
Uncertainty Sampling and Optimization for
Interactive Database Exploration

Liping Peng∗, Enhui Huang†, Yuqing Xing∗, Anna Liu∗, Yanlei Diao∗,†
∗University of Massachusetts Amherst, USA; † Ecole Polytechnique, France

∗{lppeng, yanlei}@cs.umass.edu, {yuqing, anna}@math.umass.edu; †enhui.huang@polytechnique.edu

ABSTRACT
In the Big Data era we are faced with an increasing gap between
the fast growth of data and the limited human ability to compre-
hend data. Consequently, there has been a growing demand of data
management tools that can bridge this gap and help the user re-
trieve high-value content from data more effectively. In this work,
we aim to build interactive data exploration as a new database ser-
vice, using an approach called “explore-by-example”. To build an
effective system, our work is grounded in a rigorous SVM-based
active learning framework. In this framework, we introduce un-
certainty sampling for database exploration, propose new sampling
algorithms with formal results, and a series of optimizations to im-
prove performance. Evaluation results using real-world SDSS data
and query patterns show that our system significantly outperforms
state-of-the-art systems in accuracy while achieving desired effi-
ciency for interactive exploration.

1. INTRODUCTION
Today data is being generated at an unprecedented rate, so much

that 90% of the data in the world has been created in the past two
years1. However, the human ability to comprehend data remains as
limited as before. As such, the Big Data era is presenting us with an
increasing gap between the growth of data and the human ability to
comprehend data. Consequently, there has been a growing demand
of data management tools that can bridge this gap and help the user
retrieve high-value content from data more effectively.

To respond to such needs, we build a new database service for in-
teractive exploration in a framework called “explore-by-example”.
In this service, the database system requests user feedback on strate-
gically collected database samples through a series of “conversa-
tions” (or iterations). In each iteration, the user characterizes a
database sample as relevant or irrelevant to her interest. The user
feedback is incorporated into the system to build a user interest
model. The model is then used in the next iteration to steer the
user towards a new area in the data space, and further improved us-
ing the user label of a new sample from that area. Eventually, the
model characterizing the relevant objects is turned into a user in-
terest query that will retrieve all relevant objects from the database.
This service can be used to support two types of applications:

Ad-Hoc Exploration: Consider an example that a novice scientist
comes to explore a large sky survey database such as SDSS [51].
She may not be able to express her data interest precisely. Instead,
she may prefer to navigate through a region of the sky, see a few
samples of sky objects, provide yes or no feedback, and ask the
database system to find more objects relevant to her interest. Such
Ad-hoc exploration tasks are constrained by the amount of feed-
back that a user is willing to provide. Instead of requiring 100%
1See a recent survey at https://www-01.ibm.com/software/data/bigdata/

accuracy of the user interest model, they often prefer a quick im-
provement of the accuracy with the first few dozens of samples that
the user has reviewed.

Precise Exploration: In this setting, the user is engaged in a long-
term conversation with the database system with explicit or implicit
feedback on database objects. Systematic reviews are an example
of a comprehensive assessment of the totality of evidence to ad-
dress a question such as the effect of a treatment at a given time
on mortality. Such reviews involve repeated querying of the clini-
cal trial database and classifying the retrieved trials as relevant or
not; some may take a year to complete. System-aided exploration
that records user-reviewed trials continually may derive a model
of the relevant trials more quickly than manual exploration by the
user. Another example is intelligent personal assistant like Google
Now and other social recommender systems (e.g., [11]). Here, the
system works with the user continually by recommending social
events and implicitly recording the user feedback (e.g., based on
whether the user clicks on the recommended event). Over time,
an explore-by-example service can learn the user interest with high
accuracy.

Across both applications the performance goals of explore-by
-example include: (a) Accuracy: the system must maximize the
accuracy of the user interest model with a limited amount of user
feedback, or minimize the total user feedback needed to achieve a
high accuracy level. (b) Interactive performance: the time cost in
each iteration of exploration must be kept under a few seconds as
the user may be waiting online for the next sample to review.

To develop an effective system, our approach casts the learning
of the user interest model in each iteration as a classification prob-
lem, which uses all the user labeled samples (through explicit or
implicit feedback) thus far to train a classification model. This is
usually quick given the small size of the labeled sample set. How-
ever, the challenge lies in the choice of a new sample, across all
unlabeled objects in the database, for the user to label next – this
choice affects the models developed in the subsequent iterations
and how well the system achieves the above two goals. To address
the challenge, we introduce uncertainty sampling for database
exploration, which augments the current set of sampling methods
(e.g., stratified sampling) for query processing in a database sys-
tem. This new form of sampling must meet three requirements:

1. Most uncertain property: It finds a sample that is the most
uncertain with respect to the current user interest model.

2. Database efficiency: The retrieval of the most uncertain sam-
ple from the database is within interactive performance.

3. Convergence: In any iteration, it can return some quantitive
or qualitative description of the convergence of the model so
the user can make a well-informed decision on termination.

Our work differs from prior work in several aspects. First, the
state-of-the-art system on explore-by-example, Aide [16, 17], used

1

decision trees to build a classification model due to the natural de-
scriptive power of the learned model. However, this approach can-
not handle complex user interests characterized by non-linear pat-
terns in the data space. Therefore, in this work we choose Support
Vector Machines (SVMs) to build the classification model because
they can handle both linear and non-linear patterns.

Second, active learning theory [7] has suggested choosing the
example closest to the decision boundary of the SVM model in
each iteration of exploration. In this work we leverage SVM ac-
tive learning theory to meet the “most uncertain” requirement of
sampling. However, existing implementations do not meet the effi-
ciency requirement: they either scan the entire database [11], which
is prohibitively expensive for a large database, or resort to random
sampling [7], which cannot strike a balance between accuracy and
efficiency. In addition, active learning work does not meet the con-
vergence requirement: most work lacks provable results on accu-
racy at a given iteration of exploration [52, 46]. Recent theoretical
work offers provable bounds on classification errors [10, 19, 23,
24, 25], which treat positive and negative classes equally and hence
are not practical for use. It is because the true user interest over a
large database often amounts to a highly selective query. To learn
a classification model for the query, we must emphasize the errors
related to the objects in the positive class, i.e., the answers returned
by the query. Consider a user interest query with 1% selectivity.
A classifier that classifies all database objects to the negative class
has a low error rate of 1%, but fails to return any relevant objects
to the user. For this reason, we choose F1-score as a proper ac-
curacy measure for database exploration because it emphasizes the
accuracy regarding the positive class. Active learning theory lacks
formal convergence results for this measure.

In this paper, we develop and optimize uncertainty sampling for
database exploration in the explore-by-example framework, which
meets all three requirements above. Our contributions include:

1. New sampling algorithms (Section 3): We develop two un-
certainty sampling algorithms that provide rigorous yet practical
results on the convergence of the user interest model. (1) Strong
convergence: The first algorithm focuses on a common class of
user interest queries that have a convex shape in the data space.
For such queries, we propose a novel sampling algorithm, called
TSM, which augments SVM active learning theory (developed in
the feature space through the kernel method) with a polytope-based
partitioning function of the data space. TSM not only reduces user
labeling from using active learning theory alone, but also enables us
to prove a monotonically increasing lower bound of F1-score. This
is the first formal result on the model accuracy based on F1-score,
to the best of our knowledge, and enables the system to detect con-
vergence based on the bound. (2) Weak convergence: For general
query patterns, our second algorithm augments SVM active learn-
ing theory with techniques for capturing the model change rate and
the trend of this measure over recent iterations. It allows the sys-
tem to provide a qualitative statement of whether the model has
exhibited the trend for convergence.

2. Optimizations (Section 4): We further provide a suite of
optimizations for uncertainty sampling. (1) Database efficiency:
We devise novel techniques, decision-tree based approximation and
a solver method, to reduce the time cost of retrieving the most
uncertain sample from the database, as well as an optimization
to reduce the running time of the final query to retrieve all rele-
vant objects. (2) High-dimensional exploration: For exploration in
high-dimensional data space, we propose optimizations of gradi-
ent boosting regression trees (GBRT) to reduce data dimensionality
and to achieve high accuracy using fewer user labeled samples.

4. System evaluation (Section 5): Evaluation using real datasets
and queries from Sloan Digital Sky Survey [51]. shows the follow-

positive samples

negative samples

User
Feedback Classification

Convergence Space Exploration

classification
model

classification
model

trend
detection

accuracy
estimationdimensionality

reduction

active learning

next sample

Database

Initial
Sampling

initial samples

retrieval query

N

Y

optimizations

Final retrieval optimization

Figure 1: System architecture for explore by example.

ing results: (1) Our solver method for retrieving the most uncer-
tain sample achieves both high accuracy and low running time, and
outperforms the best sampling technique from active learning [7].
(2) For convex queries, our TSM uncertainty sampling algorithm
can reduce the number of user labeled samples required, besides
a formal bound for F1-score. This means that if the database sys-
tem offers query templates for the user to choose, then for known
convex templates it can choose TSM for the above benefits. (3) For
high-dimensional space, our GBRT optimization improves F1-score
from nearly 0 without dimensionality reduction, to high F-measure
(>0.8), by adaptively choosing the number of relevant features.
(4) We further compared our system to two state-of-the-art sys-
tems for explore-by-example, Aide [16, 17] and LifeJoin [11]. Our
system significantly outperforms these two in accuracy when the
user interest involves 4 dimensions or above, considering both ad-
hoc exploration (with limited, say 100, user labeled samples) and
precise exploration (with up to 500 user labeled samples), while
maintaining the per-iteration time within a few seconds and the fi-
nal retrieval time within a few minutes.

2. BACKGROUND
In this section, we begin by reviewing our system designed for

example-by-example. We then present background on the SVM
classification model and basic active learning theory.

2.1 System Overview
Our data exploration system is depicted in Figure 1. The main

concepts and modules are described as follows.
Data space. When a user comes to explore a database, she is

presented with the database schema for browsing. Based on her
best understanding of the (implicit) exploration goal, she may opt
to choose a set of attributes, {Di}, i = 1, . . . , d, from a table for
consideration2. These attributes form a superset of the relevant at-
tributes that will be eventually discovered to characterize the true
user interest, but it is the task of the system to discover those rel-
evant attributes. Let us consider the projection of the underlying
table to {Di}, and pivot the projected table such as each Di be-
comes a dimension and the projected tuples are mapped to points
in this d-dimensional space – the resulting space is called a data
space where the user exploration will take place.

Initial examples. To bootstrap data exploration, the user is asked
to give an initial positive example and an initial negative example
to illustrate her interest. If the user does not have such examples
at hand, the system can run an initial sampling algorithm over the
data space, as proposed in prior work [16, 32], to help the user
find such examples. Since the initial sampling problem has been
studied before, our work in this paper focuses on data exploration
after such initial examples are identified.

2If these attributes come from different base tables, we assume that there is
a materialized view that stores the related join results in a single table.

2

Iterative feedback, learning, and exploration. The iterative
exploration process starts with a given positive sample set and a
negative sample set, initially each of size one. These samples are
called labeled samples. In each iteration, the labeled samples are
used as the training set of a classification model that characterizes
the user interest (user interest model). Before the model reaches
convergence or a user-specified accuracy level, the model is used
next to navigate the user further in the data space (space explo-
ration). In particular, it is used to identify a promising data area
to be considered further and to retrieve the next sample from this
area to display to the user. In the next iteration, the user labels this
sample as positive or negative – such feedback can be collected ex-
plicitly through a graphical interface [15], or implicitly based on
whether a user clicks on the sample for reviewing or how long she
examines the sample.3 The newly labeled sample is added to an
existing labeled sample set, and the above process repeats.

