
Efficient Data Interpretation and Compression over RFID Streams

Richard Cocci, Thanh Tran, Yanlei Diao and Prashant Shenoy
Department of Computer Science, University of Massachusetts Amherst

{rcocci, ttran, yanlei, shenoy}@cs.umass.edu

Abstract— Despite its promise, RFID technology presents nu-
merous challenges, including incomplete data, lack of location
and containment information, and very high volumes. In this
work, we present a novel data interpretation and compression
substrate over RFID streams to address these challenges in
enterprise supply-chain environments. Our results show that
our inference techniques provide good accuracy while retain-
ing efficiency, and our compression algorithm yields significant
reduction in data volume.

I. INTRODUCTION
RFID is a promising electronic identification technology

that enables a real-time information infrastructure to provide
timely, high-value content to monitoring and tracking appli-
cations. However, RFID data—a triplet <tag id, reader id,
timestamp> in its most basic form—raises new challenges
since it may be insufficient, incomplete, and voluminous.

Insufficient information: Since RFID is inherently an
identification technology designed to identify individual ob-
jects, a stream of RFID readings does not capture inter-object
relationships such as co-location and containment.

Incomplete data: Despite technological advances, RFID
readings are inherently noisy with observed read rates below
100% in actual deployments. Missed readings result in a lack
of information about an object’s location, significantly impair-
ing the tasks of determining both location and containment.

High volume streams: Perhaps the key distinguishing
characteristic of RFID streams are their high data volumes
which can easily overwhelm a data stream system. Hence, it
is imperative that data be filtered and compressed close to the
hardware while preserving all useful information.

In this paper, we present SPIRE, a system that addresses
the above challenges. SPIRE departs from the prior work
by building an interpretation and compression substrate over
RFID data streams which employs three key techniques: (1)
a time-varying graph model that captures possible object
locations and containment relationships with its stream-driven
construction, (2) a probabilistic algorithm that infers the most-
likely locations and containment relationships of objects, and
(3) an output algorithm that transforms an input stream to
a compressed, yet informative output stream. We have im-
plemented our interpretation and compression substrate and
have evaluated it using synthetic RFID streams emulating an
enterprise supply-chain environment. Our results show that our
inference techniques provide good accuracy while retaining
efficiency, and our compression algorithm yields significant
reduction in data volume.

II. PROBLEM STATEMENT

Before defining the problem, we present the notion of the
physical world. A physical world covers a geographical area

RFID Devices

Per-Tag Cleaning

 Interpretation & 
 Compression

Complex Event 
ProcessorEvent DB

Data Capture: graph contruction

Interpretation: probabilistic inference

Output: compression

Network

Fig. 1. Architecture of SPIRE: Our substrate consists of (i) a data
capture module for stream-driven construction of a time-varying graph model
encoding possible object locations and containments; (ii) an interpretation
module to probabilistically infer the most likely location and containment
for an object, and (iii) a compression module that outputs stream data in an
compressed format with smoothing.

comprising a set of objects O, a set of pre-defined, fixed
locations L, and an ordered discrete time domain T . The set
of locations can be either pre-defined logical areas such as
aisle 1 in warehouse A, or (x, y, z) coordinates generated by
a positioning system. At time instant t, the state of the world
includes a set of location relationships, where each oi ∈ O is
present at some lk ∈ L. Additionally, there exists containment
relationships between objects oi, oj ∈ O at some lk ∈ L.
Note that containment is dependent on the fact that both the
container and contained object are present at the same location.

The state of the world changes whenever an object enters the
world, an object exits the world through a designated channel,
or an existing object changes its location or containment
relationship with other objects. The set of locations L also
contains a special location called unknown. In particular, an
object is in the “unknown” location if it is not present in any
pre-defined location (e.g., in transit between two locations) or
if it exited the physical world improperly (e.g., was stolen).

RFID readers provide a means to observe the physical
world. The readings produced at time t are collectively called
an observation of the world. In this work, we focus on
readers mounted at fixed locations—a common configuration
in today’s RFID deployments. For such fixed readers, a reading
captures the location of the object (which is the same as the
location of the reader). Such readings, however, are inadequate
for capturing the containment between objects.

The data interpretation problem is to construct an approx-
imate yet accurate estimate of the state of the world based
on the observations thus far. For a given object, we provide
probabilistic values representing its most likely location and
container. Recent research on RFID data cleaning [1][2] has
employed temporal and spatial smoothing to alleviate missed



Level 1: pallet

A: loading dockLocations C: packaging area

Time t = 1 t = 2 t = 3

Level 2: case

Level 3: item

B: beltB: belt C:packaging area

1

2 3

4 5 6 7

3

6 7

9

10 11 6

3

7

8

9

10 11

Fig. 2. A sequence of observations in a warehouse.

readings, but does not capture inter-object relationships or
provide location estimates. Note that in our definition, data
interpretation over streams is only concerned about the present
state of the physical world and not the past or the future.

The data compression problem is to transform the input
stream into an output stream with a reduced data volume but
with no loss of information. Such compression requires the
knowledge of what data is redundant and thus can be safely
discarded. In this work, we use interpretation to obtain such
knowledge and generate an output stream that (i) augments the
input stream with additional, likely information about objects,
and (ii) has a significantly reduced volume of data.

