction between medicines, 
measures temperature and humidity, infers expired and 
spoiled medicines from past and current condition, and 
alerts users when a type of medicine is recalled by its 
manufacturer.   

While the database community has made significant 
progress in developing data management systems suited for 
related domains such as stream processing 
[2][5][6][9][23][25] and information integration 
[10][13][17][20], an RFID-based information infrastructure 
presents two fundamental challenges which have not been 
sufficiently addressed: 

Data-information mismatch for monitoring: Data 
streams emanating from RFID devices carry primitive 
information about the tag affixed to an object, its location, 
and the time of sensing, which is essentially a core dump of 
the sensing of a physical world. RFID-based monitoring 
applications, however, require meaningful, actionable 
information (e.g., shoplifting, out-of-stocks) that is defined 
by unique complex logic involving filtering, pattern 
matching, aggregation, and recursive pattern matching. 
Such logic has not been a focus of existing stream systems 
[2][5][6][9][23][25] and sensor networks [7][18][19][29], 
and remains under-addressed in recent event systems 
[1][3][8][15][25]. To resolve the mismatch between data 
and information, it is critical to have a processing 
component residing on RFID streams that performs 
complex data-information transformation.  

Incomplete, insufficient data for track-and-trace: To 
support track-and-trace, an RFID-based information 
infrastructure needs to integrate data from various types of 
devices, such as RFID readers and wireless sensors, and 
numerous distributed data sources. Unlike traditional data 
warehousing [4][12] and information integration 
[10][13][17][20], this process is significantly complicated 



by two unique problems of RFID technology: a) missing 
data is common, and b) readers often overlap in read ranges 
resulting in duplicated readings of the same tag at different 
locations. These problems result in a tremendous need for 
filtering and smoothing techniques to improve the quality 
of data that is initially incomplete. 

Besides the above challenges, the information 
infrastructure also faces the following performance 
requirements: 

Scalability: Large deployments of RFID devices will 
create unprecedented volumes of data. For example, when 
Wal-Mart tags goods at the individual item level, it could 
create as much as 7 million terabytes of data in a single day 
[24]. This sheer volume of data is an obstacle in itself and 
all aspects of RFID data management must be designed to 
account for this challenge. 

Low-latency: Despite the volume of data, RFID data 
processing needs to be fast. This is crucial for monitoring 
applications that require up-to-the-second information to 
prevent loss in value and mitigate harm to life, property, 
and the environment. Data integration, inference, and track-
and-trace querying are also often required to be performed 
with low-latencies.      

In this paper we present the architecture and technical 
overview of SPIRE, a distributed system designed to 
address the challenges discussed above through the 
following methods: 

Data Cleaning: To improve data quality and reader 
reliability we introduce a layer directly above the readers, 
the purpose of which is to filter out abnormal and corrupted 
readings, remove duplicate readings, and smooth readings 
to assist in recreating missing data from imperfect readers. 

Data Compression: To reduce overall data volume 
originating from the readers, we introduce compression 
techniques designed to reduce the number of tag readings 
recorded, while at the same time supporting precise 
location tracking and event detection.  

Event Processing: To extract meaningful information 
from the raw RFID tag data, we employ an event processor 
operating over a stream of tag readings to search for user 
specified trends. For instance, a user could define a query 
to monitor the incoming compressed tag readings to detect 
patterns that indicate a specific tag may have disappeared 
from a warehouse. If sufficient events are observed to 
satisfy the query, the event processor reports a warning 
indicating the object attached to that specific tag might 
have been misplaced or stolen. 

Another key feature of SPIRE is our effort to resolve an 
inherent tension between compression and event processing 
for anomaly detection: the former aims to remove large 
amounts of raw data for scalable processing, while the 
latter requires sufficiently detailed data to provide timely, 
precise information. One focus of our research is to devise 
architectural and algorithmic solutions to resolve this 
tension. 

Distributed Event Processing: Scalability is achieved 
through the combination of our compression techniques 
with a distributed architecture that allows for each 
installation of the system at a different location to operate 
independently. Compression and initial event processing 
are carried out at the local level, and then integrated on a 
global scale where further event processing can occur to 
monitor data at the enterprise level. By compressing the 
local tag data and transforming it into a series of events, the 
data volume is reduced to a scale which can become 
manageable for a large central repository. 