Convergence and final retrieval. At each iteration, our system
assesses the current classification model to decide whether more
exploration iterations are needed. The process is terminated when
the model has exhibited the trend of convergence, or the accuracy
of the model reaches a user-defined threshold. At this point, the
classification model for its positive class is translated to a query
which will retrieve from the database all the objects characterized
as relevant. As can be seen, in our work the user interest is char-
acterized by a classification model, which is eventually translated
to a database query. Therefore, we use the terms, “user interest”,
“classification model”, and “query”, interchangeably.

2.2 SVM and Active Learning
Since non-linear predicates are prevalent in scientific applica-

tions and location-based searches, we seek to support user interests
involving both linear and non-linear predicates. In this work, we
adopt Support Vector Machines (SVM) to build the classification
model. SVM is a linear classifier that makes a classification deci-
sion based on the value of a linear combination of the dimensions
of the data space. To support non-linear patterns in the data space,
it uses the kernel method to map the user labeled samples into a
much higher dimensional space, called the feature space, where
linear separation can be achieved. In this work we use the Gaus-
sian kernel, and denote the decision boundary in the feature space
as L. More details on SVM are given in Appendix A.1.

Our problem of dynamically seeking the next sample to label
from a large database of unlabeled objects is closely related to ac-
tive learning. The active learning framework for SVM has a simple
structure as shown in Algorithm 1. It starts with initial sampling
and proceeds to space exploration in an iterative fashion. In both
phases, users are asked to provide labels of retrieved samples (line
2 and line 7). The key focus of active learning is at line 6: to iden-
tify at each iteration, the next sample to label to quickly improve
the accuracy of the current SVM model. Recent active learning
theory [7] proposed to choose in each iteration the example closest
to the current decision boundary, that is, minxf(φ(x),L), where
x refers to any point in the data space, φ(x) is its mapping to the
feature space, and f is the distance function in the feature space.

Our work follows the same framework and uses the above the-
ory to meet the “most uncertain” requirement of uncertainty sam-
pling. However, our work instantiates this framework with new
sampling algorithms to also meet the efficiency and convergence
requirements. In particular, we propose new algorithms that ad-
dress getNextToLabel() and isTerminated() together in

3This topic is in the purview of human-computer interaction and hence is
beyond the scope of this paper, which focuses on uncertainty sampling.

Algorithm 1 A Basic Framework for SVM Active Learning
Input: database D
1: Dinit ←initialSampling(D)
2: Dlabeled ← getUserLabel(Dinit)
3: Dunlabeled ← D \Dinit
4: model← trainSVM(Dlabeled)
5: while !isTerminated() do
6: x← getNextToLabel(model,Dunlabeled)
7: {x′} ←getUserLabel({x})
8: Dlabeled ← Dlabeled ∪ {x′}
9: Dunlabeled ← Dunlabeled \ {x}

10: model← trainSVM(Dlabeled)
11: finalRetrieval(model, D)

Section 3, and a series of optimizations for getNextToLabel()
and finalRetrieval() in Section 4.

3. NEW SAMPLING ALGORITHMS
In this section, we present two uncertainty sampling algorithms

that provide rigorous yet practical results on the convergence of the
user interest model.

3.1 Algorithm for Convex Queries
Our first algorithm focuses on a common class of user interest

queries that have a convex shape in the data space. For this class
of queries, we seek to design a sampling algorithm that is more ef-
ficient than a direct implementation of SVM active learning theory
(Algorithm 1), and further enables formal provable results on F1-
score as the accuracy measure of the SVM classification model in
a given iteration in exploration.4

Formally, F1-score is evaluated on a test set Dtest = {(xi, yi)},
where xi denotes a database object and yi denotes its label accord-
ing to the classification model. Then F1-score is defined as:

F1-score = 2 · precision · recall
precision+ recall

,

where precision is the fraction of points returned by the model
(query on Dtest) that are positive, and recall is the fraction of pos-
itive points in Dtest that are returned by the model.

However, capturing F1-score in our uncertainty sampling pro-
cedure is difficult because we do not have such a labeled test, set
Dtest, available. We cannot afford to ask the user to label more to
produce one since the user labor is an important concern. The chal-
lenge here is how to provide any accuracy information related to
F1-score with limited labeled points and abundant unlabeled ones.

The key idea is, at each iteration we try to use all available
labeled examples, denoted as Dlabeled, to building a partitioning
function of the data space. This function divides the data space into
the positive region (any point inside which is guaranteed to be pos-
itive), the negative region (any point inside which is guaranteed to
be negative) and the uncertain region. We define the evaluation set
Deval as the projection of Dtest without labels yi’s. Then for each
data point in Deval, depending on which region it falls into, Deval
can be partitioned into three sets accordingly, denoted as D+, D−

and Du. We can compute a metric from the number of data points
in the three sets and prove that it is a lower bound of F1-score evalu-
ated on Dtest. As more labeled examples being provided, we have
more knowledge about the uncertain region, so part of the uncertain
region will convert to either the positive or the negative region in

4Our solution to this class also provides a foundation for extension to a
more general case of a union of convex shapes.

3

+

+ +

_

+ +

Figure 2: Illustration of a positive region
(green) with three positive samples, and a nega-
tive region (red) with two positive examples and
one negative example in 2D space.

`

+

+ +

_

+

+

_

_

_
_

Figure 3: Illustration of positive region
(green) and negative region (red) with
five positive examples and five negative
examples in two-dimensional space.

(a)$

(b)$

Figure 4: Decision tree based ap-
proximation of the non-linear decision
boundary in the data space.

later iterations. Accordingly, some data points can be moved from
Du to eitherD+ orD−. Eventually, with enough training data, the
uncertain region shrinks to the minimum,Du = ∅, and the positive
region converges to the query region.

3.1.1 Algorithm with Exact Lower Bound of F1-score
We start with a formal definition of the partitioning function, Ψ,

of a data space based on the three regions mentioned above. We
then introduce a metric built on this partitioning function, called the
three-set metric (TSM), and an algorithm that incorporates Ψ and
the TSM metric to active learning. We finally present a theorem
stating that the TSM metric captures the lower bound of F1-score.

1. Partitioning Function and Metric. The following defini-
tions and propositions depend on the assumption that the query re-
gion Q is convex, which means that any point on the line segment
connecting two points x1 ∈ Q and x2 ∈ Q is also in Q. When
Q consists of multiple disjoint convex regions which makes itself
not convex, we can initiate one exploration task per region and the
metric applies to each task.

Definition 3.1 (Positive Region) Denote the examples that have
been labeled as “positive” as e+i , i = 1, . . . , n+. The convex
hull of ∪n

+

i=1e
+
i , i.e., the smallest convex set that contains ∪n

+

i=1e
+
i ,

is called the positive region, denoted as R+.

It is known that the convex hull of a finite number of points is
a convex polytope [22]. For example, the green triangle in Fig. 2
and the green pentagon in Fig. 3 are the positive regions formed by
three and five positive examples, respectively, in a two-dimensional
space. We can prove the following property of the positive region:

Proposition 3.1 All points in the positive region R+ are positive.

All proofs in this section are deferred to Appendix B. due to
space constraints.

Definition 3.2 (Negative Region) For a negative example e−i , we
can define a corresponding negative region R−i such that the line
segment connecting any point x ∈ R−i and e−i does not over-
lap with the positive region R+, but the ray that starts from x ∈
R−i and passes through e−i will overlap with R+. More formally,

R−i = {x|xe−i ∩ R
+ = ∅ ∧

−−→
xe−i ∩ R

+ 6= ∅}. Given n− nega-
tive examples, the negative region R− is the union of the negative
region for each negative example, i.e., R− = ∪n

−
i=1R

−
i .

From the definition, we know thatR−i is a convex cone generated
by the conical combination of the vectors from the positive exam-

ples to the given negative example, i.e.,
−−−→
e+j e

−
i (j = 1, . . . , n+).

Further constrained by the bounds of the data space, each negative
region becomes a convex polytope. For example, the red triangle
in Fig. 2 and five red polygons in Fig. 3 are the negative regions in
a two-dimensional space. We can prove the following property of
the negative region:

Proposition 3.2 All points in the negative region R− are negative.

Definition 3.3 (Uncertain Region) Denote the data space as Rd,
the uncertain region Ru = Rd −R+ −R−.

Basically Ru is the remaining region, e.g., the white area in
Fig. 2 and Fig. 3. As mentioned earlier, as more examples being
labeled, part of the uncertain region will be converted to either the
positive region or the negative region and eventually the uncertain
region will shrink to an empty set.

With the three types of regions defined, we can define the three-
set metric as follows:

Definition 3.4 (Three-set Metric) Denote D+ = Deval ∩ R+,
D− = Deval ∩R−, Du = Deval ∩Ru, and |S| means the size of
set S. At a specific iteration of exploration, the three-set metric is
defined to be |D+|

|D+|+|Du| .

2. Algorithm. Next we present how to build the TSM met-
ric in the iterative exploration process in Algorithm 2. The input
is the database D, evaluating dataset Deval (which could be any
unlabeled dataset including the databaseD), and a user-defined ac-
curacy threshold λ. First, we initialize R+ and R− as empty sets
(line 1). Then, initial sampling is performed (line 2) and the ob-
tained examples are labeled by users (line 3). We keep track of
the labeled and unlabeled samples using Dlabeled and Dunlabeled.
Based on the labeled examples, the regions can be incrementally
updated (line 5-6) and hence the corresponding sub-partitions of
Deval are updated (line 7). The accuracy is then evaluated accord-
ing to Definition 3.4 (line 8) and a model is trained based on the
labeled initial samples (line 9). The process next goes into the iter-
ative exploration until the accuracy requirement is met or the user
decides to stop the process (line 10). In each iteration, an unlabeled
data point with the closest distance to the decision boundary is ac-
quired. If the data point is in R+ or R−, which means its label is
known without involving the user, it is labeled automatically (line

4

Algorithm 2 TSM Sampling Algorithm for Convex Queries
Input: databaseD, evaluation datasetDeval, user accuracy require-
ment λ.
1: R+ ← ∅, R− ← ∅

// initial sampling:
2: Dinit ←initialSampling(D)
3: Dlabeled ← getUserLabel(Dinit)
4: Dunlabeled ← D \Dinit

// estimate accuracy of initial sampling:
5: for x ∈ Dlabeled do
6: (R+, R−)← updateRegion(R+, R−,x)
7: (D+, D−, Du)← updateEvalData(R+, R−, ∅, ∅, Deval)
8: accu← estAccuracy(D+, D−, Du)
9: model← train(Dlabeled)

// space exploration:
10: while accu < λ and !isTerminated() do
11: x← getNextToLabel(model,Dunlabeled)
12: if x ∈ R+ then
13: x′ ← (x, 1)
14: else if x ∈ R− then
15: x′ ← (x,−1)
16: else
17: {x′} ←getUserLabel({x})

// estimate current accuracy:
18: (R+, R−)← updateRegion(R+, R−,x)
19: (D+, D−, Du)← updateEvalData(R+, R−, D+, D−, Du)
20: accu← estAccuracy(D+, D−, Du)
21: Dlabeled ← Dlabeled ∪ {x′}
22: Dunlabeled ← Dunlabeled \ {x}
23: model← train(Dlabeled)
24: return model

12-15). Such examples do not add information to R+ and R− and
hence do not change D+, D−, Du and the three-set metric. Other-
wise, the data point is labeled by the user (line 17) and the metric is
updated (line 18-20). At the end of each iteration, the selected data
point is moved from Dunlabeled to Dlabeled (line 21-22) and a new
model is trained (line 23).

There are a few procedures involved in Algorithm 2. Here we
emphasize those related to the three-set metric: In updateRegion,
the regions are updated based on the literature in computational ge-
ometry [3]. In updateEvalData, the partitions of Deval can be
incrementally updated as shown in Algorithm 3, which tests if a
data example belongs to the positive or negative region based on
its polytope definition. In estAccuracy, the metric is computed
according to Definition 3.4.