A warehouse scenario is depicted in Figure 2, where RFID
readers are installed above the loading dock, the conveyor
belt, and the packaging area. At time t=1, the loading dock
reader reports objects 1 to 6, denoted by the shaded nodes.
These nodes are arranged according to the packaging levels
that the reported tag ids indicate [3]. Object 7 is also present
but was missed by the reader, denoted by an unshaded node,
i.e. a missed reading. Containment between objects, depicted
by the dashed edges, is not reported by the readings and
often uncertain. Examples of ambiguous containment are the
containment between items 4, 5, 6 and cases 2, 3 at this time.

At time t=2, case 3 is scanned individually on the belt. It
is possible to confirm the containment between the case and
its item(s) now if the domain knowledge of the deployment
reveals such special readers that scan containers of a particular
type one at a time. Additionally, a new case 9 is read in the
packaging area. At time t=3, item 6 is read at the belt again
(it fell off its case at t=2 and stayed here). A new pallet 8 is
assembled from cases 3 and 9 in the packaging area. Item 10
remained with its case but was not read, creating the inaccurate
appearance that the item is missing.

III. DATA CAPTURE

This section describes our data capture technique to con-
struct a time-varying graph model from the raw stream.

A Time-Varying Colored Graph Model: Our graph model
G = (V,E) encodes the current view of the objects in
the physical world, including their reported locations and
(unreported) possible containment relationships. In addition,
the model incorporates statistical history about co-occurrences
between objects. Example graphs for the observations in
Figure 2 are shown in Figure 3.

The node set V denotes all RFID-tagged objects in the phys-
ical world. Since we are assuming a supply-chain environment,
an object has a packaging level of an item, case or a pallet; the
packaging level is encoded in the RFID tag ID [3]. Our graph
is arranged into layers, with one layer for each packaging
level. Each node either has a color that denotes its location

or is uncolored if its location is currently unknown. The node
colors are updated for the stream of readings in each epoch
using the color of the location where each tag is observed.
If an object is not read by any reader in a particular epoch,
its node becomes uncolored. However, uncolored nodes retain
memory of their most recent color and the observation time
denoted by (recent color, seen at).

The directed edge set E encodes possible containment re-
lationships between objects. A directed edge oi → oj denotes
that oi contains object oj (e.g., case i contains item j). We
allow multiple outgoing and incoming edges to and from each
node, indicating an object such as a case may contain multiple
items, and conversely, an item may have multiple potential
cases (our probabilistic inference will subsequently chose only
one of these possibilities). We allow combinations of colored
and uncolored nodes, with the exception that an edge cannot
connect two nodes of different colors; that is, containment is
prohibited for two objects resident in two different locations.

To enable inference, the graph also encodes additional statis-
tics. Each edge maintains a bit-vector recent collocations to
record recent positive and negative evidence for the collocation
of the two objects. The bit is set every time the two nodes
connected by the edge are assigned the same color. Further,
each node maintains past certain parent statistics to remember
the last confirmed parent, either revealed by a special reader or
through inference with high certainty, the time of confirmation,
and the number of conflicting observations obtained thus far.
Among all incoming edges, only one can be a confirmed edge,
denoted by the edges with double arrows in Figure 3.

We assume that time is divided into epochs and the graph is
updated using stream data from each epoch. Our construction
algorithm takes the graph G from the previous epoch and a
set of readings Rk from each reader k (1 ≤ k ≤ K) in the
current epoch, and produces a new graph G∗. An important
feature of the algorithm is that it proceeds incrementally as
readings arrive from each reader, and guarantees a consistent
output G∗ after seeing the readings from all readers in an
epoch. This ensures that the algorithm works even when the
various readers are coarsely synchronized in time. Given Rk

of each reader, the graph update procedure entails four steps.
Step 1. Update and color nodes: If a new object is observed

for the first time, a new node is created in the graph. For each
observed object, the corresponding node is colored with the
color of the reader that observed it. The colors of unobserved
objects are not updated but simplify fade at a certain rate.

Step 2. Update edges: If two nodes in adjacent layers have
the same color, an edge is added between them if one does not
exist. This enumerates all possible containment relationships
(e.g., a blue item can be contained in any of the blue cases that
are present on a shelf). t=1 in Figure 3 demonstrates edges
being constructed for the arriving pallet.

Step 3. Prune graph: An edge is removed from the graph
if its vertices are assigned different colors, which may occur
when two previously co-located objects are now reported in
different locations. t=3 in Figure 3 shows the edge v3 → v6

being pruned due to conflicting node colors. Alternatively,
edges can be removed from an object when a single edge



1

2 3

4 5 6

Level 1

A: loading dockLocations

Time

C: packaging area

t = 1 t = 2 t = 3

Level 2

Level 3

2 3

4 5 6 7

8

2 3

4 5 6 7 10 11

9

(A,1) (A,1)

(A,1)

(B, 2)

(B,2) (B,2)

(A,1)

(A,1)

(C,3)

(C,3)

(C,3)

(C,3)(C,2)(C,3)(A,1)(A,1) (B,3)

(A,1)
(A,1)

(A,1)

(A,1)(A,1)(A,1)

1 (A,1)

B: beltB: belt

10 11

9

C: packaging area

(C,2)

(C,2)(C,2)

1

Fig. 3. Examples of the time-varying colored graph model.

is confirmed as the object’s container. Special readers, such
as a belt reader that read exactly one pallet at a time, allow
for improvement in the accuracy of the graph model while
simultaneously helping to prune unnecessary edges.

