
Architectural Considerations for Distributed
RFID Tracking and Monitoring

Zhao Cao
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

caozhao@cs.umass.edu

Yanlei Diao
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003, USA
yanlei@cs.umass.edu

Prashant Shenoy
Dept. of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

shenoy@cs.umass.edu

ABSTRACT
In this paper we discuss architectural challenges in designing a

distributed, scalable system for RFID tracking and monitoring.

We argue for the need to combine inference and query processing

techniques into a single system and consider several architectural

choices for building such a system. Key research challenges in de-

signing our system include: (i) the design of inference techniques

that span multiple sites, (ii) distributed maintenance of inference

and query state, (iii) sharing of inference and query state for

scalability, and (iv) the use of writeable RFID tags to transfer

state information as objects move through the supply chain. We

also present the status of our ongoing research and preliminary

results from an early implementation.

1. INTRODUCTION
RFID is a promising electronic identification technology

that enables a real-time information infrastructure to pro-
vide timely, high-value content to monitoring and tracking
applications. An RFID-enabled information infrastructure
is likely to revolutionize areas such as supply chain manage-
ment, health-care and pharmaceuticals. Consider, for ex-
ample, a distributed supply chain environment with multiple
warehouses and millions of tagged objects that move through
this supply chain. Each warehouse is equipped with RFID
readers that scan objects and their associated cases and pal-
lets upon arrival and departure and while they are processed
in the warehouse. In order to track objects and monitor the
supply chain for anomalies, several types of queries may be
posed on the RFID streams generated at the warehouses.
• Tracking queries: Report any pallet that has deviated

from its intended path. List the path taken by an item
through the supply chain.

• Containment queries: Raise an alert if a flammable
item is not packed in a fireproof case. Verify that food
containing peanuts is never exposed to other food cases
for more than an hour.

• Hybrid queries: Report if a drug has been exposed to
a temperature of more than 80 degrees for 12 hours.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetDB ’09 Big sky, MT USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The first class of queries are location queries that require
object locations or location history. The second class in-
volves containment, i.e., relationships between objects, cases
and pallets. The third kind involves processing of sensor
streams (e.g., temperature readings) in conjunction with
RFID streams to detect certain conditions. Typically raw
RFID streams contain noisy data that lacks any location or
containment information. Hence, such continuous queries
require derivation of location and containment information
from raw RFID data as well as processing of heterogeneous
sensor streams along with RFID data streams.

In this paper, we discuss the architectural challenges in
designing a scalable, distributed stream processing system
for RFID tracking and monitoring. We propose to com-
bine location and containment inference with scalable query
processing into a single architecture, in contrast to prior ap-
proaches that dealt with these two problems separately. We
present three architectural choices in instantiating such a
system over large supply chains and present an analysis of
their communication overheads. By doing so, we show that
the choice between centralized and distributed approaches
mainly depends on the read frequency of RFID readers and
the number of active queries in the system. Furthermore,
utilizing local storage of writeable RFID tags for inference
and query processing makes the distributed approach a bet-
ter solution with significantly reduced communication cost.

In this paper, we also describe key technical challenges
in designing a distributed architecture, which include (i)
the design of novel inference techniques that span multiple
warehouses of the supply chain, (ii) distributed, consistent
maintenance of inference and query state as objects move
through the supply chain, and (iii) sharing of inference and
query state for scalability. A novel aspect of our system is
its ability to exploit writeable RFID tags, when available,
and use the onboard tag storage to transfer query and infer-
ence state as the object moves from one location to another.
We finally present the status of our ongoing research and
preliminary results from an early implementation.

2. RELATED WORK
RFID stream processing. The HiFi system [9, 12] offers a

declarative framework for RFID data cleaning and process-
ing. It focuses on per-tag smoothing and multi-tag aggre-
gation, but does not capture relationships between objects
such as containment or estimate object locations via con-
tainment. Our system can produce a rich event stream with
object location and containment information. It further of-
fers distributed inference and event processing methods.