Section 2 of this paper details the overall system 
architecture of SPIRE, while section 3 provides a more 
detailed description of the various system components. 
Section 4 describes the design of a simulator we have 
created to generate sample RFID data from a supply chain 
scenario in order to test the features of SPIRE. Since this is 
a sample application which we have chosen as an initial 
trial for SPIRE, some of the system specifics have been 
developed with a supply chain scenario in mind. Our 
techniques, however, are general enough to be applicable to 
a wide spectrum of monitoring and tracking applications. 

II. ARCHITECTURE 
Our architecture described here is an extension to that 

used for a demo application in [13]. The architecture of a 
local SPIRE system is shown in Figure 1 and consists of 
three distinct layers.  

The bottom layer contains physical RFID devices (e.g., 
tags, readers). The RFID data returned from the readers is 
passed to the middle layer, which contains multiple sub-
layers for data cleaning, compression, and event generation. 
The output from the middle layer is a stream of events, 
which is then fed to the third layer where event processing 
takes place. A key component of the third layer is a 
complex event processor that monitors the event stream to 
deliver timely notifications to the user and archive events 
into the event database. SPIRE allows the user to query the 
resulting event database by either sending ad-hoc queries or 
writing continuous queries that combine stream processing 
and database access. These components are described in 
more detail below. This initial discussion focuses on a 
single localized instance of SPIRE, such as a single 
warehouse in terms of a supply chain. Section D elaborates 
further on extending this architecture to a global distributed 
system capable of enterprise scale querying and data 
management. 

Physical Device Layer: The physical device layer 
consists of RFID readers, antennas, and tags. RFID readers 
scan their surrounding areas in regular intervals and return 
a reading for each tag detected in the form of (Tag ID, 
Reader ID, Timestamp).  

Cleaning, Compression, and Association Layer: The 
middle layer serves three important functions. First, it 
copes with idiosyncrasies of readers and performs data 
cleaning, such as filtering and smoothing. This is important 



as RFID readings are known to be inaccurate and lossy. 
Our data cleaning component leverages state-of-the-art 
solutions for data cleaning described in [16], [27], and [28]. 
Second, it uses two compression techniques to effectively 
reduce data volume between the readers and the event 
processor, which otherwise could be quickly overwhelmed 
by the sheer volume of data originating from the readers. 
Third, it uses attributes such as product name, expiration 
date, and saleable state to create events. These additional 
attributes are necessary for supporting various classes of 
tracking and monitoring queries which may be run over the 
events. Technical details of these three sub-layers are 
elaborated further in section III. 

Complex Event Processor: The complex event 
processor supports continuous long-running queries over an 
input data stream. In our system we are utilizing the SASE 
[28] stream processing engine and query language to 
express and process these queries. Our complex event 
processor performs three important functions: 
• For each monitoring task, such as detection of missing 

items, the user writes a query and registers it as a 
continuous query with the complex event processor. 
The event processor immediately starts executing the 
query over the RFID stream and returns a result (e.g., a 
notification) to the user every time the query is 

satisfied. Such processing continues until the query is 
deleted by the user.  

• Transformation rules for data archiving are also 
registered as continuous queries with the event 
processor. These queries can be used to remove 
duplicate data and transform data to the format 
required for archival. The resulting events are streamed 
to the event database for storage. 

• The event processor can further handle complex 
continuous queries that integrate stream processing and 
database lookup; upon detection of an event of interest, 
these queries require database access to retrieve 
additional information. The event processor supports 
these queries by first detecting the event, then sending 
a subquery to the database, combining information 
retrieved from the database with that obtained from the 
stream, and finally returning a complete result to the 
user.  

Sections 3.3 and 4 elaborate further upon how we plan to 
utilize the complex event processor to automatically detect 
anomalous supply chain conditions, such as missing and 
copied tags. 

Event Database: SPIRE contains a persistent storage 
component to both support querying over historical data 
and allow query results from the stream processor to be 

Figure 1: SPIRE Architecture at the Local Level 
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combined with this historical data. As mentioned in the 
previous section, RFID stream data is transformed using 
rules declared with the complex event processor for 
archiving. SPIRE supports rules that create location and 
containment records in the event database. More details 
about these rules and events can be found under the 
compression and event generation portions of section 3. 

