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Abstract. The structural heterogeneity and complexity of XML repos-
itories makes query formulation challenging for users who have little
knowledge of XML. To assist its users, an XML retrieval system can
have a keyword-based interface, relegating the task of combining textual
and structural clues to the retrieval algorithm. In this work, we propose
an automatic query refinement method to transform a keyword query
into structured XML queries that capture the original information need
and conform to the underlying XML data. We formulate query genera-
tion as a search problem, and show the effectiveness of the method in
generating accurate content-and-structure queries.

1 The problem of adding structure to keyword queries

The functionality to mark up text with user-defined, self-descriptive tags makes
XML a versatile framework for storing and sharing data. However, formal XML
query languages have precise, non-intuitive syntax and offer less straightforward
means to express an information need than a natural language or keyword query.

Although structure is integral to how information is encoded in XML docu-
ments, there is evidence that users are not able to take advantage of it. Trotman
et al. [9] report that even experienced users do a poor job at giving helpful
structural hints, and conclude that they are a function of the collection, not the
query. On the other hand, many users are familiar with keyword search due to
the popularity of web search engines and might prefer to use a structure-free
interface even when searching a semi-structured XML database. This motivates
interest in the problem of inferring structural constraints from plain-text queries.

Several solutions have been developed for NLP track of the INEX conference.
In [8] Tannier presents a system that uses a part-of-speech tagger to create
semantic representations of query terms, and corpus-dependent syntactic rules
to recognize structural terms. The final query representation is mapped to a
general NEXI query, hence the rules are restricted by the expressiveness of NEXI,
a simplified version of XPath designed for relevance ranking [10].

The NLPX system by Woodley et al. [11] also uses a tagger and lexical
knowledge to mark input words as either content, structure or other connota-
tion terms. Tagged queries are matched against templates derived from previous
INEX query. However, a fixed set of templates do not guarantee the analysis of
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an infinite set of possible queries, and it would have to be continually expanded
with new, hand-coded rules.

A different approach by Calado et al. [1] assumes simplified structure where
objects have a list of attributes and the schema is the set of all attributes.
Consequently, input queries are also simplified and contain only content terms
rather than both structural and content hints. Under these assumptions, candi-
date structured queries are generated as possible combinations of query terms
and attributes, and ranked according to a Bayesian network model.

To derive structural information from plain-text queries, previous studies [8,
11] incorporate some form of corpus knowledge in the query analysis: DTD, a
set of terms associated with the tag names or specific linguistic constructions.
Some structural information can be extracted automatically, e.g. in the form
of dynamic schemas [4] or statistical summaries [6]. Manual or automatic, such
information is necessary to analyze structural hints present in input queries.

Therefore, it might be advantageous to keep XML query interfaces keyword-
based and leave the task of dealing with the complexity of XML structure to
the retrieval system. In this work, we develop a query refinement technique that
generates content-and-structure queries from plain-text queries. Our contribu-
tions include defining query generation as a search problem to find the highest
scoring structured query, and developing transformation operators to generate
successors in the query search space. This implies that the user is not required to
have knowledge of XML nor to specify structural restrictions on retrieved XML
fragments. Our experiments show that the method can improve precision as it
does not rely on the users to be experts at exploiting XML structure.

2 XML query generation as a search problem

XML query refinement is the automatic generation of content-and-structure
queries from a given content-only query. Our goal is to construct XML queries
that the user might have written if she knew XML, the schema of the data
and an XML query language. The potential benefit of XML query refinement
is that structured queries express a more obvious information need and could
make finding relevant XML fragments easier for a retrieval system.

Our algorithm is based on two important assumptions: keyword query non-
ambiguity and availability of XML thesaurus. Assumption 1 implies that the user
query contains sufficient specification of the information need. For XML data,
where the semantics of documents is captured by both structure and content, we
assume that the user is familiar with the domain (not with the exact schema)
and that she has provided structural clues to indicate the type of XML elements
she is interested in.

Assumption 2 implies the existence of prior information about the tags of
XML elements. In our experiments we use a manually created list of domain-
specific synonyms for the tag names. For example, for a database of scientific
articles, we have the terms article, publication, paper, poster as equivalent to
an article or inproceedings tag. The construction of such thesaurus is
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domain-specific and not trivial. However, formulating structured queries requires
knowledge of the structure and the motivation behind query refinement is to put
the responsibility of having this knowledge with the system rather than the user.