Central Server

Warehouse

Warehouse Warehouse

Warehouse

Local Server

Local Server Local Server

Local Server

Objects (Tags)

Figure 1: A distributed RFID data management system.

RFID databases. Siemens RFID middleware[20] uses ap-
plication rules to archive RFID data streams into databases.
Cascadia [21] supports RFID-based pervasive computing with
event specification, extraction and archival. Techniques are
also available to integrate data cleansing with query pro-
cessing [16], encode flow information [13] and recover high-
level information from incomplete, noisy data by exploiting
known constraints [23]. These techniques, however, are not
designed for fast RFID stream processing and only for cen-
tralized processing.

Event query processing. Most event processing methods
[1, 14, 22] use centralized processing which requires all RFID
data to be transferred to a single site, incurring high com-
munication cost. The system in [2] uses multi-step event
acquisition and processing to minimize event transmission
cost. In contrast, our system performs both inference and
query processing, does so at a local site whenever possible,
and then transmits computation state across sites for dis-
tributed inference and event pattern detection.

Probabilistic inference in sensor networks. There have
been several recent techniques [15, 5, 18, 11] for inferring
the true value of a phenomenon, such as temperature, light,
or an object’s position, that a sensor network is deployed
to measure. Our inference problem differs because we aim
to infer inter-object relationships, such as containment, that
sensors cannot directly measure, hence the different design of
our graph model for inference. Further, our system combines
inference with query processing into a single architecture and
explores advanced techniques to reduce the combined cost
of inference/query state migration in a distributed system.

3. OVERVIEW OF THE SPIRE SYSTEM
In this section, we provide an architectural overview of

a distributed RFID data management system, which we
call SPIRE. This system is designed to support RFID-based
tracking and monitoring in large-scale supply chains with
multiple warehouses and millions of objects.

In a typical environment as depicted in Figure 1, each ob-
ject is affixed with a tag that has a unique identity under
the EPC standard [7]. Most tags are passive tags that have
no individual power systems but small amounts of memory,
e.g., 1-4 KB in the current generation of EPC tags [17] and
up to 64KB [10] in the next generation. Such tag memory
can be used to store object information and facilitate query
processing as we describe in the next section. An RFID
reader periodically sends a radio signal to the tags in its
read range; the tags use the radio energy to send back their
tag ids. The reader immediately returns the sensed data in
the form of (tag_id, reader_id, time). The local servers
of a warehouse collect raw RFID data streams from all of
the readers, and filter, aggregate, and process these streams.
The data streams from different warehouses are further ag-

gregated to support global tracking and monitoring.
We next illustrate two tracking and monitoring queries

using an extension of the Continuous Query Language [3]
with additional constructs for event pattern matching [1,
22]. These queries assume that events in the input stream
contain attributes (tag_id, time, location, container) and
optional attributes describing object properties, such as the
type of food and expiration date, which can be obtained
from the manufacturer’s database1. It is worth noting the
difference in schema between raw RFID readings and events
required for query processing. Such differences motivate our
work on inference, which is discussed shortly.

Query 1 below is an example of containment queries. It
sends an alert when peanut-free food has been contained in
the same case as food containing peanuts for more than 1
hour. The inner (nested) query block performs a self-join
over the input stream, where one join input retains only
the events for peanut-free food, the other input retains only
those for food containing peanuts, and the join is based on
equality on container. Each join result represents an event
that a container contains both food with peanuts and foot
without peanuts. This event is published immediately into
a new stream. The outer query block detects a sequence
pattern over the new stream: each match of the pattern
contains a sequence of events that refer to the same tag id
of the peanut free-food and span a time period of more than
1 hour. For each pattern match, the query returns the tag id
of the peanut free food and the length of the period—such
information can assist a retail store in deciding whether to
dispose of the food.

