

Query Processing for High-Volume XML Message Brokering

Yanlei Diao
University of California, Berkeley

diaoyl@cs.berkeley.edu

Michael Franklin
University of California, Berkeley

franklin@cs.berkeley.edu

Abstract
XML filtering solutions developed to date have focused
on the matching of documents to large numbers of que-
ries but have not addressed the customization of output
needed for emerging distributed information infrastruc-
tures. Support for such customization can significantly
increase the complexity of the filtering process. In this
paper, we show how to leverage an efficient, shared path
matching engine to extract the specific XML elements
needed to generate customized output in an XML Mes-
sage Broker. We compare three different approaches that
differ in the degree to which they exploit the shared path
matching engine. We also present techniques to opti-
mize the post-processing of the path matching engine
output, and to enable the sharing of such processing
across queries. We evaluate these techniques with a de-
tailed performance study of our implementation.

1. Introduction
For distributed environments including Web Services, data
and application integration, and personalized content deliv-
ery, XML is becoming the common wire format for data. In
this emerging distributed infrastructure, XML message bro-
kers [20][25][26] will play a key role as central exchange
points for messages sent between applications and/or users.
The main functions of such brokers are: filtering, transfor-
mation, and routing. Filtering matches messages to a large
set of queries that represent the data interests of specific us-
ers, applications, or organizations. Transformation restruc-
tures matched messages according to recipient-specific re-
quirements. Routing involves the transmission of the custom-
ized data to the recipients.

Recently, there have been a number of systems devel-
oped for XML filtering [1][3][7][8][13][14][17], where the
queries typically involve path expressions that refer to the
structure of the XML data items. The most efficient filtering
systems exploit commonality among queries via shared proc-

essing of the path expressions.
The work we describe in this paper is aimed at develop-

ing the next level of functionality, i.e., transforming the
XML messages on a query specified basis, in order to pro-
vide customized data delivery and to enable cooperation
among disparate, loosely coupled services and applications.
High-capacity brokering systems must be capable of support-
ing potentially tens of thousands of simultaneous queries.
Thus, approaches that process queries individually are not
adequate for our purpose. Since shared processing of path
expressions has been shown to be an efficient and scalable
foundation for the current generation of XML filtering sys-
tems, we start with such an engine, which we call a shared
path matching engine, and develop alternatives for building
customization functionality on top of it. We address the fol-
lowing fundamental questions:

• How, and to what extent can a shared path matching en-
gine be exploited for customized result generation?

• What additional post-processing of path matching output
is needed to support message customization, and how can
this post-processing be done most efficiently?

By way of answering these questions, we have developed

three techniques that differ in the extent to which they push
work down into the matching engine. As we will show, there
is an inherent tension between shared path matching and
customized result generation. That is, aggressive path sharing
requires more sophisticated post-processing.

Given an efficient shared path matching engine, it is easy
for post-processing to become the dominant component of
query processing cost. In order to reduce the cost of post-
processing we have developed provably safe optimizations
based on query and DTD (if available) inspection that enable
us to eliminate unnecessary operations and choose more effi-
cient operator implementations for post-processing of indi-
vidual queries.

We have also developed a set of techniques for sharing
post-processing work across multiple queries. These tech-
niques are similar in spirit to approaches used in more ge-
neric Continuous Query processing systems, but as we will
show, are highly tailored for the specific case of large-scale,
high-volume XML message brokering.

We have implemented all of the above techniques on top
of the YFilter shared path matching engine [8][11] and have
evaluated their effectiveness with a detailed performance
analysis of the implementation.

The paper proceeds as follows. Section 2 presents our
problem definition. Sections 3 and 4 present three alternative
solutions and a set of optimizations for them. Section 5 ad-

This work has been supported in part by the National Science Founda-
tion under the ITR grants IIS0086057 and SI0122599 and by Boeing,
IBM, Intel, Microsoft, Siemens, and the UC MICRO program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endow-
ment
Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

dresses shared post-processing. Section 6 presents our ex-
perimental results. Section 7 covers related work. Section 8
presents conclusions.

2. Background

2.1 Architectural Overview
Our proposed XML message broker architecture is shown in
Figure 1. The primary inputs are the queries that represent
subscriptions and the XML messages themselves.

Queries become active as soon as they arrive at the mes-
sage broker. Inside the broker, an arriving query is parsed for
use by the Query Processor, where the execution plan of the
new query is merged with the existing queries without re-
compiling any of them.

Incoming messages are filtered and transformed on-the-
fly for the entire set of queries. These messages need not
conform to DTDs (Document Type Definitions) but, as we
describe later, such conformance can be exploited1. Inter-
nally, the broker runs an incoming message through an
event-based XML parser. Parsing events are passed to the
query processor to drive the query execution. They are also
used to incrementally construct a node-labeled tree, which
provides materialization of the parsed message for later use.
The nodes are assigned integer identifiers according to a pre-
order traversal of the tree.

The query processor produces output in an intermediate
format that contains identifiers of nodes in the parsed XML
message organized for efficient translation into customized
output messages. The intermediate output of the query proc-
essor is fed to the “message factory”, which combines the
element tags in queries with the intermediate output and for-
wards the resulting messages for delivery.

We describe the query processor in more detail, after first
presenting our problem definition in the following section.

2.2 Problem Statement
We focus on user query specifications written in a subset of
XQuery [2]. Consider “Query 1” below, which is based on
the Book DTD from the XQuery use cases [6]:

<sections>
{
 for $s in document(“doc.xml”)//section
 where $s//figure/title = “XML processing”
 return <section>

{ $s/title }
{ $s//figure }

 </section>
 }
</sections>

This query specifies that for each section containing a figure
whose title is “XML processing”, a “section” element con-
taining the title of that section and all of its figures should be
returned. Note that in a message conforming to the Book

1 In applications such as web services, XML Schema is more

widely used than DTDs. Since the structural information we exploit
is provided by both types of definition, XML schema can be used
under the same conditions as DTDs in this work.

DTD, section elements may contain other sections as well as
figures and other elements. This query requires results to be
returned for all sections matching the query in the same or-
der that the matching sections appear in the message.

More specifically, the queries we consider consist of a
single FLWR (i.e., For-Let-Where-Return) expression en-
closed in an element defined by a constant tag. The FLWR
expression contains:

• A for clause containing a variable name and a path ex-

pression; followed by

• An optional where clause that contains a set of conjunc-
tive predicates, each of which takes a form of a triplet:
path expression, op, constant; followed by

• A return clause that contains interleaved constant tags
and path expressions, where all constant tags have a
matching close tag.

Our current implementation does not support the let clause.
The semantics of these queries is as follows: The for

clause creates an ordered sequence of variable bindings to
document elements (or in our case, to nodes in the parsed
XML message). The where clause, if present, restricts the set
of bindings passed to the return clause. The return clause is
invoked once for each variable binding. At each invocation
of the return clause, tags cause the construction of new XML
fragments and path expressions select nodes from the current
variable binding. The final result of the FLWR expression is
an ordered sequence of the results of these invocations.

For conciseness, we refer to the path expression in a for
clause as the “binding path”, those in a where clause as
“predicate paths”, and those inside a return clause as “return
paths”. We require that the predicate and return paths of a
query be relative to the binding path of that query (i.e., they
are prefixed by the variable name used in the binding path).