3. Lower Bound of F1-score. With a good understanding of
how the metric works in the exploration process, we now present
our main theorem.

Theorem 3.1 The three-set metric evaluated on Deval captures a
lower bound of the F1-score if evaluated on Dtest.

The three-set metric has several key advantages. First, it pro-
vides an exact lower bound of F1-score throughout the exploration
process and works for any evaluation set Deval Second, the metric
is monotonic in the sense that points in the uncertain region before
may be in the positive or negative region later, and the metric con-
verges to 1 when Du = ∅. The monotonicity means that if the
metric is above the desired accuracy threshold at some iteration, it
is guaranteed to be greater than the threshold in later iterations, so
we can safely stop the exploration. Monotonicity also enables in-
cremental computation: at iteration i+1, we only need to check the

Algorithm 3 updateEvalData Incrementally update the parti-
tions of Deval
Input: positive and negative region (R+, R−). posi-
tive, negative and uncertain class of the evaluation dataset
(D+, D−, Du).
1: for x ∈ Du do
2: if x ∈ R+ then
3: D+ ← D+ ∪ {x}, Du ← Du \ {x}
4: else if x ∈ R− then
5: D− ← D− ∪ {x}, Du ← Du \ {x}
6: return (D+, D−, Du)

points in the uncertain region at iteration i and see if they belong to
the positive or negative region of iteration i+ 1.

Besides the lower-bound on F1-score, the TSM algorithm has
several advantages over a direct implementation of active learning
theory (Algorithm 1): It can automatically label any example in
the positive and negative regions, including those closest to a given
SVM decision boundary and hence selected by active learning the-
ory for the user to label. As such, it can reduce the user labeling
effort. In addition, since TSM works for any evaluation setDeval in
the data space, which can be set to the entire database or a smaller
sample set (used in our approximate bound as described shortly).

3.1.2 Approximate Lower Bound of the Metric
When Deval is too large, we may refer to a sampling technique

to reduce the time to evaluate the three-set metric. Let p and q be
the true proportions of the positive and negative data in Deval, i.e.,
p = |D+|/|Deval| and q = |D−|/|Deval|. Then the three-set
metric is b =

p

1− q . Let p̂ and q̂ be the observed proportions of

the positive and negative samples in a random draw of n samples

from Deval, and let Xn =
p̂

1− q̂ . Our goal is to find the smallest

sample size n such that the estimation error of the exact three-set
metric is less than δ with probability no less than λ. That is,

Pr(|Xn − b| < δ) ≥ λ.

The following theorem will help us find the lower bound of n.

Theorem 3.2 supε‖Pr(
√
n|Xn−b|<ε)−

(
2Φ(

ε(1− q)√
p(1− p− q)

)−1

)
‖

= O(1/
√
n) for any ε, where Φ is the cumulative distribution func-

tion of the standard Normal distribution.

With the above theorem, we approximate the sample size such that

2Φ(

√
nδ(1− q)√
p(1− p− q)

)− 1 ≥ λ.

Since p(1− p− q)/(1− q)2 ≤ 1/4, it is sufficient for n to satisfy
2Φ(2

√
nδ)− 1 ≥ λ and therefore n ≥

(
Φ−1

(
λ+1
2

))2
/(4δ2).

3.2 Algorithm for General Queries
For general query patterns, our second algorithm augments SVM

active learning theory with techniques for capturing the model change
rate and the trend of convergence based on this measure

To begin the discussion, we summarize our notations for SVM
as follows, while the details on SVM are given in Appendix A.1:
denote x as a point in the data space, φ as the mapping function
from the data space to the feature space, K as the kernel func-
tion where K(xi,xj) = φ(xi)

Tφ(xj); the SVM model can be

5

uniquely identified using either ω and b in the primal form, or α
and b in the dual form.

To capture the model change rate, the starting point of our algo-
rithm design is the following observation: with the Gaussian ker-
nel, all the points in the data space Rd will be mapped onto a unit
hypersphere in the feature space Rf . This is because KG(x,x) =
exp(−γ||x − x||2) = exp(0) = 1. Then for the corresponding
φG, we know φG(x)TφG(x) = 1, which means all points in the
data space are mapped to a unit hypersphere in the feature space.
The decision model at each iteration is a hyperplane that possibly
cuts the multi-dimensional ball into one positive hyper-spherical
cap and one negative hyper-spherical cap. Fig. ?? shows two deci-
sion models in the feature space in solid circles and the correspond-
ing twoω vectors pointing to the positive side of the model. Below,
we formally define the model change rate in the feature space.

Definition 3.5 (Model Change Rate) Denote Ci−1 and Ci as the
positive hyper-spherical caps at iteration i − 1 and i respectively.
We define the difference between Ci−1 and Ci as Di = (Ci \
Ci−1) ∪ (Ci−1 \ Ci) and the model change rate between itera-
tion i − 1 and i as A(Di)/A(Si), where Si is a unit sphere in
i-dimensional space and A is the notation for the surface area.

The rationale behind this definition is: Ci \ Ci−1 is the set of
points in the feature space that are predicted as negative at iteration
i−1 but positive at iteration i, and similarly, Ci−1 \Ci is the set of
points that are predicted as positive at iteration i − 1 but negative
at iteration i. Since all points in the data space are mapped to a
hypersphere, we use the surface area as the metric.

Closed-form expressions for the surface area of a hyper-spherical
cap and that of a hypersphere have been well-studied long ago. Re-
cently, [30] has derived the surface area of the intersection of two
hyper-spherical caps given ωi−1 and bi−1 and ωi, bi. It is straight-
forward to see thatA(Di) = A(Ci−1)+A(Ci)−2A(Ci−1∩Ci).
Therefore, in order to compute the model change rate in the feature
space, the remaining problem is to obtain ω and b.

As mentioned earlier in Section A.1, SVM is usually solved in
the dual form rather than the primal form. A typical SVM solver
returns α’s and b as an SVM model, but Equation (8) allows us to
compute ω from αi’s and φ(xi)’s. Although φ(x) is intensionally
bypassed by the kernel trick, we can apply Cholesky Decomposi-
tion to the kernel matrix, which is symmetric and strictly positive-
definite for Gaussian kernel, and get a unique decomposition, as
formally described below.

Ki×i =

K(x1,x1) · · · K(x1,xi)
...

. . .
...

K(xi,x1) · · · K(xi,xi)

=

φ(x1)Tφ(x1) · · · φ(x1)Tφ(xi)
...

. . .
...

φ(xi)
Tφ(x1) · · · φ(xi)

Tφ(xi)

=

φ(x1)T

...
φ(xi)

T

i×i

×
(
φ(x1), · · · , φ(xi)

)
i×i

Note that the kernel matrix of the Gaussian kernel always has
full rank for distinct examples, which means that the rank is in-
creased by 1 every time a new example xi is added and its projec-
tion and φ(xi) is independent of all previous examples’ projections

φ(x1), . . . , φ(xi−1) in the feature space. In other words, each ex-
ample adds a new dimension to the span5 of example’s projections.
When computing the surface area difference of two consecutive
models ωi−1 and ωi, we add a zero to ωi−1 to make it of the
same dimensionality with ωi.

Below we summarize the procedure of computing the model
change rate in the feature space at iteration i in Algorithm 4.

Algorithm 4 Model Change Rate in the Feature Space
Input: labeled examples x1, . . . ,xi and their coefficients α1, . . . , αi

6,
bi, ωi−1 and bi−1.

Output: the model change rate in the feature space at iteration i
1: Ki×i ←updateKernelMatrix(K(i−1)×(i−1),xi)
2: {φ(x1), . . . , φ(xi)} ←CholeskyDecomposition (Ki×i)
3: ωi ←

∑i
j=1 αjφ(xj)

4: ωi−1 ←append(ωi−1, 0)
// computations below are in i-dimensional space:

5: intersect←getIntersectionArea(ωi−1, bi−1, ωi, bi)
6: areai−1 ←getUnitSphericalCapArea(i, ωi−1, bi−1)
7: areai ←getUnitSphericalCapArea(i, ωi, bi)
8: change← areai−1 + areai − 2 · intersect
9: whole←getUnitSphereArea(i)

10: return change/whole

After we obtain the model change rate, we can just check con-
vergence using the long-established methods.

4. OPTIMIZATIONS
We further provide a suite of optimizations for uncertainty sam-

pling, including those for reducing the time cost of retrieving the
most uncertain sample from the database, for reducing the time of
running the final query over the database, and for reducing the user
labeled samples needed for high-dimensional exploration.

4.1 Sample Retrieval
A key performance goal in our work is to limit the cost of each

iteration, including retrieving the most uncertain sample to label
next, within a few seconds. Recent research [7] proposed to choose
the sample closest to the current decision boundary of the SVM.
However, finding the sample closest to the decision boundary from
a large database is costly. Pre-computation to store the distance
of each tuple to the decision boundary is not possible because the
boundary changes in each iteration. As a result, existing implemen-
tations either pay the cost to scan the database, or sacrifice con-
vergence by resorting to random sampling and among the random
samples, choosing the one closest to the decision boundary.

Optimizing the retrieval of the most uncertain sample is chal-
lenging because the sample closest to the decision boundary is de-
fined in the feature space, while sample retrieval is performed in
the data space. There is no reverse mapping from the feature space
to the data space. Below, we propose two optimizations for the
sample retrieval problem without scanning the entire database.

Decision Tree based Approximation. The classification bound-
ary in the data space can be of arbitrary shapes, hence hard to be in-
terpreted but can be approximated by the union of many disjunctive
hyper-rectangles. As shown in Fig. 4(a), the classification boundary
is a solid black curve that cuts the data space into two regions: one
filled with green positive points and one with red negative points.
The black curve can be approximated by the blue boxes in Fig. 4(b).
Each hyper-rectangle is a conjunction of conditions on (a subset of)

5It is well-known that the feature space of Gaussian kernel is infinite di-
mensional but the projections of finite examples span a finite dimensional
subspace of the infinite dimensional space.

6

Algorithm 5 Decision Tree Based Approximation

1: Define a band that encloses the current SVM decision boundary.
2: Prepare a training dataset of synthetic grid points such that the points

in the band are positive and otherwise are negative.
3: Feed the dataset to a decision-tree algorithm and train a decision tree.
4: Translate the leaves returned by the decision tree into a SQL query and

send it to the backend database.
5: From all the results of the query, return the one that is closest to the

SVM decision boundary as the sample to be used in the next iteration.

dimensions in the data space, just like the leaves returned by the de-
cision tree learning algorithm. This inspires us to leverage decision
trees to approximate the classification boundary in the data space.

We summarize the main steps in Algorithm 5. Let us define the
decision boundary (function) in the feature space as:

y(x) = ωTφ(x) + b = 0 (1)

where x as a point in the data space, φ as the mapping function
from the data space to the feature space, andω is the weight vector.

In step 1, we define a band in the data space as {x| y(x) ∈
[−δ, δ]}. In step 2, we enumerate synthetic grid points in the data
space to find those residing in the band (positive points) and outside
the band (negative points). In Step 3, we feed these points to build
a decision tree on the data space dimensions. We then turn the
decision tree to a database query (step 4) and among its output,
find the exmple closest to the SVM decision boundary (step 5).

Solver Method. The solver method expedites the most uncertain
sample retrieval by first finding a point on the decision boundary
through a solver of the boundary condition, y(x) = 0, and then a
database example locally near this point.