Query 1:
Select tag_id, A[A.len].time - A[1].time
From (Select Rstream(R1.tag_id, R1.loc)

From Food [Range 3 minutes] As R1,
Food [Range 3 minutes] As R2

Where R1.type = ‘peanut free’ and
R2.type = ‘peanut’ and
R1.container = R2.container

) As S
[Pattern SEQ(A+)
Where A[i].tag_id = A[1].tag_id and

A[A.len].time > A[1].time + 1 hr]

Query 2 combines RFID readings with temperature sen-
sor readings and alerts if an object has been exposed to a
temperature of more than 80℃ for 12 hours. It has a similar
structure as Query 1, but returns all the sensor readings in
the period when the temperature regulation was violated.

Query 2:
Select tag_id, A[].temp
From (Select Rstream(R.tag_id, R.loc, T.temp)

From Object [Now] as R,
Temperature [Rows 1 minute] as T

Where R.type = ‘drug’ and
T.temp > 80 ℃ and
R.loc ' T.loc

) As S
[Pattern SEQ(A+)
Where A[i].tag_id = A[1].tag_id and

A[A.len].time > A[1].time + 12 hrs]

The SPIRE system we design has two main functionali-
ties: inference and query processing. Both of them can be

1How to obtain the object properties to the site of query process-
ing is an architectural issue, which we discuss in the next section.

Inference State(b) Inference:

Event Stream <tag_id, time, location, container, ... >

Raw RFID Stream <tag_id, reader_id, time>

Local & Distributed inference
with state migration

Query 2 Query m

......

(c) Query Processing

location and
containment 1

4 5

7 8 9 10

2

6

11 12

3

Query 1

Distributed
processing
w. state
migration

O2

Window Window

σ σLocal
processing

...
On

a[1] a[i]

Query State O1
O2

Local

Distributed

Local

Distributed

(a) RFID Sensing:

F

Figure 2: Architectural overview of the SPIRE system.

implemented in a centralized or distributed fashion. The
tradeoffs between these implementation choices are the fo-
cus of the next section.

Inference. While data stream processing has been a topic
of intensive recent research, RFID data stream processing
presents several new challenges:

I Insufficient information. As the above examples show,
query processing often requires information about ob-
ject locations and inter-object relationships such as
containment. However, raw RFID data contains only
the observed tag id and its reader id due to the limi-
tations of being an identification technology.

I Incomplete, noisy data. The problem of deriving lo-
cation and containment information from raw data is
compounded by the fact that RFID readings are in-
herently noisy, with read rates in actual deployments
often in the 60%-70% range [12]. This is largely due
to the sensitivity of radio frequencies to environmental
factors such as occluding metal objects and interfer-
ence [8]. Mobile RFID readers may read objects from
arbitrary angles and distances, hence more susceptible
to variable read rates.

In SPIRE, we design an inference module that derives ob-
ject locations and containment relationships despite missed
readings. This module resides between the RFID sensing
module and the query processing module, as shown in Fig-
ure 2. We focus on containment in the following discussion
(inference for object locations alone is detailed in our recent
publication [19]). First, an RFID reader can read several
containers and all of their contained items simultaneously,
which makes it difficult to infer the exact container of each
item. In SPIRE, we explore the correlations of observations
obtained at different locations at different times to infer con-
tainment. For instance, while the containment information
at the loading dock of a warehouse is ambiguous due to the

readings of two containers simultaneously, true containment
may be revealed at the receiving belt where containers are
read one at a time. Such containment remains unchanged as
containers are placed on shelves but may change later in the
repackaging area. The inference algorithm needs to adapt
to such changes in a timely fashion.

However, missed readings significantly complicate the in-
ference problem. Consider a scenario that an item was last
seen in location A with its container. Now its container is
observed in B but the item is not observed in any location.
There are a few possible locations for the item: it was left
behind in location A but the reading in A was missed; it
moved to location B with its container and its reading in B
was missed; it disappeared unexpectedly (e.g., stolen). The
inference algorithm needs to account for all these possibili-
ties when deriving containment and location information.