A path expression consists of a sequence of location
steps. We support location steps with child “/” and descen-
dent “//” axes and element name tests. Path expressions con-
taining such location steps are referred to as navigation paths
in this paper. We also allow location steps to contain simple
predicates that compare the attributes or text data of elements
to a constant. In this work, binding paths can contain an arbi-
trary number of simple predicates in any location step. A
predicate path is a navigation path with a simple predicate
attached to the last location step, and itself is a complex

Figure 1: XML message broker architecture

parsed
queries

message
sender

message
factory

message
listener

SAX
XML
parser

node-
labeled

tree

XQuery
parser

Query Processor

shared path
matching engine

customization
module

path-tuple
streams

results in groupSequence-
listSequence format

query
optimi-

zer

XML messagesqueries
customized

XML messages

predicate imposed on its binding path. A return path is sim-
ply a navigation path.2

As stated in Section 2.1, the output of the query proces-
sor is an intermediate representation that is passed on to the
message factory component of the broker. In this representa-
tion, the nodes selected from the message are organized into
a sequence of groups, such that each group corresponds to a
single invocation of the return clause. Inside a group, nodes
are contained in a sequence of lists. The sequencing of lists
corresponds to the ordering of the return paths in the return
clause. Each list contains the nodes matching the return path
in their document order. For example, the output of Query 1
would have the following format:

….
sectioni: [titlei1], [figurei1 , …]
sectioni+1: [title(i+1)1], [figure(i+1)1 , …]
….

where sectioni represents a group, and the numbering …, i,
i+1, … represents the ordering of those groups. The se-
quence inside a group consists of a list of identifiers of title
nodes (in our example there is only a single title per section)
followed by a list of identifiers of figure nodes. In the re-
mainder of this paper, we refer to this intermediate represen-
tation as the groupSequence-listSequence format.

Having described our model of queries and output, we
can now formulate the core message broker functionality we
provide as follows:

Given a large set of queries written in the specified query
language, efficiently extract message components in the
groupSequence-listSequence format for all queries for each
message arriving at the message broker.

2.3 Query Processor Details
In our system, as shown in Figure 1, the query processor
consists of two main runtime components: a shared path
matching engine and a customization module. Given a parsed
query, the optimizer in the query processor inserts navigation
paths from the query into the shared path matching engine,
and adds the execution plan for the remainder of the query to
the customization module. For an incoming message, the
shared path matching engine takes the parsing events to
match its contained navigation paths. The customization
module further processes the output of the path matching
engine to generate customized results.

A key advantage of this design is that it leverages the
prior work on building scalable, shared XML path matching
engines [1][3][7][8][11][13]. We chose to base our system
on YFilter [8][11], a high-performance shared path matching
engine that we built previously. YFilter employs a single
Non-Deterministic Finite Automaton to represent the full set
of navigation paths, and supports shared processing of the
common prefixes of all these paths. A recent study by Bruno
et al. [3] shows that YFilter is particularly effective for short
messages and large sets of queries; precisely the environment
we anticipate for high-volume XML message brokers.

Our approaches to customized result generation are de-
veloped in the context of the particular output format pro-

2 The approaches we describe in this paper can be extended to sup-

port more general XQuery scenarios. Due to space limitations, we
refer the interested reader to [9] for further details.

vided by YFilter. For a navigation path matched by an in-
coming message, YFilter delivers a stream of “path-tuples”
each of which represents a unique match of this path. A path-
tuple contains one field per location step in the path, and the
value of the field is the identifier of the message node bound
to the location step. When multiple paths are matched by a
message, YFilter delivers its output as streams of path-tuples,
one stream for each path.

Figure 2(a) shows a node-labeled tree for a message
fragment, where nodes are annotated with their assigned ids.
Path-tuple streams that are output from YFilter for different
paths are illustrated in Figure 2(b). Take the stream for the
path “//section//figure”. It contains three path-tuples. Each
path-tuple contains two node ids, representing a unique com-
bination of the two location step bindings.

YFilter guarantees that path-tuples in each stream are
produced such that the node ids in the last field of the path-
tuples appear in monotonically increasing order. This stream
order is exploited in our processing algorithms as described
in the following sections. It is also important to note that
ordering on other fields of path-tuples is not guaranteed by
YFilter.

3. Basic Approaches
In this section, we present three different query processing
approaches that differ in the extent to which they exploit the
path matching engine. In all of them, a post-processing phase
is applied to the output of the matching engine to generate
the complete groupSequence-listSequence output. This post-
processing is done via query plans using relational-style op-
erators. In the approaches described in this section, we use
one such query plan per XQuery query (i.e., the post-
processing phase is not shared). We examine how to share
post-processing work in Section 5.

It should be noted that much of the subtlety of develop-
ing solutions to this problem arises from the inherent tension
between shared processing at the lower level (which is essen-
tial for good performance) and customized query result gen-
eration. The matching engine returns the path-tuples in a
stream in a single, fixed order to all queries that include the
corresponding path. The paths, however, may be used quite
differently by the various queries, and thus potential incon-
sistencies such as unintended duplicates or ordering prob-
lems can arise with aggressive path sharing (we will discuss
both of these cases in detail shortly). In the following, we
describe our approaches in order of increasing path sharing,
and focus on how the additional complications raised by
increased sharing are addressed. The approaches are additive;

Figure 2: An example of YFilter output

//section//figure //section/figure

YFilter

parsing events

path-tuple
streams

 1 3

 2 3

 1 4

 2 3

 1 4

 Node labeled tree

2

1

3

4

section

section

figure

figure

(b) (a)

that is, the approaches exploiting increased sharing incorpo-
rate those that use less.

3.1 Shared Matching of “For” Clauses
The first approach we describe uses the path matching engine
to process only binding paths (i.e., paths that appear in for
clauses). We begin by inserting the navigation part of the
binding path from each query into the engine. Then, during
the processing of a message, the output of the engine for
each path is directed to the post-processing plans for its cor-
responding queries. We refer to this approach as PathShar-
ing-F. Consider Query 2:

 <figures>
 {
 for $f in document(“doc.xml”)//section[@id<=2]//figure
 where $f/title = “XML processing”
 return <figure> { $f/image } </figure>
 }
 </figures>

Figure 3 highlights the post-processing plan for this
query under PathSharing-F. In the figure, the multiple ar-
rows above the matching engine represent the streams of
path-tuples (note that queries that have a common binding
path share a common stream). The thick arrow denotes the
stream used by Query 2, which contains the path-tuples
matching the binding path “//section//figure”. In the
following, we refer to the last field of these path-tuples as the
binding field, because they contain the ids of the nodes that
are actually bound by the binding paths. We refer to these
nodes as the BoundNodes. The box above the thick arrow
contains the post-processing execution plan. The operators in
this plan are, from bottom-up:

Selection. A selection operator is placed at the bottom of
a query plan to evaluate any simple predicates (i.e., compari-
sons of the attributes or text data of elements to a constant)
attached to a binding path. The evaluation is done for each
path-tuple by checking predicates against the nodes refer-
enced by the path-tuple. Selection emits only those path-
tuples for which all predicates evaluate to True.

Duplicate Elimination (DupElim). The XQuery specifi-
cation requires that duplicate nodes bound to a path be elimi-
nated based on the node identity [2]. Accordingly, we define
duplicates in the stream for a binding path as path-tuples that
contain the same node id in the binding field.

Such duplicates arise when multiple path-tuples in a
stream reference the same BoundNode. For example, con-
sider Query 2 and the XML fragment:

“<section id=1> <section id=2> <figure> <title> XML
 processing </title> </figure> </section> </section>”

The matching engine outputs two path-tuples for the binding
path. The first corresponds to “<section id=1> <figure>” and
the second to “<section id=2> <figure>”. These two path-
tuples reference the same BoundNode, so the second could
cause redundant work and produce a duplicate result.