Given two points x1 and x2 such that y(x1) > 0 and y(x2) <
0, we regard f(t) = y(tx1 + (1 − t)x2) as a function of t on
[0, 1]. Then we have f(0) < 0 and f(1) > 0. The Intermediate
Value Theorem (IVT) [2] states that if f is continuous on a closed
interval [a, b], and c is any number between f(a) and f(b) inclu-
sive, then there is at least one number x in the closed interval such
that f(x) = c. According to the IVT, since the decision function as
a function of t on [0, 1] is continuous, there exists a t in (0, 1) such
that f(t) = 0. Solver functions such as FZERO in java can be used
to find the zero point, denoted as x∗. This point sits right on the
current decision boundary but often does not correspond to a real
data sample. To present the user a real sample to label, we form a
small bounding box around x∗ and scan samples in the bounding
box to locate the one that is closest to the decision boundary.

Given the current decision boundary of SVM, it is convenient to
find two points x1 and x2 such that y(x1) > 0 and y(x2) < 0.
However, choices of the two points affects the convergence of the
solver method. Ideally, we would like to choose a pair of point in
each iteration such that the collection of pairs across iterations ex-
plore the data space in all directions. For this purpose and having in
mind the positive region is only a small fraction of the data space,
we choose any point x1 such that y(x1) > 0 and choose con-
secutively data space boundary (outmost) points as x2 such that
y(x2) < 0. If an outmost point x2 has y(x2) > 0, we do not
abandon that direction of search along the line connecting x1 and
x2; rather, we keep bisecting the segment between the two points,
until we found a negative y value. If this fails, we locate the mini-
mum of f on the segment using grid points at which the bounding
box will be formed for the database query.

4.2 Final Result Retrieval
Once the exploration terminates upon convergence or by the user

request, we obtain an SVM model as represented in Eq. 1. The

ultimate goal is to find all tuples in the database D with positive
predictions by this model, i.e., x such that x ∈ D and y(x) > 0.
To expedite the retrieval of the final results, we propose to build R-
tree as the index over the database, and perform a top-down search
in a depth-first fashion.

Branch and Bound. The unique aspect of the R-tree search
is a solver-based branch and bound approach. Each R-tree node
offers a hyper-rectangle as a minimum bounding box of all the data
points reachable from this node. With an explicit decision function,
y(x) in Eq. 1, we can compute an upper bound of y(x) without
visiting the descendent nodes. Instead, we can obtain it by solving
the following constraint optimization problem.

max
x

y(x)

s.t. aj ≤ x(j) ≤ bj , j = 1, . . . , d.
(2)

where [aj , bj] is the range of the tree node on the j-th dimension
and x(j) is the value of x on the j-th dimension. If the upper bound
is already smaller than 0, we can prune the entire subtree rooted at
this node. Since the positive results tend to be clustered and mark
only a small portion of the database in practice, with such index
structure, we may gain a significant improvement over scanning
the entire database and running the model on each tuple.

4.3 High-Dimensional Exploration
As the dimensionality of the data space increases, the conver-

gence rate of the SVM model degrades fast. This is first due to the
fact that data exploration is fundamentally constrained by the avail-
able labeled samples. Furthermore, higher-dimensionality means
higher volume of the space and the limited set of labeled samples
become even more sparse in higher-dimensional space, making it
very difficult for SVM to determine the linear hyperplane. In the
discussion below, we focus on the case that the true user interest lies
in a low-dimensional space, but the user initially selects a larger set
of attributes to begin data exploration. It is likely to occur when
users do not feel confident in pruning attributes initially, but some
of these attributes will be eventually recognized as irrelevant based
on the user feedback on an increasing number of samples.

We begin by examining a range of popular dimension reduction
techniques including: 1) Principled Component Analysis (PCA) as
a query-agnostic database compression method; 2) Random forests
(RF) as an online feature selection method during a user data ex-
ploration session; 3) Gradient boosting regression trees (GBRT)
as another online feature selection method. These method are de-
scribed in Appendix C.2 and evaluated in Section 5. Based on our
results, GBRT works better than RF and PCA for reducing the num-
ber of features or dimensions needed to train the SVM classification
model. Therefore, our following discussion focuses on GBRT.

We first outline how Gradient boosting regression trees (GBRT)
is used for online feature selection in our work7. When a user is in-
teracting with the system, in each iteration we first feed all existing
labeled samples to the GBRT learner, and ask the learner to return
the top-k features that are deemed most important in the learning
process (to be formally defined shortly). Next we build an SVM
classification model using only the top-k features and select the
next sample to be labeled as the object closest to the current SVM
decision boundary. Then we repeat these two steps in the next it-
eration until the SVM model converges. Although GBRT works
better than others for feature selection, we observe two limitations:

Unbalanced training data. GBRT is very sensitive to unbal-
anced classes, that is, when the training data is dominated by the

7Since feature selection is the standard term in the literature, we use “fea-
tures” and “attributes” interchangeably in this context.

7

Table 1: Query templates (selectivity is reported on 1% dataset with 1,918,287 tuples)

Attributes Query template Selectivity

(rowc,colc)

Q1.1: rowc > 662.5 and rowc < 702.5 and colc > 991.5 and colc < 1053.5 0.1%
Q1.2: rowc > 617.5 and rowc < 747.5 and colc > 925 and colc < 1120 0.97%
Q1.3: rowc > 480 and rowc < 885 and colc > 719 and colc < 1326 9.43%
Q2.1: (rowc− 682.5)2 + (colc− 1022.5)2 < 292 0.1%
Q2.2: (rowc− 682.5)2 + (colc− 1022.5)2 < 902 0.98%
Q2.3: (rowc− 682.5)2 + (colc− 1022.5)2 < 2802 9.43%

(ra,dec)
Q3.1: ra > 190 and ra < 200 and dec > 53 and dec < 57 0.1%
Q3.2: ra > 180 and ra < 210 and dec > 50 and dec < 60 0.95%
Q3.3: ra > 150 and ra < 240 and dec > 40 and dec < 70 10.24%

(rowc,colc) 4-dimensional queries as a combination of the above (rowc,colc) and varied
+ (ra,dec) (ra,dec) queries, e.g., Q1.2 + Q2.1

(rowc,colc) extend (rowc,colc) queries with up to 34 irrelevant attributes, including varied
+ 34 attributes rowv, colv, ra, dec, u, g, r, i, z , . . ., to test dimensionality reduction

Figure 5: (ra, dec) distribution

samples belonging to the negative class. This is a common case in
data exploration because the true user interest is often a highly se-
lective query, retrieving a small fraction of the database. Therefore,
the most uncertain sample retrieved is likely to be labeled as nega-
tive by the user. In fact, it may take many iterations for us to see the
next positive sample. As a result, the training set is severely skewed
with most samples being negative. In this case, it will take many
labeled samples (iterations) for GBRT to see enough positive sam-
ples and recognize the truly relevant attributes as top-k features.

While class imbalance is an inherent property in data explo-
ration, we draw upon two insights in this work to mitigate the
imbalance problem. First, when the true user interest has a con-
vex shape, our Three-Set-Metric (TSM) learning algorithm al-
ready maintains a list of positive samples that are derived from the
polytope-based partitioning function of the data space and known
to be correct. We can retrieve positive samples from this set, merge
them with the user-labeled samples, and feed the extended, bal-
anced training set to GBRT to improve its performance. Second,
before TSM accumulates a sizable positive sample set, we can also
boost GBRT using synthetic positive samples: if the user interest
has a convex shape, as long as there are two positive samples, we
can use linear interpolation to draw points from the line that con-
nects these two samples, and treat these points as synthetic positive
samples to make the training data balanced.

How many feature to select? Another issue is that we do not
know how many features to select, or the exact value of top-k. The
user does not offer this information a priori. Choosing the right
value of k is nontrivial because GBRT may not have high confi-
dence for selecting the correct features in many iterations from the
start; in some iterations it ranks the correct features above others,
but in the next iteration it may change its ranking.

To formalize the notion of confidence, we first review an impor-
tant concept in the GBRT learning algorithm. As described in [42]
GBRT is a gradient boosting machine with decision trees as base-
learners. The additive model of GBRT is a linear combination of
the decision tree base-learners. Features do not contribute equally
to the construction of these base leaners. Usually, only a small
fraction of the features contribute significantly. Individual decision
trees intrinsically perform feature selection by choosing good fea-
tures for splitting nodes. The more frequently a feature is used for
splitting nodes of a tree, the more important the feature is. For
each decision tree, the importance score of a feature is computed
as a sum of impurity decreases for all the nodes where the feature
is used. Across all the trees, the importance score of a feature Xj
for predicting Y is defined by adding up the weighted impurity de-
creases p(t)4(t) for all nodes t where Xj is used, and averaged

over all trees hm, m = 1, . . . ,M , in the forest [8]:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈hm

1(jt = j) · p(t)4(t) (3)

where p(t) is the proportion Nt
N

of samples reaching node t and jt
denotes the feature used for splitting node t [33]. Summing over
all features, we have the sum of important scores (SIS):∑

j

Imp(Xj) =
1

M

M∑
m=1

(∑
j

∑
t∈hm

1(jt = j) · p(t)4(t)

)
(4)

In sklearn implementation, the sum of feature importances within
a given tree (the inner two sums in Eq. 4) is normalized to 1 if the
tree has more than one node. Otherwise, it is zero for root-only
trees, which make random predictions and are not base learners.
Therefore, SIS is the same as the proportion of non-root trees.

Given feature importance scores, we propose two strategies to
characterize “sufficient confidence” of GBRT for feature selection.

Sum of Importance Scores (SIS): The intuition is that all decision
trees must be weak learners and hence find some features useful in
distinguishing the positive class from the negative class. Based on
this intuition, our first strategy is that as SIS increases to 1, all deci-
sion trees become weak leaners and we believe that the confidence
of GBRT has reached a sufficient level.

Entropy of Importance Scores (EIS): The intuition here is that
we prefer to have a lower entropy of the importance scores across
all the features. That is, the distribution of importance scores de-
parts from a uniform distribution and becomes highly concentrated.
Based on this, our second strategy is that as EIS drops significantly
below the expected entropy of uniform importance scores. In other
words, the importance scores of some features start to stand out,
and we believe that the confidence of GBRT has been sufficient.

Adaptive Feature Filtering and Selection: We then devise adap-
tive strategies to decide top-k features to return, depending on whether
the current iteration has reached the point of gaining sufficient con-
fidence, based on any of the two above strategies. Before reach-
ing this point, we perform conservative feature filtering to accom-
modate the uncertainty of GBRT, which selects top-k features that
cover 50% of the SIS or whose feature scores sum up to at least
0.5 (two variants). After the point, we perform aggressive feature
selection by choosing top-k features that have the largest gap from
the bottom features in the ranked list of feature importance scores.

5. EXPERIMENTAL EVALUATION
We have implemented all of our proposed techniques in a Java-

based prototype for data exploration, which connects to a Post-
greSQL database. In this section, we evaluate our techniques in
terms of accuracy (using the F1-score), convergence rate (the num-
ber of user labeled samples needed to reach an accuracy level), and

8

efficiency (the execution time in each iteration and in final query
retrieval). We also compare our system to two state-of-the-art sys-
tems on explore-by-example, Aide [16, 17] and LifeJoin [11], as
well as specific sampling methods from active learning [7].

Datasets: We evaluate our techniques using the “PhotoObjAll”
table, which contains 510 attributes, from the Sloan Digital Sky
Survey (SDSS) with data release 88. For experiment purposes, we
generated tables by random sampling the base table with different
sampling ratios from 0.03% to 10%. Since data exploration usually
operates on a dataset that fits in memory, we used the 1% sampled
dataset, which is the largest that fits in memory, as our default data
exploration space. It contains 1.9 million tuples and has the size of
9991MB after being loaded to PostgreSQL. Additional indexes are
built on the relevant attributes.
User Interest Queries: We extracted a set of queries from the
SDSS query release 8 to represent true user interests9. They allow
us to run simulations of user exploration sessions using the same
approach as [16, 17]: We precompute the answer set of each query
as the proxy of the user. We then run a data exploration session
as described in Section 2; during each iteration, when our uncer-
tainty algorithm presents a new sample to be labeled, the simulator
consults the proxy to decide to give a positive or negative label.

