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Abstract

This thesis introduces new methods for statistically modelling text using topic mod-
els. Topic models have seen many successes in recent years, and are used in a variety
of applications, including analysis of news articles, topic-based search interfaces and
navigation tools for digital libraries. Despite these recent successes, the field of topic
modelling is still relatively new and there remains much to be explored. One notice-
able absence from most of the previous work on topic modelling is consideration of
language and document structure—from low-level structures, including word order
and syntax, to higher-level structures, such as relationships between documents.

The focus of this thesis is therefore structured topic models—models that combine
latent topics with information about document structure, ranging from local sen-
tence structure to inter-document relationships. These models draw on techniques
from Bayesian statistics, including hierarchical Dirichlet distributions and processes,
Pitman-Yor processes, and Markov chain Monte Carlo methods. Several methods for
estimating the parameters of Dirichlet-multinomial distributions are also compared.

The main contribution of this thesis is the introduction of three structured topic mod-
els. The first is a topic-based language model. This model captures both word order
and latent topics by extending a Bayesian topic model to incorporate n-gram statistics.
A bigram version of the new model does better at predicting future words than either
a topic model or a trigram language model. It also provides interpretable topics.

The second model arises from a Bayesian reinterpretation of a classic generative de-
pendency parsing model. The new model demonstrates that parsing performance can
be substantially improved by a careful choice of prior and by sampling hyperparame-
ters. Additionally, the generative nature of the model facilitates the inclusion of latent
state variables, which act as specialised part-of-speech tags or “syntactic topics”.

The third is a model that captures high-level relationships between documents. This
model uses nonparametric Bayesian priors and Markov chain Monte Carlo methods
to infer topic-based document clusters. The model assigns a higher probability to un-
seen test documents than either a clustering model without topics or a Bayesian topic
model without document clusters. The model can be extended to incorporate author
information, resulting in finer-grained clusters and better predictive performance.
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Chapter 1

Introduction

This thesis presents new methods for statistically modelling text. The increasing abun-
dance of electronic texts creates both problems and opportunities. Although people
are easily overwhelmed by the quantity and variety of available data, these data also
provide a fantastic opportunity for researchers, who can build better models of text
and language to improve, for example, tools for navigating, organising and managing
document collections and systems for predictive text entry and speech recognition.

Two widely-used models of text are probabilistic topic models and n-gram language
models. Probabilistic topic models (Steyvers and Griffiths, 2007) capture semantic
properties of documents, and have been used in analysis of news articles1 (New-
man et al., 2006) and scientific papers2 (Blei and Lafferty, 2007), topic-based search
interfaces3, and navigation tools for digital libraries (Mimno and McCallum, 2007). In
contrast, n-gram language models (Chen and Goodman, 1998) focus on representing
local linguistic structure, as expressed by word order. Language models form an im-
portant component of many systems: For example, cell phones use language models
for predictive text entry4, while speech recognition systems use language models to
disambiguate acoustically similar phrases (Rabiner and Juang, 1993; Jelinek, 1998).

Probabilistic topic models, such as latent Dirichlet allocation (Blei et al., 2003) and
probabilistic latent semantic analysis (Hofmann, 1999, 2001), model documents as fi-
nite mixtures of specialised distributions over words, known as topics. An important
assumption underlying these topic models is that documents are generated by first
choosing a document-specific distribution over topics, and then repeatedly selecting a
topic from this distribution and drawing a word from the topic selected. Word order
is ignored—each document is modelled as a “bag-of-words”. The weakness of this
approach, however, is that word order is an important component of document struc-

1e.g., News Articles Browser, http://yarra.ics.uci.edu/topic/nyt/
2e.g., A browsable model of the journal Science, http://www.cs.cmu.edu/˜lemur/science/
3e.g., Rexa digital library and search engine, http://rexa.info/
4e.g., T9 Text Input, http://www.t9.com/

http://yarra.ics.uci.edu/topic/nyt/
http://www.cs.cmu.edu/~lemur/science/
http://rexa.info/
http://www.t9.com/
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ture, and is not irrelevant to topic modelling. For example, two sentences may have
the same unigram statistics but be about quite different topics. Information about the
order of words used in each sentence may help disambiguate possible topics.

n-gram language models (Good, 1953; Jelinek and Mercer, 1980; Katz, 1987; Witten
and Bell, 1991; Kneser and Ney, 1995; MacKay and Peto, 1995; Teh, 2006) decompose
the probability of a string of text (such as a sentence, or document) into a product of
probabilities of individual words given some number of previous words. Put differ-
ently, these models assume that documents are generated by drawing each word from
a probability distribution specific to the context consisting of the immediately preced-
ing words. By conditioning word generation on a short sequence of previous words,
n-gram language models can be said to use local linguistic structure. One flaw in this
method is that word usage can be highly topic-dependent. For instance, “I’ll be in
the—” is likely to be followed the word “pub” in an email about weekend plans. In
an email about a business meeting, however, the word “office” is much more likely.