The DupElim operator avoids these problems by ensuring
that each BoundNode is emitted at most once. In this case, a
simple scan-based DupElim operator can be used because as
described in the previous section, path-tuples in the stream
are ordered by their binding field. It should be noted, how-
ever, that DupElim cannot be pushed before the selection,
because it is not known which (if any) of the path-tuples
referencing the same BoundNode will pass the selection.

Where-Filter. This operator evaluates the where
predicates on each path-tuple until a predicate evaluates to
False or the entire where clause evaluates to True. Path-
tuples in the latter case are emitted. For each path-tuple, a
predicate path is evaluated with a tree search routine that
uses a depth-first search in the sub-tree of the parsed mes-
sage rooted at the BoundNode of the path-tuple. The search
routine for a path returns True as soon as any node satisfying
the predicate is found. The pseudo-code of this routine is
omitted in the interest of space.

Return-Select. This operator applies the return clause to
the BoundNodes of the path-tuples that survive the Where-
Filter. It uses the tree search routine for each return path.
Unlike the Where-Filter, however, the tree search routine
here must retrieve all nodes matching a return path rather
than stopping at the first match.

Return-Select generates results in the groupSequence-
listSequence format. Each input path-tuple causes the crea-
tion of a new group. The ordering of return paths in the
query defines the sequence of lists within each group. For
each list, the matches of the corresponding return path are
placed in the order that they appear in the message.

Recall that the results of a FLWR expression must be
ordered in accordance with the order of the variable bindings
of the for clause. Since the stream for the binding path is
ordered in this way, and the remaining processing steps do
not change that order, we are assured that the order produced
by PathSharing-F is correct.

3.2 Shared Matching of “Where” Clauses
PathSharing-F only uses the path matching engine to process
binding paths. The next approach, PathSharing-FW, in addi-
tion pushes the navigation part of predicate paths from the
where clause into the matching engine to exploit further
sharing. Recall that predicate paths are defined to be relative
to the binding paths. Since the matching engine treats all
paths as being independent, we must first extend the predi-
cate paths by prepending their corresponding binding path.
For example, consider Query 3:

<sections>
{
 for $s in document(“doc.xml”)//section
 where $s/title=“XML”
 and $s/figure/title = “XML processing”
 return <section>

Figure 3: A query plan using PathSharing-F

Query i

Where-Filter

Return-Select

DupElim

σ

shared path matching engine

binding path:
//section//figure

 1 3

 2 3

 4 5

4 6

... ...

 { $s//section//title }
 { $s/figure }
 </section>
 }
</sections>

The first predicate path “/title” is transformed into
“//section/title” and the second becomes “//section/figure
/title”. These extended predicate paths, along with the bind-
ing path, are inserted into the matching engine. Note that
since common prefixes of paths are shared in the matching
engine, the extension of these paths does not add signifi-
cantly to their processing cost.

As in PathSharing-F, the path-tuple streams for each
query are then post-processed by a query plan that executes
the remaining portion of that query. This arrangement is
shown in Figure 4. The stream corresponding to a binding
path is passed through a selection operator and a DupElim
operator as before. The output of the DupElim operator is
then matched with the streams corresponding to the predicate
paths. The path-tuples resulting from the matching process
are piped to a Return-Select that works as described before.

In PathSharing-FW, the Where-Filter of PathSharing-F
is replaced by a left-deep tree of semijoins with the binding
path stream as the leftmost input. Recall that the predicate
paths are extended by pre-pending them with the correspond-
ing binding path. Thus, the common field on which each
semijoin will match is the binding field, i.e., the last common
field between the binding path tuples and the predicate path
tuples. The result of a semijoin, therefore, is a stream con-
taining only those binding path tuples that have matching
predicate path tuples. Figure 4 shows an example for the
leftmost semijoin.

The semijoin operators can be implemented using a sim-
ple merge-based algorithm, if it is known that the predicate
path streams are delivered in monotonically increasing order
of BoundNode id. In general, however, there are cases where
such ordering cannot be assumed. Consider the execution of
Query 3, when applied to the following XML fragment:

“<section> <section> <figure> <title> XML processing
</title> </figure> </section> <figure> <title> XML process-
ing </title> </figure> </section>”

In this case, the stream for the predicate path
“//section/figure/title” would contain a path-tuple corre-
sponding to “section2 figure1 title1” followed by a path-tuple
corresponding to “section1 figure2 title2”, where the subscript

indicates the first or the second occurrence of the tag name.
This stream is not properly ordered by the binding field (i.e.,
section). In such cases, since the binding path stream is or-
dered properly, we can use a hash-based implementation of
semijoin where the binding path stream is used as the prob-
ing stream. Sufficient conditions for determining when the
more efficient merge-based approach can be used are dis-
cussed in Section 4. Note, however, that both approaches
order the output correctly, resulting in semantics identical to
those provided by PathSharing-F.

A final note is that duplicates in predicate path streams
are not a concern, because these streams are only used to fil-
ter binding path tuples that have passed a DupElim operator.

3.3 Shared Matching of “Return” Clauses
Our third alternative approach, PathSharing-FWR, aims at
further increasing sharing by also pushing the return paths
into the path matching engine. Return paths differ from
predicate paths in that they do not constrain the set of match-
ing binding path tuples so the semijoin approach cannot be
used for them. Instead, outer-join semantics are required.

We require a slightly more specialized operator than a
generic outer-join, however, because results must be gener-
ated in the groupSequence-listSequence format. Thus, we
have implemented our own n-way outer-join operator, which
we call OuterJoin-Select. As Figure 5 shows, OuterJoin-
Select takes as its leftmost input, the binding path stream
resulting from the semijoins of the PathSharing-FW ap-
proach. It performs left outer joins on the binding field with
each of the return path streams. Generation of the results in
the required format is performed as part of the outer join
processing. Each path-tuple in the binding path stream
causes the creation of a new group. The outer join between
this path-tuple and a return path stream results in a new list
within the group, containing the node ids in the last field in
the return path tuples that have matched the binding path
tuple. If no such matches are found, an empty list is kept in
the group for this return path.

In our implementation, OuterJoin-Select builds hash ta-
bles for each of the return path streams and then probes them
in a pipelined fashion using a single scan of the stream
emitted by the semijoin tree. In this way, the output of this
operator is guaranteed to be ordered by the binding field.

 Note from Figure 5 that, DupElim operators are required
on each of the return path streams to prevent duplicate results
from being generated by OuterJoin-Select. Here, the notion

Figure 5: A query plan using PathSharing-FWR

Query i OuterJoin-
Select

σ σ

DupElim

σ

>

order
preserving

DupElimDupElim
streams for
return paths

shared path matching engine

>

Figure 4: A query plan using PathSharing-FW

Query i

streams for
predicate
paths

shared path matching engine

stream for
the bind-
ing path

Return-Select

σ σ

DupElim

σ

>
>

 //section/title

1 2

.... ...

1

4

.......

1

3

4

.......

>

 //section

4 5

of duplicates is defined on the combination of the binding
field and the last field of the path-tuple, called the return
field.

Recall that a return path stream is always ordered by the
return field. If it also arrives ordered by the binding field, a
scan-based approach suffices for DupElim. Otherwise,
hashing is used.