When choosing queries in our experiments, we consider the fol-
lowing factors : (1) pattern: query predicates can be linear or non-
linear, (2) varied query selectivities, and (3) varied query dimen-
sionalities. The queries are summarized in Table 1. Regarding
the attribute choices, (rowc, colc) represent the row and column
center positions, and have roughly evenly distributed data; (ra,
dec) are the right-ascension and declination in the spherical co-
ordinate system, and present represent skewed data (see Figure 5).
We also combine queries on (rowc, colc) and (ra, dec) to obtain
4-dimensional queries with varied selectivities, We further add a
varied number of irrelevant attributes that the dimensionality of the
exploration space goes up to 36.
Servers: Our experiments were run on five identical servers, each
with 12-cores, Intel(R) Xeon(R) CPU E5-2400 0 @2.4GHz, 64GB
memory, JVM 1.7.0 on CentOS 6.6.

5.1 Sample Retrieval Methods
We first use the general active learning framework (without mak-

ing convex assumptions) and evaluate our sample retrieval meth-
ods, the decision tree and solver methods (§4.1), for finding the
sample closest to the SVM decision boundary in each iteration. For
comparison, we also include the best sampling method reported
for active learning [7]. This method retrieves a fixed number L
of random samples at each iteration and among them chooses the
one closest to the decision boundary, denoted as x∗. L is cho-
sen under the condition that x∗ is among the top p% closest in-
stances in the original dataset with probability q. We varied L
from 500 to 50,000, whose corresponding p% and q values are
(1%, 0.993) and (0.01%, 0.993). We call these methods “random-
top-500” to “random-top-50k”. We made consistent observations
that for queries with selectivity 1% and 10%, all techniques have
marginal difference in terms of accuracy. Therefore, we show the
results for queries with 0.1%, considered as harder queries, in Fig. 6.

Expt 1 (rowc, colc): First consider Fig. 6(b) and 6(c), both for
Q2.1 with a nonlinear pattern in Table 1. We can see that random-
top-500 is much less accurate compared to random-top-50000, es-
pecially in early iterations. This is because for highly-selective
queries, it is hard to hit a good and informative sample among a

8http://www.sdss3.org/dr8/
9http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp

set of only 500 samples. However, random-top-500 only takes 0.25
second per iteration while random-top-50k takes around 25 sec-
onds due to much more samples retrieved from the database per
iteration. The accuracy of the decision tree method and the solver
method lies in between, closer to random-top-500k. The time per
iteration is around 2 seconds for the solver method and does not in-
crease with iterations; the average time of the decision tree method
is 2.86 seconds over the first 200 iterations but increases fast after
some point. Overall, our solver method finds the best trade-
off between accuracy and response time. The accuracy trends of
various methods for Q1.1 with the linear pattern are very similar,
as shown in Fig. 6(a). We omit the time plot for the same reason.

Expt 2 (ra, dec): Since the decision-tree-based method is al-
ways observed inferior to the solver method, we omit it in the fol-
lowing experiments. Fig. 6(d) shows the accuracy result of Q3.1,
which is on a skewed dataset. The solver method still approximates
well random-top-50k, especially in the early iterations, while the
response time stays slow, very similar to Fig. 6(c).

Expt 3 (rowc, colc, ra, dec): We next combine the rowc-colc
query of 1% selectivity with a ra-dec query of 1% selectivity.
As Fig. 6(e) and Fig. 6(f) show, the solver method approximates
random-top-50k for accuracy and random-top-500 for response time,
hence achieving a good tradeoff between them.

5.2 Uncertainty Sampling for Convex Queries
We next consider the convex properties of queries. We com-

pare our uncertainty sampling algorithm, Algorithm 2, to default
active learning work, Algorithm 1, for any given example retrieval
method. These algorithms are labeled as “TSM on” and “TSM off”
in Fig. 7. The x-axis is the iteration (conversation) number; at each
iteration, the user provides a label for one example. The system is
automatically terminated after 500 examples labeled either by the
user or TSM.

Expt 4: Accuracy for Q2.1 with different example retrieval meth-
ods are shown in Fig. 7(a)-7(c). At any iteration, TSM has a better
accuracy than the baseline active learning algorithm; the F1-score
of the latter does not even reach 0.99 with 500 iterations while TSM
only requires around 200-300 iterations to obtain at least 0.99 F1-
score. Overall, with TSM turned on, the user is expected to la-
bel much fewer examples while achieving higher accuracy. The
reasons are: (1) TSM keeps track of regions (i.e., the positive and
negative regions) where labels are certain based on the existing la-
beled examples, and only requires the user to label an example if
it falls in the uncertain region. As exploration proceeds, TSM re-
quires less user labeling because the uncertain region shrinks over
time. (2) SVM itself can make wrong predictions for points in the
positive and negative regions, while TSM will not (see Proposi-
tion 3.1 and 3.2), which is guaranteed to bring a better accuracy.
Accuracy for a four-dimensional query combining Q2.2 and Q3.2
is shown in Fig. 7(d). Compared with Q2.1, the increase in the di-
mensionality makes it harder to form effective certain regions for
TSM, so TSM does not help to label any example retrieved by the
solver method in early iterations and the F1-score is almost identi-
cal. But eventually the user only needs to label around 400 exam-
ples, which is a 20% reduction on the user effort.

Expt 5: We next study the effectiveness of the lower bound given
by TSM. We compute both the exact lower bound and the approxi-
mate lower bound based on 1658810 samples. The results on Q2.1
is shown in Fig. 7(e). It can be seen that the blue and red lines are
very close and both are indeed lower bounds for the black line. The
There is a gap between the truth and the lower bound but eventu-
ally the lower bound converge to the true F1-score: when the true

10Derived from Theorem 3.2 when λ = 0.99 and δ = 0.01.

9

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

��������
������

��
������

(a) Q1.1 Accuracy

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

��������
������

��
������

(b) Q2.1 Accuracy

�����

����

��

���

����

�� ���� ���� ���� ���� ����

�
��
��
��
��
��
��
��
��
��
��
��
�

���������

��������
��

������
������

(c) Q2.1 Speed

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

��������
������
������

(d) Q3.1 Accuracy

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

��������
������
������

(e) Q2.2+Q3.2 Accuracy

��

���

���

���

���

�� ���� ���� ���� ���� ����

�
��
��
��
��
��
��
��
��
��
��
��
�

���������

��������
������
������

(f) Q2.2+Q3.2 Speed

Figure 6: The accuracy and response time of various example acquisition methods on various workloads.

F1-score is 0.99, the lower bound is around 0.96. The same obser-
vation is made in Q1.1.

Expt 6: The response time per iteration for Q2.1 with TSM
turned on and off is shown in Fig. 7(f). With TSM on, we do see
overheads. The overhead increases with iteration because as explo-
ration proceeds, TSM will have better knowledge about the query
so it can help the user to label more samples and feed the labeled
samples to the learning module. We can also see that with the ap-
proximation the running time is much reduced without sacrificing
the accuracy according to Fig. 7(e).

5.3 Dimensionality Reduction
In this section, we evaluate our techniques for dimensionality re-

duction. To do so, we fix the true user interest pattern as shown in
Table 1, but add irrelevant attributes from the SDSS schema, up to
36 dimensions in total. Below we first report results using Query
2.2 (rowc-colc, nonlinear, 1% selectivity) with 2 to 34 added irrel-
evant attributes.

Expt 7: We begin by studying the effect of dimensionality on
convergence of SVM-based active learning. As Figure 8(a) shows,
the convergence of SVM active learning degrades fast with increased
dimensionality. The F-measures remain almost flat at the bottom
from 16 dimensions and higher.

Expt 8: We next compare 3 dimensionality reduction methods:
PCA as a database compression method, and Random Forests (RF)
and Gradient Boosting Regression Trees (GBRT) for online fea-
ture selection. To understand the best achievable performance, we
fed the true number of relevant attributes to the online feature se-
lection algorithms, and used a full scan of the dataset to find the
point closest to the decision boundary in each iteration. Given the
slow performance of some algorithms, we used a smaller 66k-tuple
dataset. As Figure 9 shows, Our results shown that F-scores of PCA
and RF for 36-dimensions stay close to 0, while GBRT can achieve
over 95% with 500 samples (if the number of relevant attributes is
fed to it).

Expt 9: We next use GBRT as an online feature selection tech-
nique, which is activated for feature selection from the beginning

of exploration. As mentioned, GBRT suffers from the imbalance
class problem. We next evaluate our optimization in § 4.3 that
feeds GBRT with additional positive samples from our internal
TSM model to overcome its class imbalance problem. Our results
show that this optimization indeed improves the F-score of GBRT.

In this experiment, we evaluate the effectiveness of our opti-
mization in Section 4.3 that feeds GBRT with additional positive
samples from our internal model of the data space to overcome
class imbalance. Again we manually set the value of top-k using
the number of relevant features, which marks the best achievable
performance of GBRT. Figure 8(b) shows F-scores for no feature
selection (nofs), GBRT with unbalanced training data (ufs), GBRT
with balanced training data (bfs). As can be seen, balanced training
data allows GBRT to rise earlier from the initial region of having
0 F-measure. Figure 8(c) shows the scenario that the data explo-
ration starts from two initial positive samples. Then for a convex
pattern, the optimization of taking synthetic points from the lin-
ear interpolation of the two initial positive samples works from the
beginning of data exploration. Therefore, the F-score of GBRT
with balanced training data departs from the 0 F-measure region
much earlier. This indicates that the database system can encour-
age the user to provide a few additional initial examples, which can
lead to remarkable performance gains. We further show the im-
portance scores of 36 features across iterations. Figures 8(d) and
8(e) correspond to the scores of unbalanced and balanced training
sets, respectively. The red and blue curves represent the scores of
the relevant attributes, rowc and colc. As can be seen, the scores
of these attributes become separate from others after 350 iterations
using unbalanced training data, while they become separate within
200 iterations using balanced training data.

Expt 10: We next evaluate our adaptive strategy to choose top-k
features from 36 given features. First, we compare the two strate-
gies for deciding when GBRT has gained sufficient confidence of
its ranking of feature importance scores: (1) Sum of Importance
Scores (SIS) = 1, and (2) Entropy of Importance Scores (EIS) drops
significantly below the expected entropy of uniform importance

10

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

������
�������

(a) Q2.1 with random-top-500

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

������
�������

(b) Q2.1 with random-top-50000

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

������
�������

(c) Q2.1 with solver

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
�
��
��
��

���������

������
�������

(d) Q2.2+Q3.2 with solver

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
�
��
��
��

���������

�����
�����������������
������������������

(e) Q2.1 with solver and TSM on

��

��

���

���

���

�� ���� ���� ���� ���� ����

�
��
��
�
��

�
��
��
��
��
��
��
��
�

���������

��������������
���������������

�������

(f) Q2.1 with solver

Figure 7: The effectiveness of optimizations on convex queries.

scores. Figure 8(f) shows how these two measures change over iter-
ations of data exploration. We see that after SIS reaches 1, it is quite
stable and GBRT soon starts to distinguish the true features from
the irrelevant ones. In contrast, EIS does not exhibit a clear trend
of reducing entropy and stabilizing at a low level. It is inherently
more sensitive to the change of ranking of features. Therefore, we
use the first iteration of SIS = 1 as the point that GBRT has gained
sufficient confidence. Before this point, we perform conservative
feature filtering, but after this point, perform more aggressive fea-
ture selection, as described in Section 4.3.