We also introduce some notation. We use the term target to represent a piece
of query information. An unbound target //a describes an XML element of type
a. A bound target //a[∼‘t’] describes an XML element of type a satisfying some
constraint, e.g. ∼‘t’ says that the content of a is topically relevant to ‘t’. Two
targets can also be linked together by designating one target as an additional
condition on the other. For example, //a//b adds a restriction on the ancestors
of target //b, while //a[.//b] adds a restriction on the descendants of //a.

Transforming query targets First, the algorithm splits the input query
into structure and content terms, based on whether a keyword appears in the
structure thesaurus or not. We also apply the method described by Jones et al.
in [5] to identify consecutive terms with high pointwise mutual information and
group them. Stop words are ignored.

In our notation, a node label is an unbound target and a content term binds
a target. Since most terms appear in various types of elements, we create one
bound target for each possible binding, and score the binding //a[∼‘x’] based
on the probability that ‘x’ occurs in the text of an element of type a. The
probabilities are estimated from unigram language models for each type.

After each keyword has been converted into possible targets, we generate
combinations of targets to represent the entire query by multiplying their prob-
abilities. To reduce the exponential complexity, only the highest-probability com-
binations are processed further. The target sets are then recursively transformed
until they contain a single target, which corresponds to a formal XML query.
We define three operators for transforming and combining targets.

An aggregation merges two targets with the same tag, combines any filter-
ing conditions: {//a} + {//a[∼‘x’]} 7→ {//a[∼‘x’]}; {//a[∼‘x’]} + {//a[∼‘y’]} 7→
{//a[∼‘x y’]}. The aggregation operator A is applicable if targets u and v have
the same tag and their structure constraints are compatible. This property is
defined with respect to the observed structure. For example, //a//b[∼‘x’] and
//b[∼‘y’] are compatible but //a//b[∼‘x’] and //c//b[∼‘y’] are compatible only
if either //a//c//b or //c//a//b is a valid ancestor-descendant relationship.
Compatibility guarantees that the generated queries respect the organization of
the XML data. The score of an aggregation is S(A(u, v)) = S(u)S(v).

A prefix expansion adds an ancestor condition: {//b} 7→ {//a//b}; {//b[∼‘x’]}
7→ {//a//b[∼‘x’]}, where a is an ancestor of b according to the observed collection
structure. Let u be a target and V be the set of possible ancestors of u. The
expansion operator E creates a new target for each v ∈ V with v as a structural
constraint on u. The score is S(E(u, v)) = D(u, v)S(u), where the function D
returns the probability that u is a descendant of v, which is estimated based on
the proportion of u elements that are descendants of a v element in the data.

An ordering combines two targets by designating one as a restriction on the
other: {//a} + {//b} 7→ {//a//b,//a[.//b]}, {//a} + {//b[∼‘x’]} 7→ {//a//b[∼‘x’],

//a[.//b[∼‘x’]]}. We score orderings based on their information gain. By defini-
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tion, given two distributions p(x) and p(x|y) for the random variable X, the
information gain of y is, IG(y) =

∑
x∈X p(x|y) log p(x|y)

p(x) . If x and y are two
targets to be ordered, say //a and //b, then x|y is //a[.//b] and y|x is //a//b.

Now let u and v be two targets to order. The ordering operator O is applicable
if u and v are compatible, i.e. v is a possible ancestor of u. There are two possible
targets: one where u is a descendant constraint on v with score IG(u)S(u)S(v),
and another where v is an ancestor constraint on u with score IG(v)S(u)S(v).
Since our goal is to choose the ordering that is more informative and therefore
more plausible, we normalize IG(u) and IG(v) to sum up to one by dividing by
their sum. This also guarantees that 1 is an upper bound, so we can interpret
scores as the probability of a target set as a representation of the input keywords.