III. TECHNICAL COMPONENTS 
After presenting an overview of the SPIRE system 

architecture, we now focus on several key technical 
components described below. 
A. FILTERING AND SMOOTHING 

Given that RFID readers are inherently imperfect at 
recording all tags present, SPIRE implements cleaning 
techniques to improve the quality of the raw data. This 
Filtering and Smoothing sub-layer accomplishes two goals, 
filtering out invalid tag readings and smoothing tag 
readings to fill missing gaps in the data. Internally, this sub-
layer consists of four components:  
1) Anomaly Filtering: Removal of readings which are 

spurious or contain truncated tag IDs.  
2) Temporal Smoothing: The system decides whether an 

object was present at time t based not only on the 
reading at time t, but also on the readings of this object 
in a window size of w before t. Using this heuristic a 
new reading may be created, helping to fill in gaps 
where a tag was missed by a reader. Readings created 
from previous smoothings are not considered when 
determining whether or not to create a new smoothed 
reading at a given time t. 

3) Time Conversion: A timestamp is appended to each 
reading based on a logical time unit that is set as a 
system configuration parameter, ensuring that all 
readings are recorded using the same unit of time 
measurement. 

4) Deduplication: Removal of duplicates, which can be 
caused either by a redundant setup, where two readers 
monitor the same logical area, or when an item resides 
in overlapping read ranges of two separate readers.  

While cleaning provides a more reliable data stream, it 
does introduce potential implications towards data 
accuracy. A short window size has a propensity towards 
false negatives, a missed reading for a tag which was 
actually present, as it becomes more likely for a tag to miss 
being read for the entirety of the window. Likewise, a long 
window size has a propensity towards creating false 
positives, a created reading for a tag which was not actually 
present, as a single reading during a long window could 
result in many added readings for a tag which has already 
moved from the reader. The interested reader may refer to 
[16] for an in-depth discussion on the effects of window 
size on RFID tag smoothing. Any configuration for SPIRE 
should balance the effects of the window size against 

application requirements to determine what window setting 
is best suited for the intended use.  

B. DATA COMPRESSION 

After the raw tag readings have been cleansed they are 
passed to the Compression sub-layer. This sub-layer 
examines the readings and attempts to reduce the volume of 
data as much as possible, while minimizing inaccuracies, 
before passing the tag data onto the event generation phase. 
The Compression sub-layer utilizes two varieties of 
compression, location compression and containment 
compression. 
1) LOCATION COMPRESSION 

When a tag is first observed at a new reader, an event 
is generated to indicate the tag’s arrival. If the tag sits at the 
same physical location for an extended period of time, it 
will be repeatedly read by the same reader for the extent of 
its stay. Each of these readings generates no new 
information, other than to confirm that the tag has not 
moved from its most recent location. As such, it is possible 
to condense this entire series of readings into a single 
reading with a time range indicated by a start and end 
timestamp. To avoid unnecessary access to the event 
database, a cache is used to record RFID tags currently 
located at each reader according to most recent 
observations. When new readings are performed, this cache 
is used to identify tags which might no longer be located at 
each reader. If a tag is missed at a reader x times, an event 
is generated to indicate that the tag has left the reader. Here 
x is a configurable system parameter that represents the 
threshold for the number of times a tag may be missed at a 
reader before a location timeout occurs. 

This method of compression is particularly effective 
for a supply chain in situations such as shelved tags, where 
a given tag may remain at the same location for a long 
period of time. The challenge presented by this 
compression method is establishing a good value for the 
timeout threshold. If the threshold is set too low, then too 
many false movements will be reported and more events 
will be generated than necessary. If the threshold is set too 
high, the tag will be recorded as remaining at a location for 
potentially many readings after it has moved on. The value 
of the window size chosen for smoothing should also be 
taken into account when choosing the threshold. A large 
smoothing window will reduce the likelihood that a false 
movement will occur, but may also cause a tag to extend its 
location entry beyond the point at which the tag actually 
left the reader. An effective balance between window size 
and location timeout threshold will need to be established 
for any application, based on the application’s specific 
requirements and tolerances.  
2) CONTAINMENT COMPRESSION 

Our second compression method exploits the fact that 
tagged objects often move together in groupings. For 
example, in a supply chain a case of products may be 



packaged where both the case and every product inside 
have an RFID tag attached. If this containment relationship 
between the case and its products can be appropriately 
captured, it becomes possible to use just the case tag to 
represent the location for both the case and all of the 
products within. In order to create these containment 
relationships, one of two options can be used: 1) specific 
readers physically configured so that only one tag of a 
highest containment level will be present at a time (i.e. 
there can be multiple product tags present, but only one 
case tag when creating the containment relationship 
described above), 2) containment relationships will have to 
be manually entered as they are created. Obviously option 1 
is more desirable than option 2, and SPIRE is being 
designed so that output from these identified readers can be 
utilized to automatically create containment relationships 
through generated events.  