Figure 10(a) compares our adaptive strategy in two versions:
during conservative filtering, we select top-k features that cover
50% of the sum of scores (SIS), named 50%-adafs, or whose fea-
ture scores sum up to at least 0.5, named 0.5-adafs. As reference,
we compare to (1) a simple variant (36dim-adafs) that does not fil-
ter features until GBRT becomes confident (when sum of scores
reaches 1); (2) the baseline with no feature selection (no-fs); (3)
a hypothetical upper bound where we manually set the true top-k
(manually-2fs). As can be seen, our adaptive schemes work bet-
ter than the simple variant, and approximate the upper bound very
well, with even better performance in some iterations. In contrast,
no feature selection stays at close to 0 accuracy. Figure 10(b) shows
the feature importance scores of 0.5-adafs, where the true features
start to separate from the rest as early as 100 iterations. In terms
of time per iteration, our adaptive top-k increases from no feature
selection by a small factor within 1.6. Hence, adaptive feature se-
lection at the cost of a little extra time improves the convergence of
no feature selection dramatically.

Finally, Figure 10(c) shows the convergence of adaptive top-k
against manually setting k=2 and no feature selection for Q2.1.
This query has a lower selectivity, 0.1%, and hence convergence
is more difficult. However, our adaptive top-k increases F-measure
significantly, and even outperforms manually setting k=2. The rea-
son for the latter is that when GBRT cannot distill right features
yet, forcing it to choose only 2 features causes wrong features to be

selected, which affects active learning significantly.

5.4 Compare to Alternative Systems
We finally compare our system to two alternative systems for

explore-by-example. (1) Aide [16, 17] uses decision trees as the
classification model. If a query pattern is non-linear, it uses a dis-
junction of conjunctive linear predicates (or a collection of hyper-
rectangles in the data space) to approximate the pattern. We ob-
tained the source code from the authors. (2) LifeJoin [11] reports a
method, named “hybrid”, as its best performing method. At each it-
eration, this method uses all the labeled samples to train a collection
of weak-learners (error-free regarding the training data), extracts
basic predicates from these learners, and train a linear SVM over
these predicates. Then the linear SVM is used to seek the next sam-
ple for labeling, which is the one closest to the SVM boundary. The
final retrieval method collects the support vectors of the final SVM,
uses it as a training set to build a decision tree, and converts the
positive class of the decision tree to a query to retrieve all the ob-
jects. We reimplemented the LifeJoin with two modifications: we
used Random Forest (RF) with overfitted decision trees to build the
weak learns as RF is a better known approach than a program syn-
thesizer for this purpose, and we used our sample retrieval method
to find the one closest to the SVM boundary, avoiding scanning the
entire dataset. We tried to make parameters consistent with those
recommended in the paper, including the number of weak learners
used (10) and the number of basic features (on the order of hun-
dreds). We run all experiments up to 500 user-labeled samples.

Fig. 11 shows the results for four workloads. The main obser-
vations are: (1) For the 2D linear query (Q1.1), three systems are
similar in accuracy. For the 2D nonlinear query (Q2.1), our system
and Aide are similar, while LifeJoin is significantly worse in both
accuracy and per-iteration time. (2) For the 4D query that com-
bines linear and nonlinear predicates (Q2.2+Q3.2), the accuracy of
Aide and LifeJoin drops to below 10%, while our system achieves
85% with the per-iteration time within a few seconds. (3) Aide and

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F1
-s

co
re

Iteration

2 dim
4 dim
6 dim
8 dim

16 dim
26 dim
36 dim

(a) Effect of dimensionality on convergence

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F1
-s

co
re

Iteration

bfs
ufs

nofs

(b) Balancing classes (36-dim, 1 pos initially)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F1
-s

co
re

Iteration

bfs
ufs

nofs

(c) Balancing classes (36-dim, 2 pos initially)

 0

 0.2

 0.4

 0 100 200 300 400 500

Fe
at

ur
e

im
po

rta
nc

es

Iteration

rowc
colc

(d) Feature scores (unbalanced, 2 pos initially)

 0

 0.2

 0.4

 0.6

 0 100 200 300 400 500

Fe
at

ur
e

im
po

rta
nc

es

Iteration

rowc
colc

(e) Feature scores (balanced, 2 pos initially)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 100 200 300 400 500

Iteration

entropy
sum of scores

(f) Sum of scores vs. entropy

Figure 8: F1-score and feature importances of GBRT-based feature selection (Q2.2 with added irrelevant features).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

F1
-s

co
re

Iteration

2 dim
6 dim

16 dim
36 dim

(a) Principled Component Analysis (PCA)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

F1
-s

co
re

Iteration

2 dim
6 dim

16 dim
36 dim

(b) Random Forests

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

F1
-s

co
re

Iteration

2 dim
6 dim

16 dim
36 dim

(c) Gradient Boosting Regression Trees

Figure 9: Compare Dimensionality Reduction and Feature Selection techniques for learning Query 2.2 using a SDSS 66k dataset.

Table 2: Compare to Aide and LifeJoin for the final retrieval.

Query Metrics LifeJoin AIDE Ours

Q1.1 F-score (%) 6.1 (95.4) 95.8 88.0
retrieval time (s) 0.683 0.013 79.7

Q2.1 F-score (%) 36.9 (61.4) 86.5 93.9
retrieval time (s) 0.338 0.018 104.3

Q2.2+Q3.2 F-score (%) 0.02 (0.007) 4.6 84.9
retrieval time (s) 2.575 0.088 207.2

Q2.1+34 attr F-score (%) 1.2 (1.2) 34.0 93.9
retrieval time (s) 0.338 4.0 104.3

LifeJoin cannot handle higher-dimensional space, and have accu-
racy close to 0 for the 36D workload. (4) For ad-hoc exploration,
where the user offers to label a limited number (e.g., 100) samples,
we can achieve above 60% accuracy for 2D and 4D queries, but
lower accuracy for workloads with up to 36 dimensions.

Finally, Table 2 shows the final result retrieval after 500 iterations
and compares the three systems in both accuracy and running time.
Again, LifeJoin suffers from low accuracy, using either its decision-
tree based final retrieval method or running the SVM model over
the database (in parentheses). Aide loses accuracy for workloads
beyond 2D. Our system maintains high accuracy while having a
modest final retrieval time of a few minutes.

6. RELATED WORK
Data Exploration. Faceted search iteratively recommends query
attributes for drilling down into structured databases, but the user is
often asked to provide attribute values until the desired tuple(s) are
returned [44, 45, 29] or provides an“interestingness” measure and
its threshold [14]. Semantic windows [28] are pre-defined multidi-
mensional shape-based and content-based predicates that a user can
explore. Its utility is restricted to the case that such patterns exactly
suit the user interest. To speed up interactive exploration, adaptive
tree indexes are built [58] on parts of the data that the user has
actually queried, rather than on all the data upfront. The work [39]
specifically focuses on iterative “linear algebra programs” and pro-
poses techniques based on matrix factorization to make incremental
view maintenance substantially cheaper than re-evaluation. Most
recent work has proposed a model to interpret the variability of
likely queries in a workload [18], and dynamic prefetching of data
tiles for interactive visualization [4].

Query by Example is a specific framework for data exploration.
Earlier work on QBE focused on a visualization front-end that aims
to minimize the user effort to learn the SQL syntax [26, 35, 41, 57].
Recent work [38] proposes exemplar queries which treat a query as

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F1
-s

co
re

Iteration

0.5-adafs
36dim-adafs

50%-adafs
nofs

man-2fs

(a) Accuracy of adaptive top-k features

 0

 0.2

 0.4

 0 100 200 300 400 500

Fe
at

ur
e

im
po

rta
nc

es

Iteration

rowc
colc

(b) Scores in adaptive top-k features

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F1
-s

co
re

Iteration

0.5-adafs
50%-adafs

man-2fs
nofs

(c) Feature selection from 36-dim for Q2.1
Figure 10: Optimization of GBRT feature selection and convergence rate in number of iterations

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

����
����

��������

(a) Q1.1 Accuracy

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

����
����

��������

(b) Q2.1 Accuracy

��

��

���

���

���

�� ���� ���� ���� ���� ����

�
��
��
�
��

���������

����
����

��������

(c) Q2.2+Q3.2 Time

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

����
����

��������

(d) Q2.2+Q3.2 Accuracy

��

��

���

���

���

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

����
����

��������

(e) Q2.2+Q3.2 Time

��

����

����

����

����

��

�� ���� ���� ���� ���� ����

�
��
��
��
�

���������

����
����

��������

(f) Q2.1+34 irrelevant attributes

Figure 11: Compare our system to Aide and LifeJoin in accuracy and per-iteration time for four query workloads.

a sample from the desired result set and retrieve other tuples based
on similarity metrics, but for graph data only. The work [48] con-
siders data warehouses with complex schemas and aims to learn the
minimal project-join queries from a few example tuples efficiently.
It does not consider selection with complex predicates, which is the
main focus of our work. The work [27] helps users construct join
queries for exploring relational databases, and [31] does so by ask-
ing the user to determine whether a given output table is the result
of her intended query on a given input database. These works are
relevant yet orthogonal to our active learning based approach.

Query formulation has been surveyed in [12]. The closest to our
work is LifeJoin [11], which we described and compared in our
performance study. Query By Output (QBO) [53] takes the out-
put of some query on a database, and aims to construct an alter-
native query such that running these two queries on the database
are instance-equivalent. Das Sarma et al. [13] studied the com-
plexity of finding a query that describes the relationships between
a database and an existing view. Dataplay [1] provides a graphi-
cal interface for users to directly construct and manipulate query
trees, assuming that users already have knowledge about quantified
queries. In [55], the user is asked to provide both the input and
output relations, with a small number of sample tuples in each, in
order to synthesize a SQL query consistent with the sample tuples.

In summary, our work takes an active-learning approach with new
sampling algorithms and theory on convergence.

Active Learning. Tong and Koller [52] provide a theoretical mo-
tivation on selecting which examples to request next using the no-
tion of a version space. However, the convergence speed is un-
known. Related to our work is a lower bound on the probability
of misclassification error on the unlabeled training set based on a
large deviation theory [10]. However, the calculation of the lower
bound relies on user labeling of an additional sampled subset from
the unlabeled pool, which is not required in our work. A recent
set of papers [19, 23, 24, 25] offered probabilistic bounds for the
classification error and sample complexity. Our work differs from
these in that 1) we focus on F1-score, which suits selective user
interest queries (imbalanced classes in classification), 2) our lower
bound is deterministic. Note that different performance metrics (F
measure versus classification error) lead to different relative per-
formances of the active learning methods. Since the user interest
exploration is naturally an imbalanced problem, i.e., the true user
interest query selects way less than 50% database objects, F mea-
sure is a more suitable measure because it emphasizes the accuracy
regarding the positive class (i.e., objects in the query answer set).
Recent work [43] focuses on preference learning by pairwise com-
parison on structured entities. It uses linear SVM and the way to

13

select the next example is similar to [52].
There are also a set of stopping criteria proposed for active learn-

ing. Schohn and Cohn [46] developed a heuristic stopping rule that
labeling stops when the examples in the margin of the SVM have all
been labeled. It does not give any indication of classification error
at convergence. Four simple stopping criteria based on confidence
estimation over the unlabeled data pool and the label consistency
between consecutive training rounds of active learning have been
presented [56]. Fu and Yang use as the stopping criterion a mea-
sure on whether SVM’s separating hyperplane lies in a low density
region [21]. Vlachos defines the confidence of the SVM classifier
as the sum of the decision margins for the instances of a test set
and stops the active learning process when the confidence reaches
its peak [54]. Recent work in NLP [6] compares successive model
predictions on a set of examples that do not need to be labeled and
choose a proper set size as well as a cut-off value on a measure
of “agreement” . Another study [40] focuses on the committee-
based active learning and proposes to stop active learning when
the Selection Agreement (decision on the most informative exam-
ple selected for the next iteration) is no less than the Validation Set
Agreement (decision on the validation of the current classifier on
an unannotated dataset). The above techniques are based on var-
ious heuristics, while our work provides stronger results, namely,
provable lower bounds on the F1 accuracy measure, and uses the
lower bound as the stopping criteria for active learning.