As can be seen, PathSharing-FWR, the approach that ex-
ploits path sharing to the fullest extent, requires the most
sophisticated post-processing. As we mentioned earlier, this
complexity results from the tension between shared path
matching and result customization. It is important to note
that this problem cannot be easily solved in the path match-
ing engine. Consider a path expression that is the binding
path in one query and a return path in another. In this case,
the path-tuple stream produced for that path expression will
be used (by different queries) as two different types of
streams. Since the two types of streams have different no-
tions of duplicates, duplicate elimination cannot be done in
the engine, but must be done in a usage-specific manner dur-
ing post-processing. Similar issues arise with the ordering of
path-tuples expected by the different uses of the stream.

4. Simplifying Post-Processing
Duplicates and stream ordering are two fundamental issues
that complicate post-processing for customized result genera-
tion. With additional knowledge however, it is sometimes
possible to infer cases when duplicates cannot arise, or when
path-tuples will arrive in a needed order. In the first case,
DupElim operators can be removed from the post-processing
plans. In the second case, cheaper scan or merge-based op-
erator implementations can be used in place of the more ex-
pensive hash-based ones.

4.1 Sufficient Conditions
We have derived a set of sufficient conditions that enable the
detection of some situations where post-processing can be
simplified. These conditions involve the presence of “//”
axes in queries, and the potential for recursive elements (i.e.
elements that have the same element name and contain each
other) in the messages. The first type requires examining the
queries, and the second can be checked by examining a DTD,
if present. The claims involving a DTD utilize a DTD ele-
ment graph constructed as follows: Start at the root of the
DTD and examine its child elements. If a node for a child
element is not in the graph, create one. Then draw a directed
edge from the parent element to each child element. Repeat
this for all elements.

The conditions are described in the following five claims.
Correctness proofs for these claims are given in [9]. Con-
sider a path expression p of m location steps, and the stream
of path-tuples that match the path, with fields numbered
1..m.
Claim 1: If p contains at most one “//” axis, then there will

be no duplicates in the stream of path-tuples matching p
when the path-tuples are projected on field m.

Claim 2: If p contains n, n > 1 “//” axes, then if the elements
of the first n-1 location steps containing a “//” axis do not
appear on a loop in the DTD element graph, then there

will be no duplicates in the stream of path-tuples match-
ing p when the path-tuples are projected on field m.

Claim 3: Partition p into two paths, one consisting of loca-
tion steps 1 to i, i < m, and the other being a relative path
consisting of the rest of the path. If claim 1 or claim 2 in-
dicate that no duplicates exist for either path, then there
will be no duplicates in the stream of path-tuples
matching p when the path-tuples are projected onto fields
i and m.

Claim 4: If there is no “//” axis from location steps 1 to i, 1 ≤
i < m of p, then the stream of path-tuples matching p will
be in increasing order when projected onto field i.

Claim 5: If p contains one or more “//”axes within location
steps 1 to i, then if for all steps j, j ≤ i containing a “//”
axis, the elements of location steps j and i do not appear
on the same loop in the DTD element graph, then the
stream of path-tuples matching p will be in increasing
order when projected onto field i.

4.2 Optimization of Post-Processing Plans
The preceding claims enable optimizations of post-
processing plans on a query-by-query basis as follows:

• Claim 1 (and 2, if a DTD is present) is used to check if
there can be any duplicates in the path-tuple stream for a
binding path. Recall that duplicates for binding path tuples
are defined on the binding field, the last field of binding path
tuples. If duplicates are not possible, we remove the DupE-
lim operator for the binding path.

• Claim 3, in conjunction with Claim 1 (and 2, if a DTD
is present) is used to check the possible existence of dupli-
cates in the path-tuple stream for a return path. Recall (from
Section 3.3) that for return paths, duplicates are defined
based on the combination of the binding field and the return
field. Thus, Claim 3, is tested with i set to the location of the
binding field. If duplicates are not possible, we remove the
DupElim operator for the return path.

• Claim 4 (and 5, if a DTD is present) is used to check if
all input streams for a semijoin or OuterJoin-Select are guar-
anteed to be ordered by the binding field, with i set to the
location of the binding field. If yes, the merge based versions
of these operators can be used in place of the more expensive
hash-based implementation. These claims are also used to
determine if a scan-based DupElim operator can be used for
each return path.

Consider the application of these claims for Queries 2
and 3 of the previous section using Pathsharing-FWR. As-
sume that the element “section” is on a loop in the DTD ele-
ment graph, but the element “figure” is not. For Query 2
(see Section 3.1), the tests for Claims 1-3 fail, and in fact,
duplicates can arise, as described in Section 3.1. The test for
Claim 4 also fails because of the “//section//figure” in the
binding path. The test for Claim 5, however, succeeds be-
cause although the two location steps in the binding path
both contain “//” axes and the element “section” is on a DTD
element loop, the element “figure” is not on any loop with
“section”. Therefore all predicate and return path streams are
guaranteed to be ordered by the binding field. Thus, cheaper
operators can be used for semijoin, Outer Join-Select and the
DupElim on the return path stream.

For Query 3 (see Section 3.2), if we apply Claim 1 (or 2)
with Claim 3 to its query plan, all DupElim operators except

the one for the return path “//section//title”, can be removed.
The remaining DupElim operator results from the presence
of two “//”s in the return path and the fact that element “sec-
tion” after the first “//” is on a DTD loop.

The performance impact of these optimizations can be
quite significant, and is studied in the experiments presented
in Section 6.

5. Shared Post-Processing
So far we have presented three ways to share path matching
among queries. A common feature of these approaches is
that they all require a separate post-processing plan for each
query. In this section we describe an initial set of techniques
that can further improve sharing by allowing some of the
post-processing work to be shared across related but non-
identical queries, in particular, ones that have path expres-
sions (and hence, path-tuple streams) in common.

A prerequisite to the techniques we describe here is a
way to determine which path expressions appear in multiple
queries. The technique we use is to associate with each query
a set of unique path identifiers corresponding to each of the
paths that appear in it. These identifiers are returned by the
path matching engine when the paths are initially inserted.

 Our techniques are similar in spirit to techniques
proposed for shared Continuous Query (CQ) processing over
(typically non-XML) data streams [4][5][15][16][19]. Unlike
the generic functionality provided in CQ systems, however,
the approaches we use are highly tailored for large-scale
XML filtering and customization. For ease of exposition, we
focus the discussion on the post-processing plans used by
PathSharing-FWR with DTD-based optimizations (as de-
scribed in the previous section), which are shown in the ex-
perimental results to outperform the other approaches in
most cases.

5.1 Query Rewriting
As a first step to enhance sharing among queries, whenever
the appropriate DTD is available we rewrite path expressions
into a canonical form before inserting them into the path
matching engine. This rewriting collapses certain expressions
that are semantically (but not syntactically) equivalent,
allowing their corresponding queries to share a single path-
tuple stream for the path. The rewriting focuses on removing
superfluous “//” axes. A “//” axis is superfluous if the DTD
shows that there is a single path from the element before “//”
to the element after “//”. If so, then we can replace “//” with
the deterministic sequence of ‘/’ steps. For example, a return
path “figure//image” can be rewritten to “figure/image” if the
DTD shows that an image element can only be the child but
not the descendent of a figure element.

5.2 Sharing Techniques
Most work on CQ systems considers selection and join op-
erators in a relational (or close to it) framework. In contrast,
our work on XML message brokering is focused a subset of
XQuery and involves a unique set of operators and a specific
data flow through these operators, as presented in Section 3.
The specialized nature of our work leads us to a particular set
of sharing techniques, three of which are described below.

Shared GroupBy for OuterJoin-Select: In the im-
plementation as described so far, each OuterJoin-Select op-

erator does its own hashing (or scanning) of the path-tuple
streams it consumes for return paths (i.e., all but the leftmost
stream). When multiple queries share a common return path,
this approach incurs redundant processing. This redundancy
can be expensive, because return paths are not constrained by
predicates; thus, these streams may carry a large number of
path-tuples.