Query generation The transformation operators preserve compatibility. In
the context of XML, a compatible transformation results in a target that agrees
with the observed XML data. Explicit knowledge of the structure such as a DTD
could be incorporated but is not necessary as the compatibility can be tested
directly by sending a query to the database. Thus the process of transforming
targets is guided entirely by the data. Maintaining target consistency guarantees
that a target set consisting of a single target can be directly written as a formal
XPath query. For a singleton, its tag specifies the type of XML elements to
retrieve, any binding terms describe relevant content, and any links to ancestor
or descendant targets recursively specify structural restrictions.

Therefore, we define query refinement as finding the highest-score singletons
and implement the process as an A* search, where the successor function creates
a new target set for each applicable transformation. A similar application of A*
underlines the WHIRL database management system described by Cohen in [2].
For our particular problem, the general A* algorithm is modified to search for
the target sets with highest probability rather than the path with shortest length
– i.e. we maximize rather than minimize scores. A straightforward upper bound
for each transformation is 1 since the scores are probabilities and therefore lie
in the interval [0,1]. The search stops when a target set of size 1 is selected for
expansion, or continues until k such singletons are found.

3 Evaluation and discussion

We evaluated our query generation algorithm on two XML datasets. The first is
the freely available DBLP Records; the second is a private collection of resumes
owned by the job search company Monster. Both collections have semantically
rich XML structure where tags refer to categories, so their markup contains use-
ful and discriminative information. The DBLP collection is homogeneous and
terms tend to occur in a specific context. The Monster collection is more het-
erogeneous as the data is created by different people and there is variability in
which field they have decided to enter a particular piece of information. For both
collections, we use unigram language models to represent elements but they can
be extended with synopses [6] or other advanced schema-aware summaries [3].
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Table 1. Highest-scoring automatically structured queries for DBLP flat queries. The
scores are normalized so that the top generated query has score of 1. They are not
predictions for retrieval performance but express the likelihood of the structured queries
given the keyword query and the XML collection.

# content-only content-and-structure queries scores
papers on //article[.//title[∼‘query optimization’]] 1.000000

query //inproceedings[.//title[∼‘query optimization’]] 0.912256
Q1 optimization //article//title[∼‘query optimization’] 0.243833

//inproceedings//title[∼‘query optimization’] 0.087743
books //book[.//editor[∼‘jennifer widom’]] 1.000000

edited by //book[.//author[∼‘jennifer widom’]]//editor 0.312400
Q2 jennifer //book//editor[∼‘jennifer widom’] 0.294905

widom //book[.//editor[∼‘jennifer widom’]]//editor 0.225523
people //article[.//title[∼‘query optimization’]]//author 1.000000

who write about //inproceedings[.//title[∼‘query optimization’]]//author 0.748677
Q3 query //inproceedings[.//author][.//title[∼‘query optimization’]] 0.229194

optimization //article[.//author][.//title[∼‘query optimization’]] 0.139917
the editors of //proceedings[.//booktitle[∼‘vldb’]][.//year[∼‘2000’]]//editor 1.000000

vldb //proceedings[.//booktitle[∼‘vldb’]][.//editor]//year[∼‘2000’] 0.075332
Q4 2000 //proceedings[∼‘vldb’][.//year[∼‘2000’]]//editor 0.052991

We present four example keyword queries and the corresponding automat-
ically generated structured queries in Table 1. The input queries contain ex-
plicit and implicit structural clues. For example, terms such as ‘book’ in Q2 and
‘people’ in Q3 refer directly to XML elements. Content terms can also provide
implicit information about the structure of relevant elements. For example, the
term ‘2000’ in Q4 indicates that a particular year is part of the information need.

In Table 1, we observe that the highest ranked queries are plausible content-
and-structure interpretations of the input query. Although there exist other syn-
tactically correct formulations, the structured queries generated by our algorithm
reflect the organization and term distribution of the underlying XML documents.
The automatically structured queries can then be submitted to an XML retrieval
system to find and rank answers that satisfy the user’s information need.

The examples demonstrate how in the context of XML retrieval non-ambiguity
implies that the keyword query contains hints to infer both content and struc-
tural constraints on the set of relevant elements. It follows from Assumption
1 that query refinement would not provide an advantage for short ambiguous
queries. For example, given the query “jennifer widom”, it is easy to place the
phrase in an author target but it is unlikely that the user is searching for
a list of author elements with the same name. For such an ambiguous query
content-only retrieval could achieve similar performance because a structural
constraint that associates a keyword with its most frequent structural context
would not add much information. However, structural hints in the input query
would pose a difficulty for CO retrieval. Even for a homogeneous collection such
as DBLP, structural clues indicate information that is not contained in the text,
in particular, what type of elements the user is looking for.