In SPIRE, we employ a time-varying graph model to infer
object location and containment information, as depicted
in Figure 3 (the example is taken from our ICDE poster
paper [6]). Our graph model G = (V, E) encodes the current
view of the objects in the physical world, including their
reported locations and (unreported) possible containment
relationships. In addition, the model incorporates statistical
history about co-occurrences of objects.

The node set V of the graph denotes all RFID-tagged
objects in the physical world. These nodes are arranged into
layers, with one layer for each packaging level, e.g., an item,
case or a pallet, which is encoded in each tag id. Nodes are
assigned colors to denote their locations. The node colors
are updated from the RFID readings in each epoch using
the color of the location where each tag is observed. If an
object is not read in an epoch, its node becomes uncolored
but retains memory of the most recent observation.

The directed edge set E encodes possible containment re-
lationships between objects. We allow multiple outgoing and
incoming edges to and from each node, indicating an object
such as a case may contain multiple items, and conversely,
an item may have multiple potential cases (our probabilistic
inference will subsequently chose only one of these possibili-
ties). To enable inference, the graph also encodes additional
statistics. Each edge maintains a bit vector to record recent
positive and negative evidence for the co-location of the two
objects. For example, the recent co-location bit vector for
nodes 3 and 7 in Figure 3 is 01 at time t=2 and and 011
at t=3. Further, each node remembers the last confirmed
containment by a special reader such as a belt reader that
scans cases one at a time. For example, at time t=2 in the
figure, the belt reader confirms that the edge from node 3
to node 7 represents the true containment. This informa-
tion stays valid for a while but then becomes obsolete when
containment changes.

In summary, the graph model encodes the following infor-
mation about each object for inference, which we call the
inference state: (i) the most recent observation of the
object, (ii) all of its possible containers, (iii) its recent co-
location history with each of the containers, and (iv) its
confirmed container in the past by a special reader.

After the graph is updated from the RFID readings in
each epoch, an inference algorithm runs on the graph to es-
timate the most likely container and location of each object.
Our algorithm combines node inference, which derives the
most likely location of an object, with edge inference, which
derives the most likely container of an object, in an itera-

1

2 3

4 5 6

Level 1

A: loading dockLocations

Time

C: packaging area

t = 1 t = 2 t = 3

Level 2

Level 3

2 3

4 5 6 7

8

2 3

4 5 6 7 10 11

9

(A,1) (A,1)

(A,1)

(B, 2)

(B,2) (B,2)

(A,1)

(A,1)

(C,3)

(C,3)

(C,3)

(C,3)(C,2)(C,3)(A,1)(A,1) (B,3)

(A,1)
(A,1)

(A,1)

(A,1)(A,1)(A,1)

1 (A,1)

B: beltB: belt

10 11

9

C: packaging area

(C,2)

(C,2)(C,2)

1

Figure 3: Examples of the time-varying colored graph model for containment and location inference.

tive fashion through the graph. In particular, the algorithm
runs (1) from the colored nodes (with known locations), (2)
through the edges linked to the colored nodes, where edge
inference determines the container of a color node, (3) to
the uncolored nodes incident to these edges, where node in-
ference determines the location of an uncolored node given
its recent color and the colors of the processed neighboring
nodes, (4) to the edges linked to these nodes, and so on.
As such, inference sweeps through the graph in increasing
distance from the colored nodes.

The above description assumes that all the data is avail-
able at a central server for inference. If inference is to be
made in a distributed fashion, as objects move from site to
site we need to transfer inference state with the objects so
that information is available for subsequent inference—this
process is called inference state migration. Revisit the
example in Figure 3. Suppose that after time t=3, cases 2, 3
and items 4, 5, 7 move to a new warehouse and are observed
at the loading dock of the new warehouse. Now we want to
infer the containers of items 4, 5, 7. The information in the
previous inference state, such as case 3 being the confirmed
container of item 7 and the co-location history of items 4,
5 with case 2, 3, will be very useful to the inference in the
new location. This indicates that inference state needs to be
maintained across sites on a global scale. We detail several
architectural choices for doing so in the next section.