After a containment relationship has been established, 
the benefit provided is that location records no longer need 
be directly kept for all tagged objects contained within 
another tagged object. Instead, a location record for the 
containing tag is sufficient to indicate that both itself and 
all tags contained within it were present. In order to keep 
containment records current, when a new reading is 
performed the containment records for each observed tag 
are validated based on what other tags are currently located 
at the reader. For example, if tag A is currently recorded in 
the event database as containing tag B, when a reading is 
observed for tag A a check will be performed to ensure that 
tag B is also present. If enough consecutive readings are 
observed where A is observed without B, or vice versa, this 
containment relationship will be considered stale and an 
event will be generated to end the relationship. As with the 
location compression caching mechanisms will be used for 
checking the containment relationships to reduce the 
amount of direct queries handled by the event database. 
There is also a possibility that specific locations could be 
configured to automatically end containment relationships, 
such as at areas where pallets are unloaded in a supply 
chain warehouse, but the details of this need to be further 
explored. 

There are some tradeoffs to consider when utilizing 
containment compression. First, the ability to create 
containment relationships depends on the capacity to 
configure a special reader setup such that only one tag of a 
highest containment level is read at a time. In more 
controllable situations such as a supply chain warehouse 
this may be a reasonable assumption. However, in some 
applications it may not be possible to guarantee that such a 
setup is possible, making it challenging to establish new 
containment relationships.  

Second, it is not always possible to directly verify a 
containment relationship. For instance, if two cases with 
products are located on a shelf by the same reader, it is 
impossible to tell if a product moved from the first case to 
the second based solely on the reader output. All that is 

able to be confirmed is that the containment relationship 
has not definitely changed. The containment change would 
not be noticed until one of the cases left the shelf and the 
containment relationship became marked as stale. 

Finally, similar to location compression, the number of 
consecutive readings before a relationship is marked as 
stale needs to be carefully chosen. If the value is too low, 
many false containment changes might be unnecessarily 
recorded. If the value is too high, a stale containment 
relationship may persist for too long and introduce 
inaccuracies into the data record. 

C. EVENT PROCESSING 

The event processing phase of SPIRE contains two 
stages. The first receives the cleansed and compressed tag 
readings and transforms them into an event stream. The 
second phase is the complex event processor, which 
monitors this event stream to search for events which 
satisfy user defined continuous queries. Provided below is a 
further description of each of these phases. 
1) EVENT GENERATION 

After compression of the tag readings has completed, 
events can be generated and sent to the complex event 
processor to record useful RFID tag observations that have 
been made. For example, when a tag first arrives at a 
reader, an event will be created such as StartLocation(Tag 
A, Location B, Timestamp). Likewise, when this tag leaves 
this reader an EndLocation event will be created to mark 
this change in location as well. Similar events can also be 
used to start and end containment relationships. These 
events are monitored by the complex event processor to 
attempt matches with the user defined queries. 
Furthermore, they are also stored directly in the event 
database, after being transformed into the desired schema, 
to create a historical record for each tag of the movements 
and containment changes that it has experienced. Directly 
querying these events for a specific tag ID allows for track-
and-trace information regarding the entire history of that 
ID. 

An important step in event generation is to obtain 
additional attributes beyond tag ID and location defined in 
the schema. Potentially, attributes (e.g., product name, 
expiration date, etc.) can be retrieved from a tag’s user-
memory bank, from a service such as the EPC Object 
Name Service (ONS) [22], or through the use of a localized 
repository that holds a copy of the information. As we are 
not yet sure which option we will explore for retrieving 
these attributes, this area remains an open issue. 
2) COMPLEX EVENT PROCESSING 

As described above in section 2, the complex event 
processor is used to allow a user to specify custom 
continuous queries over both the incoming event stream 
and historical data. Queries specified in the SASE language 
adhere to the following syntax:  

 



[FROM <stream name>] 
EVENT <event pattern> 
[WHERE <qualification>] 
[WITHIN <window>] 
[RETURN <return event pattern>] 
 
The semantics of the language are briefly described as 

follows: The FROM clause provides the name of an input 
stream. If it is omitted, the query refers to a default system 
input. The EVENT, WHERE and WITHIN clauses form 
the event matching block. The event clause specifies an 
event pattern to be matched against the input stream. The 
WHERE clause, if present, imposes value-based constraints 
on the events addressed by the pattern. The WITHIN clause 
further specifies a sliding window over the event pattern. 
The event matching block transforms a stream of input 
events to a stream of new composite events.  