We propose to remove this redundancy by placing
GroupBy operators before OuterJoin-Selects on those
streams that provide return path tuples. A GroupBy operator
groups path-tuples in a return path stream by the binding
field, so that the subsequent OuterJoin-Select can simply get
all the return path tuples matching a binding path tuple by
obtaining the matching group. Each GroupBy operator is
shared by all OuterJoin-Selects that process the correspond-
ing return path. Thus, their overhead is expected to be small.
Implementationwise, if the stream of a return path is ordered
by the binding field, the GroupBy is scan based. Otherwise,
it is hash based. Duplicate elimination, if necessary, is per-
formed in a scan-based manner in the GroupBy itself.

Having addressed return path processing, we now turn
our attention to the post-processing of binding paths and
predicate paths.

Selection-DupElim pull up: We first consider shared
processing of semijoins among multiple queries. The com-
mon relational optimization of pushing selections below
joins makes it difficult to share join processing. Pulling se-
lection up over joins [4] avoids this problem. In our setting,
we pull selections with their subsequent DupElim operators,
if present, over semijoins, and turn semijoins into shared
joins. We currently only implement this technique for queries
with a single predicate path.

The technique works as follows. Our semijoins are said
to have “signatures” consisting of the path ids for their two
inputs (a binding path on the left and a predicate path on the
right). We create a shared join for all semijoins with the
same signature. When converting a semijoin to a join, we
retain all path-tuple fields for later use in selections. To be
consistent with semijoin semantics, our shared joins are also
implemented to preserve the order of the left input stream.
The decision on merge- or hash- based implementation car-
ries over from semijoins to shared joins.

Shared selection: Above a shared join operator, se-
lections can be grouped by their signatures [5][4][15][19]. In
the XML setting for our problem, a predicate signature is a
quadruplet (path id, level, attribute name, operator), where
the level specifies the location step in the path containing the
predicate. For sharing, we currently only consider a single
predicate per path. Given this restriction, the signature for a
selection above a join is simply the pair of predicate signa-
tures from the joined paths. The constant of a selection sig-
nature is the pair of constants in the two predicates from the
joined paths. Selections with the same signatures are re-
placed by a shared selection where different constants are
merged into a single index. A shared selection can have mul-
tiple outputs, one for each constant of the selection signature
matched by the XML data.

Shared joins may produce path-tuples containing the
same node id in the binding field. Fortunately, shared joins

pre-serve the order on the binding field in their output, so
scan-based DupElim can be used on the selection outputs.

An example of a shared post-processing plan is given in
Figure 6. Here a box annotated with ‘*’ means there is a set
of such operators. On top of the path matching engine there
is a set of merged plans sharing joins and selections, and a
set of GroupBy operators shared by OuterJoin-Selects. Each
OuterJoin-Select takes the left input from one output of a
merged plan and the rest of its inputs from the GroupBys.

5.3 Query Plan Construction and Execution
The construction of the shared post-processing plans is done
incrementally. When a new query is entered into the broker,
we first construct a standalone post-processing plan for the
query. We then determine its relationship to the current
shared plans by examining its path ids and signatures.
Operators in the new plan are either merged with existing
ones or result in the creation of new branches.

The execution of such large-scale shared query plans is a
non-trivial issue. NiagaraCQ [4][5] placed a split operator to
direct the output of one operator to all the subsequent opera-
tors. That operator, however, copies tuples (or pointers to
tuples) when multiple subsequent operators require them. We
experimented with a split operator copying tuple pointers in
our initial implementation, and found that it imposed a sig-
nificant performance overhead. CACQ [19] avoids this prob-
lem using tuple lineage, which records the operators that a
tuple has passed or needs to pass inside the tuple itself. The
overhead of tuple lineage, however, increases with the num-
ber of queries.

In our work, we used an alternative technique that places
the pointers to path-tuples in each output of an operator in a
data structure called tpList, and lets all the subsequent opera-
tors share the tpList(s) for their input. During query plan
construction, each operator allocates one or more tpLists;
each subsequent operator must remember which tpList to
read from. Most operators have a single tpList. There are two
exceptions, however. The path matching engine requires a
tpList per path-tuple stream and a shared selection requires a
tpList per constant of its signature. The tpLists in the latter
cases can be instantiated lazily so they incur overhead only if
they are actually used.

During post-processing execution, each operator places
the pointer to each output path-tuple to one of its tpLists.
Upon completion of an operator, all the subsequent operators
read from the desired tpLists and start their execution. A
possible disadvantage of this technique is that the scheduler

has to check all the subsequent operators even though some
tpLists are known to be empty. Our experimental results in
Section 6.5 show that this overhead is quite small in practice.

6. Experimental Evaluation
We implemented the techniques described in the preceding
sections using the YFilter shared path matching engine. In
this section, we present the results of a detailed performance
study of this implementation. We first compare the perform-
ance of the three basic approaches with and without optimi-
zations when individual post-processing plans are used for
distinct queries. We then examine the scalability of these
approaches and the impact of shared post-processing.

6.1 Experimental Setup
Both YFilter and our message brokering extensions are writ-
ten in Java. All of the experiments were performed on a Pen-
tium III 850 Mhz processor with 768MB memory running
IBM J2RE 1.3.0 on Linux 2.4. We set the JVM maximum
allocation pool to 600MB, so that virtual memory activity
had no influence on the results.

To test the system, we required generators for both
documents and queries. For documents, we developed a
document generator based on IBM’s XML Generator [10],
which takes a DTD as input, and produces documents that
conform to that DTD, according to a set of workload parame-
ters. We use the default settings for all those parameters ex-
cept for the following three.

DocDepth bounds the depth of element nesting in the
generated XML documents. In this work, we are less con-
cerned with the absolute document depth, but rather, focus
on the depth of recursive elements. This is because docu-
ment depth mainly impacts path navigation, while deeply
recursive data stresses the post-processing aspects of our
solution by requiring DupElim and hash-based operators
when “//” axes are used in queries.

The parameter MaxRepeats determines the number of
times an element can repeat in its parent element. We have
modified the generator so that MaxRepeats can be varied on
an individual element basis. A large value of MaxRepeats
produces more matches of a query within a document, gener-
ating a larger result set for each matched query.

The parameter MaxValue determines the number of val-
ues that the data of elements and attributes of elements can
take, therefore affecting the selectivity of predicates.

We also developed a query expression generator that uses
the query workload parameters shown in Table 1. We ensure
that all generated queries are unique. To so do, predicates in
the where clause are sorted lexicographically. We also sort
return paths, since two queries that are the same except the
ordering of return paths can share most processing with only
some trivial reordering at the end. Hashing on the query after
path sorting is used to determine if it is unique. Predicates in
the generated queries take values from a range of size Max-
Value, so this parameter determines the selectivity of predi-
cates. A large value of MaxValue produces fewer matches
per query, but also can increase the number of unique queries
for scalability evaluation.

We report on experiments with two DTDs: the Bib and
Book DTDs from the XQuery use cases[6]. The Bib DTD is

GroupBy
GroupBy

GroupBy

collection of
streamsshared path matching engine

OuterJoin-Select OuterJoin-Select OuterJoin-Select

σ

DupElim

><

*
*

σ

DupElim

><

*
*

σ

DupElim

><

*
*

Figure 6: Shared post-processing example

used to generate non-recursive documents; the Book DTD is
used to generate documents that can contain multiple levels
of recursion. For each DTD, we generated a set of 200 docu-
ments using one setting of the workload parameters. For each
run, 20 of these documents are used to warm up the JVM
runtime compiler. Thus, all reported experimental results
represent the average over 180 documents. For each experi-
ment, queries were generated according to a specific query
workload setting. For a given experiment, each algorithm
was run individually in a separate Java process.