Query Processing. As the inference module streams out
events with inferred location and containment information,
the query processor, as shown in Figure 2(c), processes these
events to answer continuous monitoring queries like the two
examples above. As the figure shows, part of query process-
ing can be performed at each warehouse, such as filtering of
events based on object properties (Queries 1 and 2), a self-
join over the input stream (Query 1), and a join between an
object stream and a sensor stream (Query 2).

A more challenging issue is with the part of query pro-
cessing that spans sites, such as the detection of a complex
pattern over a large period of time (see the pattern clause in
Queries 1 and 2). Our discussion first assumes that queries
run at a central server with all the information needed for
query processing transfered to the server. Our query pro-
cessing module employs a new type of automaton to gov-
ern the pattern matching process. Each query automaton
comprises a nondeterministic finite automaton and a match
buffer that stores each match of the pattern. The automa-
ton for Query 1 is depicted in Figure 2(c). The start state,
a[1], is where the Kleene plus operator starts to select the
first relevant event into the match buffer. At the next state
a[i], it attempts to select zero, one, or more events into the
buffer. The final state, F , represents the completion of the
matching process. Each state is associated with a number
of edges, representing the possible actions. Each edge has a

formula expressing the condition on taking the edge. Edge
formulas are evaluated using the values from the current
event as well as the previous events. (Details of this query
automaton model are reported in our recent publication [1].)

In summary, the following information, called the query
state, is maintained to evaluate a pattern query using our
automaton model: (i) the current automaton state, (ii) the
minimum set of values extracted from the input events that
future automaton evaluation requires, e.g., A[1].tag id and
A[1].time for Query 1 (details on extracting these values are
available in [1]), and (iii) the set of values that the query
intends to return, which can be simple values as in Query
1, or a long sequence of readings as in Query 2. If the
pattern query is defined on a per-object basis, as in both of
our example queries, the system needs to maintain a copy of
query state for each object, as depicted by the copies labeled
O1, · · · , On in Figure 2(c). Finally, if a monitoring system
supports multiple queries, the size of query state is further
multiplied by the number of concurrent queries.

Similar to inference, if we evaluate pattern queries in a
distributed fashion, we need to perform query state mi-
gration across sites so that we can resume the automaton
execution in a new location and continue to expand the set
of values that the query intends to return.

4. ARCHITECTURAL CHOICES: BENEFITS
AND DRAWBACKS

There are three possible choices for instantiating the sys-
tem architecture presented in the previous section.

Centralized warehouse. This simplest approach is to
employ a centralized architecture—similar to a centralized
warehouse—where all RFID data is sent to a central location
for stream processing, and possibly archival. The advantage
of such a centralized approach is that the system has a global
view of the entire supply chain, which simplifies stream pro-
cessing. Inference is also simpler since all of the object state
is maintained at a single location. In this case, the local
servers depicted in Figure 1 only need to perform simple
processing tasks such as cleaning and/or compression. The
primary disadvantage of the approach is the high commu-
nication cost of transmitting RFID streams to the central
location; since RFID data can be voluminous, the network
bandwidth costs can be substantial.