The second dataset on which we evaluated the performance of automatic
query refinement is a collection of resumes, with 60 queries provided by the owner
of the data, Monster.com. These queries reflect an actual information need unlike
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Table 2. Highest-scoring automatic structured queries for Monster flat queries.

# content-only content-and-structure queries scores

Q5

receptionist //resume[.//desiredjobtitle[∼‘receptionist’]][.//skillname[∼‘microsoft office’]] 1.000000
microsoft [.//state[∼‘arizona’]]

office //resume[.//desiredjobtitle[∼‘office receptionist’]][.//skillname[∼‘microsoft’]] 0.691925
arizona [.//state[∼‘arizona’]]

//resume[.//title[∼‘receptionist’]][.//skillname[∼‘microsoft office’]] 0.633407
[.//state[∼‘arizona’]]

Q6

emergency room //resume[.//resumetitle[∼‘registered nurse’]][.//title[∼‘emergency room’]] 1.000000
registered nurse [.//educationsummary[∼‘license’]]

mesa az [.//city[∼‘mesa’]][.//stateabbrev[∼‘az’]]
with license //resume[.//title[∼‘emergency room’]][.//resumetitle[∼‘registered nurse’]] 0.939304

[.//additionalinfo[∼‘license’]]
[.//city[∼‘mesa’]][.//stateabbrev[∼‘az’]]

Q7

sales //resume[.//desiredjobtitle[∼‘sales construction’]] 1.000000
construction [.//educationsummary[∼‘bachelor’]][.//location[∼‘corona’]]
bachelors //resume[.//desiredjobtitle[∼‘construction’]][.//title[∼‘sales’]] 0.724707
corona [.//educationsummary[∼‘bachelor’]][.//location[∼‘corona’]]

//resume[.//desiredjobtitle[∼‘sales construction’]] 0.673541
[.//educationsummary[∼‘bachelor’]][.//city[∼‘corona’]]

Q8

arabic language //resume[.//skillname[∼‘arabic bilingual language’]][.//city[∼‘los angeles’]] 1.000000
translator [.//additionalinfo[∼‘fluent’]][.//desiredjobtitle[∼‘translate’]]

fluent //resume[.//skillname[∼‘arabic bilingual fluent language’]] 0.986548
bilingual [.//desiredjobtitle[∼‘translate’]][.//city[∼‘los angeles’]]

los angeles //resume[.//skillname[∼‘bilingual’]][.//educationsummary[∼‘arabic language’]] 0.969456
[.//desiredjobtitle[∼‘translate’]][.//additionalinfo[∼‘fluent’]][.//city[∼‘los angeles’]]

the “artificial” queries we came up with for the DBLP data, so our evaluation
focuses on the Monster collection. The algorithm successfully generated at least
one content-and-structure query for all input queries. Examples of automatically
structured queries for the Monster data are given in Table 2.

Query accuracy To analyze query accuracy, we divided the information
contained in the resume queries into three types. Since the service provided by
Monster is job searching, the 60 queries express a fairly consistent information
need: all ask for resumes and specify a position, a location and/or constraints
such as the possession of a certificate or fluency in a particular language.

The first type of information we consider is geographical location: 52 of the
60 test queries contain a city name, a state name or abbreviation, or both. The
algorithm correctly recognizes 50 geographical names and successfully adds loca-
tion constraints. One incorrectly bound target is for the keyword ‘ft’ which is an
abbreviation for ‘full-time’. This error demonstrates that the initial processing,
which in our experiments consists only of stop word removal and simple phrase
detection, could benefit from incorporating domain knowledge.