Parameter Values Description
Q 5,000 –

100,000
The number of distinct queries.

D1 2, 3 The maximum depth of a binding path
PP 1 - 3 The number of predicate paths in a query
RP 1 - 4 The number of return paths in a query
D2 2 The maximum depth of predicate paths or

the return paths
DSProb 0 - 0.4 The probability of a “//” axis occurring in

any location step in a path expression

Table 1: Workload parameters for query generation

The main performance metric we report is Multi-Query
Processing Time (MQPT), which is defined as the time from
the scan of a parsed document starting until the last result in
the groupSequence-listSequence format is returned to the
calling program. The cost of parsing is not included in our
reported results, but was usually below 100 milliseconds.

We also implemented a profiler that reports the cost of
each operator for a run of an experiment. MQPT times re-
ported here were taken with the profiler turned off. Where
appropriate, we use data from runs with profiling turned on
to explain the performance results. Due to the overhead of
running the profiler, the costs reported in this manner are
higher than those observed in the actual experiments.

6.2 Shared Path Matching – Non-recursive Data
We first report on tests with the Bib DTD, which contains no
recursion. For document generation, DocDepth was set to 4
because the DTD allows at most four levels of element nest-
ing. We varied MaxRepeats such that in each document a bib
element contains 20 books and each book has up to five au-
thors or editors. On average, each document contains 149
start/end element pairs. MaxValue is set to 10.

6.2.1 Expt. 1 – Basic performance

In the first experiment, we compare the performance of the
three approaches for moderate query loads (i.e., Q = 5000).
In this experiment, queries were generated using the settings
D1 = 2, PP = 1, RP = 2, D2 = 2, and DSProb = 0.2. Under
this workload, a single where clause predicate is applied to
book elements bound by the for clause. The return clause
identifies two types of sub-elements from each remaining
book element.

We first ran the three approaches with no optimizations.
The leftmost group of bars in Figure 7 (labeled “NoOpt”)
shows their MQPT (in msec). In this case, PathSharing-FW
has the lowest cost and PathSharing-FWR has the highest.
PathSharing-FW outperforms PathSharing-F due to the
shared path matching for all the predicates. Our profiler re-
ports that evaluating all predicate paths using tree search in
PathSharing-F takes 386 ms, while for PathSharing-FW, the

equivalent work takes only 231 ms (27ms for predicate path
matching by the engine, 57ms for selection, and 147ms for
semijoins). On the other hand, PathSharing-FW handles re-
turn paths using the tree-search based Return-Select operator,
at a cost of 212ms, while PathSharing-FWR uses 648ms to
perform the equivalent functionality using Outer Join-Selects
(244ms) and DupElim for return paths (404ms) (note that
there is almost no additional cost for processing the return
paths by the engine).

Next, we apply the optimizations described in Section 4.
The results are shown in the middle and right groups in Fig-
ure 7, where Opt(q) indicates optimizations based only on
queries and Opt(q+dtd) indicates those also using the DTD.
For this latter case we also apply the path rewriting described
in Section 5.1 to speed up path matching in the engine and in
Where-Filter and Return-Select operators. We make the fol-
lowing observations:

• The query-based optimizations improve performance for
all alternatives, but particularly for those that exploit more
path sharing. PathSharing-FWR benefits significantly,
outperforming the other two in this case.

• More sophisticated optimizations using the DTD enable
further improvements for all three approaches. With these
optimizations, PathSharing-FWR outperforms the others by a
wide margin.

More detailed results for PathSharing-FWR are shown in
Table 2. Three operators, namely, DupElim, semijoin and
OuterJoin-Select, particularly benefit from the optimizations.
With opt(q), most of the DupElim cost is avoided and the
costs of semijoin and OuterJoin-Select are more than halved.
When the DTD is also utilized, DupElim is unnecessary, and
semijoin and OuterJoin-Select only each require around 20
ms. Note that the matching engine denoted as PME in the ta-
ble, is indeed a less dominant component of the overall cost.

Operators PME Selection DupElim Semijoin OuterJoin
No opt 28 61 451 140 235
Opt (q) 27 51 15 67 112
Opt (q+dtd) 9 42 0 18 22

Table 2: Costs (ms) of operators (PathSharing-FWR)

The reduced cost of the three operators is further ex-
plained by the change in the resulting query plans, as shown
in Table 3. The improvement of DupElim arises because
fewer such operators are needed with better optimization.
The reduction in time for semijoin and OuterJoin-Select re-
sults from the ability to use merge-based implementations
more often. For the Bib DTD, since no elements are on a
DTD loop, Opt(q+dtd) can completely avoid DupElim and
hash based implementations (as described in Section 4.1).

Semijoin OuterJoin DupElim
Operators

#hash # merge #hash #merge #DupElim

No opt 5000 0 5000 0 15000
Opt (q) 1966 3034 1966 3034 429
Opt(q+dtd) 0 5000 0 5000 0

Table 3: Profile for 5000 queries (PathSharing-FWR)

The above results demonstrate the effectiveness of the
optimization techniques. In conjunction with these techni-
ques, PathSharing-FWR provides significantly better perfor-
mance than the other two alternatives, despite its more com-

plicated post-processing. Thus, the post-
processing optimizations help resolve
the conflict between shared path process-
ing and customized result generation.

6.2.2 Expt. 2 - Varying the number of
predicates.

In the next experiment, we vary the
number of predicate paths (PP) from 1 to
3. Increasing PP makes each query more
selective in addition to requiring more
predicates to be evaluated. Figure 8
shows the results using Opt(q+dtd).

The main observation is that more
predicates reduce the differences among three alternatives.
For alternatives using Return-Select, more predicates im-
prove their MQPT because the extra predicates reduce the
number of query matches, resulting in much less work for
Return-Select. These savings outweigh the modest increase
in cost for predicate evaluation. An additional observation is
that with three predicates in each query, only 116 matches
were found for all 5000 queries, which explains why
PathSharing-FW and PathSharing-FWR are so close at that
point. In this workload, further increasing the number of
predicate paths tends to result in no matches, so we stop in-
creasing this parameter here.

6.2.3 Expt. 3 - Varying the number of return paths.

Figure 9 shows the results obtained when the number of re-
turn paths in the queries is varied from 1 to 4. Again, we
show results only for the Opt(q+dtd) case. In this experiment,
the MQPT of PathSharing-F and PathSharing-FW increases
linearly because with the fixed query selectivity, more return
paths require more executions of the tree search routine.
PathSharing-FWR is much less sensitive to the increased
workload, because the matching of the return paths is shared
among 5000 queries. Also, by using a merge-based approach,
OuterJoin-Selects are efficient even when the number of
streams involved in the outer joins increases.

6.3 Shared Path Matching – Recursive Data
In the next set of experiments, we use the Book DTD to gen-
erate documents with recursive elements. DocDepth is set to
5 so that we obtain up to four levels of nesting of section
elements. MaxRepeats is set such that there are 12 top-level
section elements in each book, and in each section, p (i.e.,
paragraph), figure, and section elements are allowed to re-

peat four times. The average document length is 83 start-end
element pairs. MaxValue is set to 10.