Analysis: Consider a supply chain with 1000 warehouses,
where each warehouse stores 10,000 cases, and each case
contains 10 items. Both the number of readers in a ware-
house and the read frequency of each reader will vary in
different supply chains. More readers and a higher read fre-
quency yield greater monitoring accuracy, but can also lead
to higher deployment and data processing costs. The choice
of these parameters depends on the system budget and the
monitoring requirement. Assume that, on average, there are

between 500 to 5000 RFID readings per object every day
depending on the actual deployment. Further, assume that
the temperature sensors report temperature readings every
5 minutes and that there are 100 temperature sensors in
each warehouse. Let each RFID reading tuple be 20 bytes,
and temperature reading tuple be 9 bytes. A simple calcu-
lation shows that, in this scenario, approximately 1.1 to 11
TB of data will be sent to the central location every day.
Even if a compression scheme offers a factor of 20 reduction
in data volume, a figure that we have observed in our recent
research, this will still yield between 55 GB to 550 GB of
data each day. However, such compression requires that lo-
cation inference be done locally before transferring location
tuples to the central server. (Details of the above analysis
and other analysis in the rest of the section are available in
our technical report [4].)

Distributed processing with state migration. An
alternative to the centralized approach is to employ dis-
tributed stream processing. In this approach, each ware-
house employs local stream processing—continuous queries
on objects that reside in the warehouse are processed locally.
As objects move through the supply chain from one ware-
house to another, queries on those objects also “move” from
one warehouse site to another in order to ensure local pro-
cessing. The advantage of such an approach is that commu-
nication costs are significantly lowered since local processing
implies that RFID streams are processed on-site.

However, the approach is not without drawbacks. First,
the approach requires state migration to transfer the infer-
ence state and query state associated with an object when-
ever it moves from one warehouse to another. Such state
overhead is high whenever historical information is involved
(for either inference or query processing). Second, infer-
ence techniques become more complex. The inference state
must be distributed across multiple sites while presenting
the same logically unified view of the global state of the
system as the centralized approach. The design of such dis-
tributed inference techniques is still an open research ques-
tion and a focus of our work. Finally, since the distributed
approach has no global view of the supply chain, queries that
involve objects residing in different warehouse locations are
more complex. For instance, queries might be tracking dif-
ferent parts required to assemble a product to ensure that
they arrive at a factory within a short time of one another;
since each part can take a different path through the sup-
ply chain, local query processing is either infeasible or may
require substantial state exchange between different ware-
house sites and the central location.

Analysis: Assuming the same scenario as before. Based
on the time-varying graph model in Section 3, if 10 cases are
read by the exit reader of the warehouse each time, the num-
ber of possible containers for each item is approximated by
10 in this analysis (it varies in practice with the co-location
history and actual read rates of readers). Then the infer-
ence state of each object can be (roughly) estimated to be
184 bytes. Hence, the size of the inference state migrated
every day across all warehouses is round 18.4 GB. As for
query processing, object properties such as type of food are
required for processing and need to be fetched from the man-
ufacturer’s database to each warehouse. Assuming 100 bytes
for each object, the total cost of fetching object properties is
11 GB every day. We estimate the size of query state using
techniques in [1], e.g., 17 and 37 bytes (including a 12 byte

tag id) per object for Query 1 and Query 2, respectively. If
there are 10 queries of type Query 1 and 10 queries of type
Query 2, the query state migrated every day is 54GB. Then
the total communication cost is 83.4 GB every day, and the
ratio of communication cost between the centralized and dis-
tributed approach varies from 0.65 to 6.7, depending on the
RFID read frequency. Thus, there is a cross-over point be-
tween these two approaches—if an object is read more than
750 times a day, the distributed approach has better perfor-
mance; otherwise, the centralized approach is better.

Another important observation is that the ratio of commu-
nication cost between centralized and distributed approaches
is independent of the size of the supply chain (the number
of warehouses and number of objects in each warehouse).
It only depends on (1) the RFID read frequency for each
object, as discussed above, and (2) the number of queries in
the system. To understand the effect of the latter, consider
a setting where there there are 100 queries of type Query 1
and 100 queries of type Query 2. In this setting, the query
state migrated every day is 540 GB. Then the total commu-
nication cost of the distributed approach is 569.4 GB every
day, even larger than the centralized approach. On the other
hand, if the system has fewer queries and higher read fre-
quency, the distributed approach is a better choice.