7. CONCLUSION AND FUTURE WORK
We presented the design of a new database service for data ex-

ploration by example. We devised new uncertainty sampling algo-
rithms with formal results, and a series of optimizations to improve
performance. Our main results are: (1) Our solver method for sam-
ple retrieval achieves a good balance between accuracy and running
time. (2) For convex patterns, our TSM algorithm offers a lower-
bound for F-score, and reduces the user labeling effort. (3) For
high-dimensional space, our GBRT optimization improves F-score
from nearly 0 without feature selection, to high F-measures (above
0.8). (4) Our system significantly outperforms Aide and LifeJoin,
two alternative systems, in accuracy while achieving desired effi-
ciency for interactive exploration.

In future work, we will address more complex user interest pat-
terns such as a union of convex shapes, and explore unlabeled data
to improve accuracy. We will also explore database optimizations
using materialized views and multi-query optimization.

8. REFERENCES
[1] A. Abouzied, J. Hellerstein, and A. Silberschatz. Playful Query

Specification with DataPlay. In Proc. VLDB Endow.,
5(12):1938–1941, 2012.

[2] H. Anton. Calculus, with analytic geometry. Wiley, 1984.
[3] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull

algorithm for convex hulls. ACM Trans. Math. Softw.,
22(4):469–483, Dec. 1996.

[4] L. Battle, R. Chang, et al. Dynamic prefetching of data tiles for
interactive visualization. In SIGMOD, 1363–1375, 2016. ACM.

[5] R. N. Bhattacharya and J. .K. Ghosh On the Validity of the Formal
Edgeworth Expansion In Ann. Statist., 6(2):434–451, 1978.

[6] M. Bloodgood and K. Vijay-Shanker. A method for stopping active
learning based on stabilizing predictions and the need for
user-adjustable stopping. In CoNLL, 39–47, 2009.

[7] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel
classifiers with online and active learning. J. Mach. Learn. Res.,
6:1579–1619, Dec. 2005.

[8] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[9] L. Breiman. Manual on setting up, using, and understanding random

forests v3. 1. Statistics Department, University of California
Berkeley, 2002.

[10] C. Campbell, N. Cristianini, and A. J. Smola. Query learning with
large margin classifiers. In ICML, 111–118, 2000.

[11] A. Cheung, A. Solar-Lezama, and S. Madden. Using Program
Synthesis for Social Recommendations. In CIKM, 1732–1736, 2012.

[12] A. Cheung and A. Solar-Lezama. Computer-Assisted Query
Formulation. Found. Trends Program. Lang., 3(1):1–94, 2016.

[13] A.S. Das, A. Parameswaran, et al. Synthesizing View Definitions
from Data. ICDT, 89–103, 2010.

[14] D. Dash, J. Rao, N. Megiddo, et al. Dynamic faceted search for
discovery-driven analysis. In CIKM, 2008.

[15] Y. Diao, K. Dimitriadou, Z. Li, et al. AIDE: an automatic user
navigation system for interactive data exploration. PVLDB,
8(12):1964–1967, 2015.

[16] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: an automatic query steering framework for
interactive data exploration. In SIGMOD, pages 517–528, 2014.

[17] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. AIDE: an active
learning-based approach for interactive data exploration. TKDE,
2016. Accepted for publication.

[18] R. Ebenstein, N. Kamat, et al. Fluxquery: An execution framework
for highly interactive query workloads. SIGMOD, 1333–1345, 2016.

[19] R. El-Yaniv and Y. Wiener. Active learning via perfect selective
classification. J. Mach. Learn. Res., 13(1):255–279, Feb. 2012.

[20] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the border:
active learning in imbalanced data classification. In ACM Conference
on information and knowledge management, 127–136, 2007.

[21] C. Fu and Y. Yang. Low density separation as a stopping criterion for
active learning svm. Intelligent Data Analysis, 19(4):727–741, 2015.

[22] B. Grünbaum. Convex polytopes. In Convex Polytopes.
Springer-Verlag New York, 2 edition, 2003.

[23] S. Hanneke. Rates of convergence in active learning. Ann. Statist.,
39(1):333–361, 02 2011.

[24] S. Hanneke. Theory of disagreement-based active learning. Found.
Trends Mach. Learn., 7(2-3):131–309, June 2014.

[25] S. Hanneke. Refined error bounds for several learning algorithms. J.
Mach. Learn. Res., 17(1):4667–4721, Jan. 2016.

[26] B. E. Jacobs and C. A. Walczak. A Generalized Query-by-Example
Data Manipulation Language Based on Database Logic. IEEE
Transactions on Software Engineering, 9(1):40–57, 1983.

[27] M. Kahng, S. B. Navathe, et al. Interactive browsing and navigation
in relational databases. Proc. VLDB Endow., 9(12):1017–1028, 2016.

[28] A. Kalinin, U. Cetintemel, and S. Zdonik. Interactive data
exploration using semantic windows. In SIGMOD, 505–516, 2014.

[29] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed
Interactive Cube Exploration. In ICDE, 2014.

[30] Y. Lee and W. C. Kim. Concise formulas for the surface area of the
intersection of two hyperspherical caps. Technical report, KAIST
technical report IE-TR-2014-01, 2014.

[31] H. Li, C.-Y. Chan, and D. Maier. Query from examples: An iterative,
data-driven approach to query construction. Proc. VLDB Endow.,
8(13):2158–2169, Sept. 2015.

[32] W. Liu, Y. Diao, and A. Liu. An analysis of query-agnostic sampling
for interactive data exploration. Technical report, UM-CS-2016-003,
University of Massachusetts Amherst, 2016.

[33] G. Louppe. Understanding random forests: From theory to practice.
arXiv preprint arXiv:1407.7502, 2014.

[34] Large synoptic survey telescope: the widest, fastest, deepest eye of
the new digital age. http://http:/www.lsst.org/.

[35] D. McLeod. The translation and compatibility of SEQUEL and
Query by Example. In International Conference on Software
Engineering (ICSE),1976.

[36] J. Mercer. Functions of positive and negative type, and their
connection with the theory of integral equations. Philosophical
Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 209(441-458):415–446, 1909.

[37] D. Mottin, M. Lissandrini, Y. Velegrakis, et al. Exemplar queries:
Give me an example of what you need. PVLDB, 7(5):365–376, 2014.

[38] D. Mottin, M. Lissandrini, Y. Velegrakis, et al. Exemplar queries:
Give me an example of what you need. Proc. VLDB Endow.,
7(5):365–376, Jan. 2014.

[39] M. Nikolic, M. ElSeidy, and C. Koch. Linview: Incremental view

14

maintenance for complex analytical queries. In SIGMOD, 253–264,
2014.

[40] F. Olsson and K. Tomanek. An intrinsic stopping criterion for
committee-based active learning. In CoNLL, 138–146, 2009.

[41] G. Özsoyoglu and H. Wang. Example-Based Graphical Database
Query Languages. Computer, 26(5):25–38, 1993.

[42] L. Peng, E. Huang, et al. Uncertainty Sampling and Optimization for
Interactive Database Exploration. UMass TR, 2017, http:
//www.cs.umass.edu/˜yanlei/explore2017.pdf

[43] L. Qian, J. Gao, and H. V. Jagadish. Learning user preferences by
adaptive pairwise comparison. Proc. VLDB Endow.,
8(11):1322–1333, July 2015.

[44] S. B. Roy, H. Wang, G. Das, et al. Minimum-effort driven dynamic
faceted search in structured databases. In CIKM, 2008.

[45] S. B. Roy, H. Wang, U. Nambiar, et al. Dynacet: Building dynamic
faceted search systems over databases. In ICDE, 2009.

[46] G. Schohn and D. Cohn. Less is more: Active learning with support
vector machines. In ICML, 839–846, 2000.

[47] J. Shawe-Taylor and N. Cristianini. Section 2.2.3. kernel-defined
nonlinear feature mappings. In Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[48] Y. Shen, K. Chakrabarti, S. Chaudhuri, et al. Discovering queries
based on example tuples. In SIGMOD, 493–504, 2014.

[49] J. Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

[50] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the
reproducing kernel hilbert spaces of gaussian rbf kernels. Technical
report, IEEE Trans. Inform. Theory, 2005.

[51] A. S. Szalay, P. Z. Kunszt, A. Thakar, et al. Designing and mining
multi-terabyte astronomy archives: The sloan digital sky survey. In
SIGMOD, 451–462, 2000.

[52] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. J. Mach. Learn. Res., 2:45–66,
Mar. 2002.

[53] Q.T. Tran, C.Y. Chan, and S. Parthasarathy. Query by Output. In
SIGMOD, 535–548, 2009.

[54] A. Vlachos. A stopping criterion for active learning. Comput. Speech
Lang., 22(3):295–312, July 2008.

[55] S. Zhang and Y. Sun. Automatically synthesizing SQL queries from
input-output examples. In ASE, 224-234, 2013.

[56] J. Zhu, H. Wang, E. Hovy, and M. Ma. Confidence-based stopping
criteria for active learning for data annotation. ACM Trans. Speech
Lang. Process., 6(3):3:1–3:24, Apr. 2010.

[57] M. M. Zloof. Query-by-example: operations on hierarchical data
bases. In AFIPS, 845–853, 1976.

[58] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive
exploration of big data series. In SIGMOD, 1555–1566, 2014.

APPENDIX
A. ADDITIONAL BACKGROUND

We provide additional background in this section. To illustrate
a user interest pattern, Figure 12(a) shows a circle pattern in the
Sloan Digital Sky Survey (SDSS) database. The Aide system for
explore by example [16, 17] uses decision trees to build classifi-
cation models. To approximate the circle pattern, Aide may need
to use dozens of range predicates connected by logical and and or
operators, and require the user to label many samples to achieve
high accuracy. We also illustrate the distribution of the SVM clas-
sification model for the same query in Figure 12(b).

A.1 Primer on Support Vector Machines
For classification, the learning algorithm for SVM takes a set of

training examples in the data space, each labeled using one of the
two output classes, and builds a binary classifier that assigns la-
bels for the new test examples in the same space. SVM is a linear
classifier in the sense that it makes a classification decision based
on the value of a linear combination of an example’s characteris-
tics. Interestingly, the algorithm works not only when the training
examples from different classes are linearly separable in the data
space, but also when they are not. In the latter case, the examples
will be mapped into a much higher-dimensional space called the
feature space, where linear separation can be achieved. Among the
many hyperplanes that linearly separate the examples from differ-
ent classes either in the data space or in the feature space, the one
with the largest distance to the nearest (mapped) examples is re-
turned by the algorithm as the decision boundary. In general, the
larger the margin the lower the generalization error of the classifier.
Therefore, SVMs are also called large margin classifiers.

Formally, the decision boundary in the feature space can be de-
scribed as

y(x) = ωTφ(x) + b = 0, (5)

where x denotes a point in the data space and φ(x) is its mapped
value in the feature space. We can select two hyperplanes parallel
to the decision boundary such that there are no examples between
them, and then try to maximize their distance. Without loss of gen-
erality, we selectωTφ(x)+b = 1 andωTφ(x)+b = −1, the dis-
tance between which is 2

||ω|| , and we can state the constraints that
ωTφ(x) + b ≥ 1 for all positive examples and ωTφ(x) + b ≤ −1
for all negative examples. Maximizing the distance 2

||ω|| is equiva-
lent to minimizing ||ω||, or 1

2
||ω||2 for mathematical convenience

without changing the solution for ω and b. Putting it all together,
we have the following optimization problem:

minimize
ω,b

1

2
||ω||2

subject to ȳi(ω
Tφ(xi) + b) ≥ 1 i = 1, . . . , n.