Figure 10 shows the MQPT of the three alternatives
when queries were generated using the settings: Q = 10,000,
D1 = 3, PP = 1, RP = 2, D2 = 2, DSProb = 0.2. Under this
workload, the evaluation of the for clause can bind section,
paragraph (p), or figure elements to the variable. The results
are similar to those of the previous experiments except that
with Opt(q), PathSharing-FWR is outperformed by Path
Sharing-FW, and with Opt(q+dtd) the advantage of Path
Sharing-FWR is less pronounced.

We do not show the detailed cost breakdowns due to lack
of space. The key points are that for PathSharing-FWR, the
optimizations successfully reduce the DupElim cost, but the
costs for semijoin and OuterJoin-Select remain high. This is
due to the recursive section elements and the presence of “//”
axes in the queries. In this situation, it is likely that path-
tuples generated for predicate paths and return paths are not
ordered by the binding field. Consequently, many semijoins
and outer joins must be hash based, even with Opt(q+dtd).

Note that we also ran experiments varying the number of
predicates and number of return paths for the Book DTD.
The results are similar to those reported for the Bib DTD so
we do not show them here.

6.4 Scalability
Next, we ran experiments to test the scalability of the ap-
proaches in terms of the number of queries (i.e., Q). Figure
11 shows the MQPT for the three approaches with
Opt(q+dtd), using Bib documents, as Q is varied from 5,000
to 40,000. In order to create a sufficient number of unique
queries here, the MaxValue parameter was increased to 100
for both document and query generation; the other parame-
ters are set as in the basic experiment, i.e., Expt. 1.

0

300

600

900

1200

NoOpt Opt(q) Opt(q+dtd)

Optimizations applied

M
Q

P
T

 (
m

s)

PathSharing-F

PathSharing-FW

PathSharing-FWR

0

500

1000

1500

0 10 20 30 40

number of Queries (x1000)

M
Q

P
T

 (
m

s)

PathSharing-F

PathSharing-FW

PathSharing-FWR

0

200

400

600

1 2 3

number of Predicate Paths

M
Q

P
T

 (
m

s)

PathSharing-F

PathSharing-FW

PathSharing-FWR

0

200

400

600

800

1 2 3 4

number of Return Paths

M
Q

P
T

 (
m

s)

PathSharing-F

PathSharing-FW

PathSharing-FWR

Figure 9: Varying RP (Bib, Q=5000,
PP=1, DSProb=0.2, Opt(q+dtd))

Figure 8: Varying PP (Bib, Q=5000,
RP=2, DSProb=0.2, Opt(q+dtd))

Figure 7: MQPT of three alternatives (Bib,
Q=5000, PP=1, RP=2, DSProb=0.2)

Figure 11: Varying Q (Bib, PP=1,
RP=2, DSProb=0.2, Opt(q+dtd))

Figure 10: MQPT of three alternatives (Book,
Q=10000, PP=1, RP=2, DSProb=0.2)

0

200

400

600

800

1000

NoOpt Opt(q) Opt(q+dtd)

Optimizations applied

M
Q

P
T

 (
m

s)
PathSharing-F

PathSharing-FW

PathSharing-FWR

As can be seen in the Figure, the MQPT for all three
approaches grows linearly with Q. Since the solutions stud-
ied in this experiment do not share any post-processing, such
an increase is to be expected. Note also that the rate of in-
crease is highest for PathSharing-F, which exploits the
shared path matching engine the least.

Similar results were obtained using the Book DTD, but
with an even sharper increase in MQPT due to the additional
impact of recursive data on post-processing costs. Table 4
shows the detailed cost breakdown for PastSharing-FWR
with Opt(q+dtd) in this case, as Q is varied from 10,000 to
50,000. The increasing semijoin and OuterJoin-Select costs
become dominant as Q increases, while the costs of selection
and DupElim also increase. As we explained in Section 6.3,
post-processing is more expensive for the Book DTD be-
cause of the need for hash-based operators.

Q 10,000 20,000 30,000 40,000 50,000
Selection 93 191 267 380 498
DupElim 30 62 111 146 183
Semijoin 137 320 484 659 847
OuterJoin 163 364 592 810 1025
Others … … … … …
Executor 73 152 182 314 384
Total 516 1111 1715 2344 2985

Table 4: Costs(ms) as Q varies - PathSharing-FWR (Book DTD)

6.5 On Shared Query Execution
The results reported in the previous section demonstrated the
scalability limitations of approaches that share only path
matching work. In this section we examine the additional
benefits to be gained by applying the techniques for sharing
post-processing described in Section 5.

In the following experiments, we first generated in-
dividual query plans for PathSharing-FWR with Opt(q+dtd).
From these individual plans, we built shared execution plans
using the three strategies from Section 5: pulling selections
above joins, grouping selections, and using GroupBy on
return paths for outer joins.

We also rewrote the queries to increase commonality as
described in Section 5.1. Two effects of this optimization
were noticed. First, as expected, it does reduce the number of
unique paths. Furthermore, we found that some previously
unique queries could completely share a query plan because
their signatures became identical after this rewriting.

Here, we focus on results obtained using the (recursive)
Book DTD (experiments with the Bib DTD tell a similar
story). Figure 12 shows the MQPT of PathSharing-FWR
without shared post-processing and with (labeled “Plan Shar-
ing”) as the number of unique query plans is varied from
10,000 to 100,000 (note that “Q” is roughly 20% higher than
this, but those queries sharing query plans with others do not
incur extra cost in both algorithms here). As shown in the
figure, shared post-processing leads to dramatic reductions in
cost and concomitant improvements in scalability; The re-
sults here show the PlanSharing approach handling 100,000
unique query plans in only 472ms.

Table 5 shows the cost breakdown of PlanSharing. A
comparison with Table 4 provides insight into the reduction
of the overall cost, which results from four major factors:

• The high cost of semijoins in PathSharing-FWR is re-
duced dramatically, because joins are now shared;

• Grouped selections reduce the selection cost (note that
the cost of scan-based DupElim is included in the selection
numbers, because it is folded into the selection operator.)

• OuterJoin-Selects are substantially cheaper, because the
GroupBy technique removes redundant scanning and hashing
at very little cost. Note that OuterJoin-Select is the only op-
erator that exhibits a noticeable increase, as in our current
implementation, the outer joins themselves are not shared.

• The cost of the Executor is also significantly reduced due
to the reduction in query plan size.

Q 10,000 20,000 30,000 40,000 50,000
(Unique
plans)

(8,232) (16,482) (24,576) (32,736) (40,392)

Selection 18 18 24 18 21
GroupBy 4 3 5 6 5
Join 18 19 19 21 17
OuterJoin 29 58 81 117 138
Others … … … … …
Executor 7 16 22 28 37
Total 105 156 212 264 317

Table 5: Costs (ms) as Q varies - PlanSharing (Book DTD)

6.6 Summary of Experiments
The experiments reported here have examined the per-
formance of the three alternatives we proposed for exploiting
a shared path matching engine to provide message broker
functionality. We also investigated the performance of a suite
of techniques to share for post-processing among queries.
The results can be summarized as follows:

• PathSharing-FWR when combined with optimizations
based on queries and DTD usually provides the best per-
formance. This approach is the most aggressive of the three
in terms of path sharing.

• Without optimizations, however, PathSharing-FWR per-
forms quite poorly, due to high post-processing costs.

• Optimization of query plans using query information
improves the performance of all alternatives, and the
addition of DTD-based optimizations improves them further.

• For non-recursive data, DTD-based optimizations can
remove all DupElim and hash-based operators. Recursive da-
ta, however, stresses the post-processing of queries contain-
ing “//” axes and limits the effectiveness of optimizations.