 Finally, the RETURN clause transforms the stream of 
composite events into the desired format for final output. It 
can select a subset of attributes and compute aggregate 
values, similar to the SQL SELECT clause. It can also 
specify the output stream and the type of events in the 
output. Additionally, the RETURN clause is capable of 
invoking further database operations for retrieval and 
update functionality. 

One specific use that we intend for the complex event 
processor in our system is the automated detection of 
anomalies. As a supply chain example, consider the 
following query in the SASE language which could be used 
to identify objects that have potentially disappeared from a 
warehouse: 

 
EVENT    SEQ(PACKAGING_READING x, 

!(EXIT_READING y)) 
WHERE   x.TagId = y.TagId   
WITHIN   12 hours  
RETURN  x.TagId, x.ProductName, x.TimeStamp 
 
This query would monitor for any tag which entered the 

packaging stage in a warehouse, where shipments are 
grouped together, and created a location reading at the 
packaging reader, but did not create a location reading at 
the exit door within the next 12 hours. Thus, this tag 
disappeared from the packaging area and did not leave the 
warehouse through a standard exit point, indicating that the 
object attached to this tag may potentially have been 
misplaced or stolen. The RETURN clause specifies the 
required information for a notification regarding this event. 
For further information on the SASE query language and 
the complex event processor itself, or a detailed 
demonstration of SASE being used in a retail store 
scenario, refer to [13] and [28]. 

The above query provides only one example of an 
automated anomaly which a user might be interested in 
monitoring. Other supply chain anomalies that could be 
monitored include the appearance of unknown tags, the 
appearance of duplicated tag IDs, tagged objects being 
incorrectly located near each other (e.g., items containing 
nuts being located next to an item without a nut allergy 
warning), or any of a multitude of other possibilities.  

A potential issue which requires further investigation is 
the tension between our compression techniques and the 
ability of our complex event processor to detect anomalies. 
For instance, if a continuous query was being run to 
monitor a supply chain for duplicated tag IDs, the 
complexity would be greatly increased due to containment 
compression. Since location update events are no longer 
being created for all tags, the performance of the complex 
event processor could be compromised. If the original 
version of the duplicated tag was currently stored inside 
another container, in order to detect this cloned tag a search 
would have to performed on not only the location records 
but on the containment records as well. The appropriate 
containment record would then need to be joined with 
additional containment and location records to finally 
obtain the location of the contained tag. This tension 
between our compression techniques and anomaly 
detection is a salient challenge to address. We plan to 
explore additional algorithms and solutions to strike a 
balance between the compression and performance so that 
significant amounts of data can be compressed while 
allowing efficient detection of anomalies. 

D. GLOBAL PROCESSING 

Up to this point the architecture and processing of 
SPIRE has been described solely in the terms of a single 
localized system. However, an additional extension upon 
this infrastructure would be to combine various disparate 
locations in a distributed system, allowing for location 
tracking and automated query processing at an enterprise 
level. Through the use of a web service, a centralized query 
system could provide for easy accessibility to real time and 
historical data across an entire distributed network of 
locations. At the enterprise level would be an additional 
centralized event processor to consolidate events from 
various local data stores and run continuous queries at the 
enterprise level over these events. An example of such a 
query would be to detect a copied EPC tag which was 
present simultaneously in more than one warehouse. The 
central repository would also serve as a service to provide 
global track-and-trace data that could show the history of a 
tag moving through different localized data stores, such as 
an item moving through multiple warehouses in a supply 
chain. 



In order to perform these continuous queries at the 
global level it will be necessary to replicate the event 
information from the local event databases to the global 
event database in a timely fashion. This is an area of 
ongoing research, but our initial findings indicate that the 
compression techniques may be effective enough at 
reducing data volume at the local level to make feasible 
direct replication of the events from the local event 
databases to a global event database. These results are 
preliminary, but encouraging towards the general 
scalability of SPIRE. 

IV. RFID SUPPLY CHAIN SIMULATOR 
To assist in testing the capabilities of SPIRE, we have 

created a simulator capable of generating artificial RFID 
tag data from an entire retail supply chain. The following 
lists some of the assumptions made in our simulation: 
• Three types of RFID tagged objects are used: pallets, 

cases, and products.  
• Pallets contain cases which contain products.  