Distributed processing with local tag storage. Our
final architecture is an optimization of the distributed archi-
tecture where writeable RFID tags with onboard memory
are exploited for further reducing the communication over-
heads. In this case, the state of all queries associated with
an object as well as inference state is written onto the tag
memory prior to departure from a warehouse. Upon arrival
at a new warehouse, the tag memory is read and is used to
“seed” the queries and the inference graph at the new loca-
tion. It is important to note that the tag memory is used
as a cache and that query/inference state continues to be
stored at the prior location as before — in the event the tag
memory can not be read for any reason, the approach re-
verts to state migration, where this state is fetched from the
previous warehouse as before. Thus, writeable tags can be
exploited to optimize overheads and the system correctness
is not impacted even when tag memory is not available (or
becomes corrupt).

Analysis: Since each tag already carries its id, the 12-byte
tag id can be saved from any of the state regarding the object
when stored in the tag’s memory. For each object, the size of
object properties then becomes 88 bytes, the inference state
becomes 172 bytes, and with the same number of queries,
the size of query state becomes 300 bytes. All the object
properties and inference/query state that need to be stored
on each tag total 560 bytes.

In this approach, the amount of data that needs to be
stored is independent of the size of supply chain and the
reader settings. The only factor that impacts the storage
size is the number of queries. To illustrate, if there are 100
queries of each type, the size of query state becomes 3000
bytes. Then the object properties and inference/query state
that needs to be stored on each tag totols 3.2 KB.

The above analysis shows that query state dominates the
storage cost. Larger numbers of queries may challenge the
scalability of this approach. Advanced techniques that share
query state to save storage are outlined in the next section.

5. STATUS AND ONGOING WORK

 0

 10

 20

 30

 40

 50

 60

 0.5 0.6 0.7 0.8 0.9 1

E
rr

or
 R

at
e

(%
)

Read Rate

Containment Inference Error
Location Inference Error

Figure 4: Results of location and containment inference.

As of August 2009, we have implemented the inference
module and the query processor in a centralized fashion as
well as a simulator for enterprise supply chains.

Our inference module includes a time-varying graph model
that captures recent observations of objects and possible ob-
ject containment relationships, and an online probabilistic
algorithm that estimates the most-likely container and loca-
tion of each object as new data arrives. Using RFID streams
emulating a large warehouse, our results as shown in Figure
4 indicate that location inference can achieve 90% accuracy
even for low read rates such as 50%. Our containment in-
ference can achieve 90% accuracy when the read rates reach
85%. It has reduced accuracy for lower read rates due to
both the loss of containment confirmation from special read-
ers like belt readers and lack of consistent observations in the
recent history. We are currently investigating advanced ma-
chine learning techniques to improve inference accuracy for
the range of low read rates. Our initial results also show
the inference techniques to be efficient: they can scale to
100,000 objects while running at stream speed.

Our ongoing work further explores a host of research issues
for distributed inference and event query processing.

Migrating inference state. When a set of of objects leave
a warehouse, we need to split the graph constructed for in-
ference, and transfer a subgraph relevant to these objects
to the next warehouse (state migration) or store a subgraph
relevant to each object in its tag memory (using local stor-
age). These objects may be connected to other objects in
the graph due to ambiguous containment, and only some
of them may be sensed by the exit reader. Hence, it is a
nontrivial issue to identify a subgraph that is large enough
for accurate inference later but does not include unnecessary
data. To further save bandwidth or storage, we also consider
methods to truncate the historical information included in
the graph without affecting accuracy.