• Finally, experiments on extending PathSharing-FWR
with shared postprocessing showed excellent scalability im-
provements, allowing the processing of 100,000 queries in
less than half a second.

0

1000

2000

3000

0 20 40 60 80 100

number of Query Plans (x1000)

M
Q

P
T

 (
m

s)

PathSharing-FWR

PlanSharing

Figure 12: Varying number of unique query plans
(Book, PP =1, RP=2, DSProb=0.2, Opt(q+dtd))

7. Related work
Our work on XML message brokering is related to Conti-
nuous Query (CQ) processing, publish/subscribe, XML fil-
tering, XML stream processing, and multi-query processing.

CQ systems support shared processing of multiple stand-
ing queries over (typically non-XML) data streams. The con-
cept of expression signatures was introduced by TriggerMan
[15]. Using such expression signatures, NiagaraCQ [4][5]
incrementally groups query plans, and CACQ [19] supports
the sharing of physical operators among tuples. OpenCQ
[16] uses grouped triggers for CQ condition checking. Our
techniques for sharing post-processing, though similar in
spirit to those used in some of these systems, are developed
particularly for XQuery processing.

Publish/subscribe systems, e.g. Le Subscribe [12] and
Xlyeme [21], match incoming events with a very large num-
ber of subscriptions each of which is typically a set of con-
junctive predicates. These systems use restricted query lan-
guages and data structures tailored to the query languages to
achieve high system throughput.

A number of XML filtering systems have been developed
to efficiently match a large set of path queries with streaming
documents. XFilter [1] builds a Finite State Machine (FSM)
for each path query and employs a query index on all the
FSMs to process all queries simultaneously. YFilter [8][11]
has been described in section 2.3. XTrie [7] supports shared
processing of the common sub-strings of path expressions
which only contain parent-child operators. In [13], all path
expressions are combined into a single DFA, resulting in
good performance but with significant limitations on the
flexibility of the approach. YFilter and Index-Filter are com-
pared through a detailed performance study in [3]. Match-
Maker [17] supports shared tree pattern matching using disk-
resident indexes on the tree patterns, with limited filtering
performance. XPush [14] builds a pushdown automaton for a
subset of tree-pattern queries, sharing both path navigation
and predicate evaluation among them. It requires some pre-
computation of the machine to achieve good performance.
As stated previously, these systems only provide the lowest
level of functionality required by XML message brokers.

In the context of XML stream processing, some other re-
cent work uses transducer based mechanisms for processing
path expressions with qualifiers [22] or XQuery containing
FLWR expressions [18]. These approaches, however, are
developed for single query processing.

Multi-query processing [23][24][27] considers small
numbers of queries (e.g., 10’s) and uses heuristics to ap-
proximate the optimal global plan. In contrast, high-volume
XML message brokering needs to handle sets of queries
orders of magnitude larger in a dynamic environment. Thus,
scalability of the approach and incremental construction of
query plans are the major concerns unique to our work.

8. Conclusions
In this paper, we developed shared processing to support the
customization of output in the context of high-capacity XML
message brokering. We compared three different ways of
exploiting a shared path matching engine for this purpose.
Our results show that the most aggressive of the three in

terms of path sharing performs best, when combined with
optimizations based on the queries and DTD. Moreover,
when post-processing is also shared among queries, excellent
scalability can be achieved.

We plan to extend our work in the following directions.
First, we plan to support additional features such as ordering
and aggregation in result customization. Second, it would be
useful to investigate customization solutions based on shared
tree pattern matching, once such technology is sufficiently
developed. Finally, we will address the third major compo-
nent of the XML message broker through the investigation of
content-based routing in an overlay network deployment.

References
[1] M. Altinel, M. Franklin. Efficient filtering of XML documents for

selective dissemination of information. In VLDB, Sep. 2000.
[2] S. Boag, D. Chamberlin, et al. XQuery 1.0: An XML query lan-

guage. W3C Working Draft. http://www.w3.org/ TR/xquery, 2002.
[3] N. Bruno, L. Gravano, et al. Navigation- vs. index-based XML

multi-query processing. In ICDE 2003, March 2003.
[4] J. Chen, D. DeWitt, et al. Design and evaluation of alternative selec-

tion placement strategies in optimizing continuous queries. In
ICDE, Feb. 2002.

[5] J. Chen, D. Dewitt, et al. NiagaraCQ: A scalable continuous query
system for Internet databases. In SIGMOD, May 2000.

[6] D. Chamberlin, P. Fankhauser, et al. XML query use cases. W3C
Working Draft. http://www.w3.org/TR/xmlquery-use-cases/, 2002.

[7] C. Chan, P. Felber, et al. Efficient filtering of XML documents with
XPath expressions. In ICDE, Feb. 2002.

[8] Y. Diao, P. Fischer, et al. YFilter: Efficient and scalable filtering
of XML documents. In ICDE, Feb. 2002.

[9] Y. Diao, M. Franklin. Query processing for high-volume XML
message brokering. Technical report, UCB//CSD-03-1228, 2003.

[10] A. L. Diaz, D. Lovell. XML Generator. http://www.alphaworks.
ibm.com/tech/xmlgenerator, Sep. 1999.

[11] Y. Diao, M. Altinel, et al. Path matching and predicate evaluation
for high-performance XML filtering. http://www.cs.berkeley.edu/
~diaoyl, 2002.

[12] F. Fabret, H. Jacobsen, et al. Filtering algorithms and implemen-
tation for very fast publish/subscribe systems. In SIGMOD, 2001.

[13] T. J. Green, G. Miklau, et al. Processing XML streams with deter-
ministic Automata. In ICDT, Jan. 2003.

[14] A. K. Gupta, D. Suciu. Streaming processing of XPath queries
with predicates. In SIGMOD, June 2003.

[15] E. N. Hanson, C. Carnes, et al. Scalable trigger processing. In
ICDE, March 1999.

[16] L. Liu, C. Pu, et al. Continual queries for Internet scale event-
driven information delivery. IEEE TKDE 11(4), Jul. 1999.

[17] L. V.S. Lakshmanan, P. Sailaja. On efficient matching of stream-
ing XML documents and queries. In EDBT, March 2002.

[18] B. Ludascher, P. Mukhopadhyay, Y. Parakonstantinou. A tras-
ducer-based XML query processing. In VLDB, Aug. 2002.

[19] S. Madden, M. Shah, et al. Continuously adaptive continuous
queries over streams. In SIGMOD, Jun. 2002.

[20] Microsoft BizTalk Server 2002. http://www.microsoft.com/biztalk.
[21] B. Nguyen, S. Abiteboul, et al. Monitoring XML data on the Web.

In SIGMOD, May 2001.
[22] D. Olteanu, T. Kiesling, F. Bry. An evaluation of regular path

expressions with qualifiers against XML streams. In ICDE, 2003.
[23] A. Rosenthal, U.S. Chakravarthy. Anatomy of a modular multiple

query optimizer. In VLDB, Sep. 1988.
[24] P. Roy, S. Seshadri, et al. Efficient and extensible algorithms for

multi-query optimization. In SIGMOD, May 2000.
[25] Salerio e2e middleware. http://www.one-ten.com/middleware.html
[26] Sybase financial fushion message broker. http://www.sybase.com/

products/internetappdevttools/financialfusionmessagebroker
[27] T. K. Sellis. Multiple-query optimization. ACM Transactions on

Database Systems, Vol 13, No. 1, March 1988, Pages 23-52.