• When a pallet reaches a warehouse the cases are 
removed from the pallet and placed onto shelves, 
where they will wait for some user specified amount of 
time.  

• When the cases are ready to be removed from the 
shelves, they are sent to a packaging area and grouped 
into new pallets.  

• These new pallets are recorded and then sent off on a 
simulated truck to another warehouse.  

• The products are not removed from the cases at this 
time, though enabling this feature would require only a 
simple change to the simulator.  

The user is able to specify locations in the supply chain 
where RFID tagged objects originate, where they are 
drained from the system, and the links between all of the 
warehouses in the system. Each link between two 
warehouse locations is given a specific distance and 
probability that it will be used. The simulation will run for 
an allotted amount of time, placing new objects into the 
supply chain at the designated creation locations and 
routing the existing items through the warehouses until they 
reach locations that are designated to drain objects from the 

Figure 2: Integration of Simulator with 
Existing System Architecture 
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supply chain. All readers in the supply chain have a 
customizable read rate and record to a trace file a raw tag 
reading containing (Tag ID, Reader ID, Timestamp) for 
every tag located at the reader whenever a reading is 
performed. 

In order to test the complex event processing 
capabilities of SPIRE, the simulator allows for the user to 
add anomalies into the supply chain at either the warehouse 
level or chain wide level. Some currently supported 
anomaly types are unexpected removal of tags, insertion of 
unknown tags, and duplication of existing tags. We will 
add support for more anomaly types in the future as 
needed. For each instance of an anomaly created, the user is 
able to specify the amount of time between occurrences of 
the anomaly, the probability that the anomaly occurs after 
this amount of time, the warehouse location where the 
anomaly occurs (if applicable), and the type of tag that the 
anomaly will occur with (either pallet, case or product). 
The anomalous readings will be included in the raw trace 
files with all other readings and an additional anomaly 
record file is also produced to maintain a listing of all 
anomalies which occurred. 

As a motivation for future research we intend to take 
trace files generated from this simulator to test the 
cleansing, compression, and event processing capabilities 
of SPIRE. Figure 2 provides a depiction of how the 
simulator fits into our existing system architecture. Below 
is a summary of how we plan to use the simulator data to 
test SPIRE: 
• The cleaning functionality can be tested by introducing 

randomized imperfections into the simulated readers 
and examining how effective our cleaning techniques 
are at compensating for the faulty data. 

• The compression techniques can be assessed by 
examining the volume of events sent to the complex 
event processor from the trace, as well as the accuracy 
with which these events represent the movements and 
containments of the simulated tags.  

• The complex event processor can be assessed by 
creating continuous queries designed to detect the 
anomalies generated by the simulator and comparing 
the anomalies detected against the anomaly record log 
file. 

V. STATUS AND FUTURE WORK 
In summary, SPIRE is designed to address the key 

challenges that arise in large scale RFID based information 
systems. Our techniques for data cleaning, compression, 
and event processing collectively deliver an RFID data 
event stream that is more reliable, manageable, and 
informative than raw readings produced from numerous 
RFID readers. While much work still lies ahead to achieve 
full implementation of our system, upon completion we 
anticipate that SPIRE will provide a scalable solution to 
both track-and-trace and user defined continuous queries.  

Currently, we are in the process of implementing the 
compression sub-layer and finalizing the schema for entries 
in the event database. When finished, we will integrate 
these features with existing work that has already been 
done on the cleaning functionality and the SASE event 
processor [28]. At this point we will be able to test a single 
warehouse implementation of our system by incorporating 
reader data generated by the simulator. With the simulator 
trace files as described above in section 4, we will test the 
performance, accuracy, and anomaly detection capabilities 
of SPIRE using available cluster computing resources in 
our department.  

As we progress with our implementation we will 
reassess our cleaning and compression techniques, altering 
them as needed if it is discovered that they interfere with 
the ability of the complex event processor to automatically 
detect anomalies from the incoming event stream. 

Our eventual goal is to extend the single warehouse 
design to incorporate multiple local warehouses and one or 
more centralized global locations, similar to what one 
might find in a distributed supply chain network. At this 
point we will seek to test SPIRE’s scalability by utilizing 
our simulated supply chain to perform track-and-trace 
queries and automated detection of anomalies on a global 
scale. 
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