(6)

where ȳi is the true label of a training point xi. The above is an
optimization problem with a convex quadratic objective and only
linear constraints. It can be solved using quadratic programming
(QP) and the solution gives us the optimal margin classifier.

To ensure linear separation of training examples, sometimes fea-
ture spaces may have an exponential or even infinite number of
dimensions, which would make it seem impossible to provide effi-
cient computation [47]. The main theory of SVMs states that one
can solve the dual, which is derived by introducing Lagrange mul-
tipliers αi, in lieu of the primal problem. The dual optimization

15

���

���

����

����

����

��� ��� ��� ���

�
�
��

����

(a) A circle pattern, training points
(red:+, green:−), and approximation by
decision trees (blue region).

current boundary future boundary

∆ ∆

(b) Unlabeled data in feature space (red
points:+, green points:−, grey points:
unlabeled).

(c) Distribution of samples close to the
decision boundary in the data space.

Figure 12: SVM for learning a circle query in SDSS, (rowc− 742.76)2 + (colc− 1022.18)2 < 1002.

problem is a maximization problem with parameters being the αi’s:

maximize
α

n∑
i=1

αiȳi −
1

2

n∑
i,j=1

αiαjφ(xi)
Tφ(xj)

subject to
n∑
i=1

αi = 0

(7)

It can be derived that the αi’s are zero except for the support vec-
tors, defined to be the training examples that are on the margin.
We do not show the derivation of the dual problem and its solu-
tion here due to space constraints, but one important intermediate
formula that was derived previously and will be used for our later
derivation is:

ω =

n∑
i=1

αiφ(xi) =
∑

φ(xi)∈S

αiφ(xi) (8)

where S refers to the set of support vectors. Plugging Eq. (8) to
Eq (9), the decision boundary can be rewritten as

y(x) =
∑

φ(xi)∈S

αiφ(xi)
Tφ(x) + b. (9)

Now the decision boundary requires merely the inner product be-
tween φ(x) and each support vector φ(xi).

Another benefit of the dual problem relates to the so-called Ker-
nel trick. Given a mapping φ, a kernel is defined to beK(xi,xj) =
φ(xi)

Tφ(xj). Any proposed kernel function must be validated by
Mercer’s theorem [36]. Most notably, K(xi,xj) can be inexpen-
sive to calculate because it applies to the variables in the data space,
even when φ(x) may be very expensive to calculate due to a high
dimensionality. In this case, SVMs can be learned without ever
having to explicitly find or represent vectors φ(x).

Commonly used kernels include the linear kernel, polynomial
kernel, and Gaussian kernel (a.k.a., radial basis function kernel).
Without prior knowledge of what the user interest may be, the
Gaussian kernel is considered more flexible than the linear or poly-
nomial kernels, hence used in this work. The Gaussian kernel is
defined as: KG(xi,xj) = exp(−γ||xi − xj ||2). The feature
space of the Gaussian kernel is known to be of an infinite number
of dimensions [50].

B. PROOFS FOR CONVERGENCE
Proof of Proposition 3.1:

PROOF. Since (1) e+i ∈ Q for i = 1, . . . , n+, (2) R+ is the
smallest convex set that contains ∪n

+

i=1e
+
i , and (3) Q is convex,

we can derive that R+ ⊆ Q, which means all points in R+ are
guaranteed to be positive.

Proof of Proposition 3.2:

PROOF. Let us first prove that all points in each R−i are nega-
tive. Suppose that some point x0 ∈ R−i is positive. According to

the definition of R−i ,
−−−→
x0e

−
i ∩ R

+ 6= ∅, which means we can find

a point x1 such that x1 ∈ R+ and x1 ∈
−−−→
x0e

−
i . Then e−i is on

the line segment connecting two positive points x0 and x1. This
contradicts the convex query assumption. Hence the supposition is
false and all points in R−i are negative. Since R− is just a union of
all R−i ’s, all points in R− are negative as well.

Proof of Theorem 3.1:

PROOF. At any iteration i, Deval can be partitioned into D+,
D− and Du. Recall that Deval is a projection of Dtest without
the labels. We know for certain that the labels for all points in D+

(or D−) are positive (or negative) in Dtest according to Proposi-
tion 3.1, 3.2 and the definition of D+ and D− in Definition 3.4;
only the labels for points in Du are uncertain.

Let us assume that p% points in Du are predicted as positive by
the SVM model trained at Line 23 of Algorithm 2. Denote the set
of points as Du+. Then |Du+| = p% · |Du| and we can write the
precision and recall of the trained SVM model as

precision =
|D+|+ |Du+ ∩Q|
|D+|+ |Du+| =

|D+|+ |Du+ ∩Q|
|D+|+ p% · |Du|

≥ |D+|
|D+|+ |Du|

recall =
|D+|+ |Du+ ∩Q|
|D+|+ |Du ∩Q| ≥

|D+|
|D+|+ |Du|

F1-score is the harmonic mean of precision and recall. So F1-
score is lower-bounded by |D+|/(|D+|+ |Du|).

Proof of Theorem 3.2:

PROOF. Since (np̂, nq̂)T follows Multinomial(n, p, q, 1 − p −
q), the vector converges to the bivariate Normal distribution when
n increases according to the Central Limit Theorem. Specifically,

√
n

((
p̂
q̂

)
−
(
p
q

))
D−→ N

((
0
0

)
,Σ

)
where Σ =

(
p −pq
−pq q

)
.

Define v = (p, q)T , v̂ = (p̂, q̂)T , and g(v) =
p

1− q . Then

b = g(v) and X = g(v̂). According to the Delta method [5]

supε‖Pr(
√
n|Xn − b| < ε)−

∫ ε

−ε
φσ2(t)dt‖ = O(1/

√
n)

16

where φ is the density function of the Normal distribution with
mean zero and variance σ2 = (∂g(v)/∂v)TΣ(∂g(v)/∂v) = p(1−
p− q)/(1− q)2. Therefore, the theorem is proved.

C. MORE ON OPTIMIZATIONS
We present additional techniques for expediting convergence in

this section.

C.1 TSM-based Optimization
Toward the goal of faster convergence, one useful technique falls

naturally from our Three-Set Metric (TSM) Algorithm (Algorithm 2)
for convex user interest patterns. The algorithm internally main-
tains a positive sample set and a negative set based on its partition-
ing function of the data space. Compared to a direction application
of active learning theory (Algorithm 1), which retrieves the sam-
ple closest to the current SVM decision boundary, our TSM avoids
asking the user to label the retrieved sample if it is known to belong
to its positive or negative sample set. From the user’s perspective,
the convergence has expedited because the same accuracy can be
achieved by labeling fewer samples. The performance benefits of
this optimization can be significant as we show in the evaluation.

C.2 Dimensionality Reduction Methods
In our work, we examine a range of popular feature selection

techniques in our active learning framework for data exploration.
These techniques are provided by the scikit-learn library11:

Principled Component Analysis (PCA) defines a set of orthog-
onal directions that capture the maximum variance of a dataset,
with an implicit hope that the variance along a small number of
principal components provides a reasonable characterization of the
entire dataset [49]. In our work, PCA is used as a query-agnostic
dimensionality reduction technique. That is, we use it to compress
a database table D(A1, . . . , Ad) into a new table D′(B1, . . . , Bk)
with fewer columns, k < d. Each database object has two presenta-
tions using (A1, . . . , Ad) and (B1, . . . , Bk), respectively. In each
iteration of data exploration, we display a new sample to the user
using theD(A1, . . . , Ad) representation, but train an SVM with all
existing labeled samples on D′(B1, . . . , Bk).

Random forests (RF) are an ensemble learning method that op-
erates by constructing a multitude of decision trees at training time
and outputting the mean prediction of the individual trees.

Gradient boosting regression trees (GBRT) are a gradient boost-
ing machine with decision trees as base-learners. The basic idea is
to construct a series of decision trees in a forward stagewise man-
ner, where each new decision tree is constructed to be maximally
correlated with the negative gradient of the loss function – the error
of the whole ensemble learnt so far. The additive model of GBRT
is a linear combination of the base learners.

In our work, RF and GBRT are both used for online feature se-
lection12. That is, when a user is interacting with the system for
data exploration, in each iteration we first feed all existing labeled
samples to the RF or GBRT learner, and ask the learner to return
the top-k features that are deemed most important in the learning
process (to be formally defined shortly). Next we build an SVM
classification model using only the top-k features and select the
next sample to be labeled as the object closest to the current deci-
sion boundary of the SVM model. Then we repeat these two steps
in the next iteration until the SVM classification model converges.

As our experimental results show, GBRT works better than RF
and PCA for reducing the number of features or dimensions needed

11http://scikit-learn.org/stable/
12Since feature selection is the standard term in the literature, we use “fea-
tures” and “attributes” interchangeably in this context.

to train the SVM classification model. Therefore, our work focuses
on the additional optimizations of feature selection based on GBRT.

D. ADDITIONAL EVALUATION RESULTS

D.1 Experimental Setup
Datasets: We evaluate our techniques using the “PhotoObjAll” ta-
ble, which contains 510 attributes, from the Sloan Digital Sky Sur-
vey (SDSS) with data release 813. The table contains the full photo
metric catalog quantities for SDSS imaging, one entry per detec-
tion. We downloaded around 192 million tuples. For experiment
purposes, we generated tables by random sampling the base table
with different sampling ratios, 0.03%, 1%, 10%. After loading to
PostgreSQL, the sizes were 300MB, 9991MB, and 98GB, respec-
tively. B+ tree indexes on the key attribute objid were pre-built to
facilitate example (i.e., tuple) retrieval. Since data exploration usu-
ally operates on a sampled dataset that fits in memory, we used the
1% dataset, which is the largest that fits in memory, as our default
data exploration space.

User Interest Queries: We extracted a set of queries from the
SDSS query release 8 to represent true user interests14, as shown
in Table 1. These user interest queries allow us to run simulation
of user exploration sessions: we precompute the answer set of each
query, then run a data exploration session as described in the pre-
vious sections; during each iteration, when the active learning al-
gorithm presents a new sample to be labeled, we consult the query
answer set to decide whether to give a positive or negative label.

When choosing queries in our experiments, we consider the fol-
lowing factors : (1) pattern: queries can be linear or non-linear,
(2) varied query selectivities, and (3) varied query dimensionali-
ties. The queries are summarized in Table 1: On (rowc, colc),
i.e., the row and column center positions, data are roughly evenly
distributed, and we have two groups of queries, one for the linear
pattern (Q1) and one for the non-linear (Q2). On (ra, dec), i.e., the
right-ascension and declination in the spherical coordinate system,
represent workloads with skewed data (see Figure 5). Within each
group, we consider three selectivities: 0.1%, 1% and 10%, which
we believe covers the general settings in real applications. We com-
bine queries on (rowc, colc) and (ra, dec) to obtain 4-dimensional
queries with varied selectivities, e.g., combining Q2.2 on (rowc,
colc) and Q3.3 on (ra, dec) will result in a query on (rowc, colc,
ra, dec) with selectivity 0.1%. We also consider workloads with
varied number of irrelevant attributes added such that the dimen-
sionality of the exploration space is greater than that of the query
space and goes up to 36.

We conduct 10 runs for each query and in each run, one positive
sample and one negative sample that are randomly selected will be
fed to the system as initial samples.

Servers: Our experiments were run on five identical servers, each
with 12-cores, Intel(R) Xeon(R) CPU E5-2400 0 @2.4GHz, 64GB
memory, JVM 1.7.0 on CentOS 6.6.

13http://www.sdss3.org/dr8/
14http://skyserver.sdss.org/dr8/en/help/docs/realquery.asp

17