The most common type of input information is the description of a po-
sition or a profession. Relevant XML elements are desiredjobtitle and
resumetitle (which describe what position the person is looking for) and
title (which describe positions the person has occupied in the past). Terms
such as ‘manager’, ‘engineer’, etc. occur frequently, so there are enough statistics
to process this type of information very accurately, with 56 out of the 60 queries
containing at least one title-type target. The variation in title targets (Table 2)
is evidence for the collection heterogeneity, which we attribute to inconsistency
among job seekers on how they fill in their career details.
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Table 3. Precision at rank k for two versions of 25 Monster queries. CO are content-
only input queries, CAS are content-and-structure automatically generated queries.
Bold indicates statistical significance at 5% level with Student’s t-test.

rank simple information need complex information need

CO CAS CO CAS

1 0.960 0.880 (-8.33%) 0.600 0.560 (-6.67%)
2 0.980 0.860 (-12.2%) 0.580 0.620 (+6.90%)
3 0.947 0.867 (-8.45%) 0.520 0.653 (+25.6%)
4 0.910 0.870 (-4.40%) 0.480 0.610 (+27.1%)
5 0.928 0.880 (-5.17%) 0.464 0.624 (+34.5%)
6 0.913 0.887 (-2.85%) 0.467 0.607 (+29.9%)
7 0.909 0.886 (-2.53%) 0.474 0.583 (+23.0%)
8 0.905 0.885 (-2.21%) 0.465 0.595 (+27.9%)
9 0.902 0.876 (-2.88%) 0.449 0.582 (+29.6%)
10 0.884 0.876 (-0.90%) 0.456 0.560 (+22.8%)

The third type of information is experience, skill or education requirements.
Here structural accuracy is lower, with 44% correct and 56% incorrect bind-
ings. For example, “excel power point” is correctly converted into a bound
skillname but “2-5 years of experience” is split into //yearsexperience[∼‘2’]
and //completemonth[∼‘5’]. The reduced accuracy is perhaps due to higher het-
erogeneity in this type of information, with occurrences in various distinct ele-
ment types. To handle this, the algorithm could assign more uniform scores to
initial bindings instead of preferring the most frequent occurrences, effectively
creating more diverse set of target sets to reflect the diversity in the data.

Retrieval performance The output of the query generation algorithm we
have proposed is a ranked list of structured queries that can be used directly to
retrieve XML elements relevant to the user information need.

To evaluate the retrieval effectiveness of the refinement process, we compared
the performance of the highest-scoring structured query to that of the original
keyword query on a test set of 25 topics. We developed two versions of each
topic. One version specifies only a profession (simple information need); the
second version adds conditions on qualifications such as years of experience or
a degree in particular field (complex information need). We did not include
location information because the retrieval system has no notion of geography
and the relative distances between locations.

To run the queries we used the Indri search engine [7], which is part of the lan-
guage modeling Lemur Toolkit and supports the NEXI query language. Results
for precision at ranks 1 through 10 are presented in Table 3. Automatic structure
slightly hurts precision in the case of a simple information need, although the dif-
ference is not statistically significant. On the other hand, the results support our
hypothesis that automatically generated structured queries can benefit retrieval
in the case of a complex information need, where the refined queries improves
precision at the top ranks, with an increase of more than 20% for ranks 2 through
10. Therefore, for queries of higher complexity, there is opportunity to create a
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more precise expression of a relevant document by automatically structuring the
initial keywords into a formal query. This allows the search algorithm to ignore
content matches in non-related fields and perform a more focused retrieval.

4 Conclusion

We presented an algorithm for automatically transforming keyword queries to
an XML repository into content-and-structure queries. The process does not re-
quire the user to write formal XML queries or even to specify the type of XML
elements to return. Our technique integrates structured data retrieval with prob-
abilistic reasoning based on information gain and relies on analyzing structure
and content simultaneously. Given a keyword query as input, the algorithm ex-
ploits statistics derived from the XML collection to infer structural clues and
construct probable structured queries. It does not assume that the collection is
homogeneous and has an explicit schema or DTD but instead uses knowledge
about the collection in the form of natural language equivalents of the tag names.

Query refinement could provide an alternative to the traditional approach of
user interaction with an XML retrieval system, which places responsibility with
the user to formulate good structured queries. Potential applications include
systems that work with heterogeneous or dynamic semi-structured collections
where variability in the XML documents or the schema renders the task of
manually writing successful queries especially challenging for users.
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