Step 4. Update Statistics: This step updates statistics of the
edges that have at least one node colored in step 1. Given
an edge e, if the two linked nodes have the same color,
recent collocations of e is updated by setting the most recent
bit to True. Furthermore, if the reader k is able to confirm the
containment denoted by e, we update the past certain parent
of the child node. If one of the linked nodes is uncolored, the
most recent bit of recent collocations is set to False. In this
case, we also check if e was set as the certain parent edge
of the child node, and if so count the current observation as
a conflicting observation of the confirmation. These statistics
play a key role in containment inference.

IV. DATA INTERPRETATION

The graph constructed from the data capture step can result
in uncolored nodes or nodes with multiple parent nodes. The
data interpretation step attempts to estimate the most likely
location of an unreported (uncolored) object and the most
likely container (parent) of an (either reported or unreported)
object using a probabilistic inference technique.

Edge Inference: Edge inference is applied to each incoming
edge of a node v regardless of whether the node is colored
or not. It assigns a probability pei to each edge; the edge
with the highest probability is then chosen as the most likely
container of v. Past history is used to compute probability
values, which includes (i) the recent history of co-locations,
as represented by the bit-vector recent collocations and (ii) the
last confirmation of an edge either by a special reader or as a
result of inference with high certainty, as captured in the data
structure past certain parent. The use of past history makes
edge inference less sensitive to missed readings.

Edge inference at a node consists of two steps. The first
step computes a weight wei for each incoming edge using
the history of observed co-locations. The next step builds a
probability distribution across all incoming edges. It computes
a probability pei

for each edge by balancing the relative weight
on this edge against the edge’s last confirmed parent.

Node Inference: Node inference is applied to an uncolored
node v—an object with an unknown location—and attempts
to infer the most likely location of the object or confirm
its absence from any known location. The key challenge in
node inference arises from a three-way tradeoff among object
dynamics, continuation of past state, and absence with no
other knowledge. Specifically, a given object can remain in

its current location, move to a new observable location, or
disappear from all observable locations.

To account for these possibilities, node inference builds a
probabilistic distribution over all possible colors of a node
v, including (1) its most recent color, (2) the colors of its
neighboring nodes that can be propagated through the edges,
and (3) a special color “unknown”. Among all possible colors,
the one with the highest probability represents the most likely
estimate of this object’s location. In t=3 in Figure 3, v10’s
location was inferred due to color inherited from its neighbors.

V. STREAM OUTPUT WITH COMPRESSION

The output module takes the results of inference, i.e. the
most likely estimates of the location and container of each
object, and transforms them into a compressed output event
stream. The key idea behind compression is that only those
readings that indicate a state change need to be included in the
output stream. The state of an object is said to have changed
if its location or its containment changes. In the absence of a
state change, all readings merely confirm the current state of
the physical world and can be safely discarded.

Our Location compression works on the intuition that if an
object is stationary—resident at the same location for a period
of time—only an initial event needs to be output to indicate its
first arrival at this location and all subsequent readings in the
same location can be safely discarded. Separately, containment
compression exploits stable containment, for both stationary
and mobile objects, based on the intuition that for the extent
of a containment relationship it is possible to infer all of the
child’s events through the parent. Location and containment
compression techniques have been previously proposed for
RFID warehouses [4] but use expensive disk-based operations
such as sorting and summarization, as opposed to our methods
which are processed on the fly and modify the output stream.

VI. SUMMARY OF PERFORMANCE EVALUATION RESULTS

Overall, our results show that the our framework for in-
ference is able to correctly infer both object location and
containment with a higher than 90% accuracy when the
reader’s read rate is above 80%, a level reached in many
current RFID deployments. Our compression techniques are
also capable of reducing total data volume by more than 80%
when compared to the raw reader output. Furthermore, our
framework is capable of scaling to simulated workloads in
excess of 100,000 objects while still maintaining processing
throughput above stream speed.

Acknowledgments. The work has been supported in part by
the National Science Foundation under the grant CNS-052072.

REFERENCES

[1] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. W.
0002, O. Cooper, A. Edakkunni, and W. Hong, “Design considerations for
high fan-in systems: The HiFi approach.” in CIDR, 2005, pp. 290–304.

[2] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin, “Adaptive cleaning
for rfid data streams.” in VLDB, 2006, pp. 163–174.

[3] “EPCglobal tag data standards version 1.3.” http://www.epcglobalinc.org/,
Mar 2006.

[4] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing and analyzing
massive RFID data sets.” in ICDE, 2006, p. 83.