Sharing query and inference state. To support multiple
queries over millions of objects, we need to maintain a copy
of query state per query per object. Consider the approach
that stores query state in local tag memory. The tag mem-
ory then needs to hold the state of all the queries relevant to
this object. This requires intelligent packing schemes given
limited tag memory. One of our schemes exploits multi-
query optimization. For all queries relevant to an object,
we construct a shared query plan (e.g., a combined automa-
ton) and further merge their query states once they become
equivalent. As such, we can store merged query state using
less tag memory. Another scheme exploits stable contain-
ment: all the objects that have been contained in the same
container are likely to have the same state for each active
query as well as the same inference state. Therefore, all the

objects can share a single copy of the state in their aggre-
gate memory, hence reducing the amortized memory usage
in each tag. These schemes can also be used to reduce com-
munication cost during state migration.

Acknowledgements: This work has been supported in
part by the National Science Foundation under the grants
IIS-0746939, IIS-0812347, and CNS-0626873.

6. REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, et al. Efficient pattern

matching over event streams. In SIGMOD, 147–160, 2008.

[2] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based
complex event detection across distributed sources.
PVLDB, 1(1):66–77, 2008.

[3] A. Arasu, S. Babu, and J. Widom. CQL: A language for
continuous queries over streams and relations. In DBPL,
1–19, 2003.

[4] Z. Cao, Y. Diao, P. Shenoy. Architectural considerations for
distributed RFID tracking and monitoring.
http://www.cs.umass.edu/~yanlei/spire.pdf, UMass
Tech. Report, 2009.

[5] M. Cetin, L. Chen, et al. Distributed fusion in sensor
networks. In IEEE Signal Processing Mag, 42–55,2006.

[6] R. Cocci, T. Tran, Y. Diao, and P. Shenoy. Efficient Data
Interpretation and Compression over RFID Streams. In
ICDE, 2008. Poster.

[7] EPCglobal Inc. EPCglobal tag data standards version 1.3.
http://www.epcglobalinc.org/, Mar 2006.

[8] K. Finkenzeller. RFID handbook: radio frequency
identification fundamentals and applications. John Wiley
and Sons, 1999.

[9] M. J. Franklin, S. R. Jeffery, et al. Design considerations
for high fan-in systems: The HiFi approach. In CIDR,
290–304, 2005.

[10] Fujitsu. http://www.fujitsu.com/global/news/pr/
archives/month/2008/20080109-01.html.

[11] A. Ihler, J. Fisher and et.al. Nonparametric Belief
Propagation for Self-Calibration in Sensor Networks. In
IPSN, 225–233,2004.

[12] S. R. Jeffery, M. J. Franklin, et al. An adaptive RFID
middleware for supporting metaphysical data
independence. VLDB Journal, 17(2):265 – 289, 2007.

[13] C.-H. Lee and C.-W. Chung. Efficient storage scheme and
query processing for supply chain management using RFID.
In SIGMOD, 291–302, 2008.

[14] Y. Mei and S. Madden. Zstream: A cost-based query
processor for adaptively detecting composite events. In
SIGMOD, 2009.

[15] M. Paskin, C. Guestrin and J. Mcfadden. A robust
architecture for distributed inference in sensor networks. In
IPSN, 55–62,2005.

[16] J. Rao, S. Doraiswamy, et al. A deferred cleansing method
for RFID data analytics. In VLDB, 175–186, 2006.

[17] Smartcard focus. http://www.smartcardfocus.com/shop/
ilp/se~72/p/index.shtml.

[18] J. Schiff, D. Antonelli, et al. Robust message-passing for
statistical inference in sensor networks. In IPSN,
109–118,2007.

[19] T. Tran, C. Sutton, R. Cocci, et al. Probabilistic inference
over rfid streams in mobile environments. In ICDE, 2009.

[20] F. Wang and P. Liu. Temporal management of RFID data.
In VLDB, 1128–1139, 2005.

[21] E. Welbourne, N. Khoussainova, et al. Cascadia: a system
for specifying, detecting, and managing rfid events. In
MobiSys, 2008.

[22] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD, 407–418, 2006.

[23] J. Xie, J. Yang, Y. Chen, et al. A sampling-based approach
to information recovery. In ICDE, 476–485, 2008.