This thesis addresses the above shortcomings of current probabilistic topic models and
n-gram language models, by combining ideas from both modelling approaches.

Word order is just one kind of simple structure present in language. Other linguistic
structures, such as syntax, are just as important, perhaps even more so. Dependency
grammars (Tesnière, 1959) model syntactic relationships between words in a sentence
by treating each word as the dependent of some other word in the sentence. For in-
stance, in the phrase, “the girl hit the ball,” the nouns “girl” and “ball” are respectively
the subject and object of the verb “hit.” As a result, “girl” and “ball” are both consid-
ered to be direct dependents of “hit”. Another contribution of this thesis is a new de-
pendency model, which reinterprets and extends a classic dependency parser (Eisner,
1996a,b) using a Bayesian perspective and ideas from latent variable topic models.

Document collections also exhibit structure at higher levels, including structure across
document boundaries. For instance, academic papers can be thought of as arising
from particular groups or communities of individuals working on closely related top-
ics. Models that account for this kind of high-level structure, by capturing latent doc-
ument groupings, can be useful for organising and navigating document collections.
The final contribution of this thesis is therefore concerned with incorporating inter-
document structure, as represented by document groupings, into topic models.

Models that combine document structure with latent variables, as described above,
are examples of structured topic models—in some cases structure refers to local word
order or syntactic structure within a sentence, while in other cases it refers to higher-
level semantic structure between documents. This thesis addresses the need for such
structured topic models for language data, demonstrating that this is an important
new research area with much to offer in the way of powerful models and results.
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1.1 Bayesian Modelling

In Bayesian statistics, probabilities are used to describe degrees of belief. This interpre-
tation is both intuitively appealing and mathematically motivated: Any set of beliefs
can be mapped onto probabilities, so long as they satisfy Cox’s axioms—a simple set
of consistency rules (Cox, 1946). Furthermore, under this definition, probability can be
considered to be a direct extension of Boolean algebra (Jaynes, 2003). Using Cox’s ax-
ioms, probabilities can be used to describe assumptions and to make inferences under
those assumptions. This use of probabilities is extremely powerful: Not only does it
enable inferences to be drawn in a consistent fashion, even under uncertain informa-
tion, but it ensures the explicit statement of assumptions. This approach is particularly
useful for modelling text data, where it is often the case that the only certainties are
word identities—other information, such as underlying topics, syntactic structure and
relationships between documents, are unknown. Furthermore, this approach gives
rise to a modelling framework in which assumptions about the structure and proper-
ties of language must be explicitly stated, resulting in more interpretable models.

1.2 Overview

The next chapter provides a computational foundation for the other chapters in the
thesis. I introduce two fixed-point methods for estimating the hyperparameters of a
Dirichlet-multinomial distribution, and compare these methods with several previ-
ously introduced algorithms, demonstrating that an algorithm originally introduced
by MacKay and Peto (1995) and one of the two new methods are more than an order
of magnitude faster than other estimation techniques for such distributions. I also ex-
plain how to incorporate a gamma hyperprior into the new fixed-point iterations, and
describe how the log gamma recurrence relation may be used to efficiently compute
the log probability of data under a Dirichlet-multinomial distribution. The derivation
of the new algorithms for estimating hyperparameters and computing log probability,
along with the inclusion of a gamma hyperprior, are joint work with David Mimno.

The main work in this thesis consists of three chapters: Chapter 3 presents a new
n-gram language model that is based on the notion of topics. This model combines
n-gram word statistics and latent topic variables by extending a well-known Bayesian
topic model—latent Dirichlet allocation (Blei et al., 2003)—to include properties of a
hierarchical Dirichlet language model (MacKay and Peto, 1995). I explore several vari-
ants of this model, including different priors and model estimation techniques, and
derive a new “left-to-right” algorithm that may be used to compute the information
rate of unseen test data by sequentially approximating the marginalisation over latent
topics. I show that a bigram version of the new topic-based language model exhibits
better predictive performance than either a trigram hierarchical Dirichlet language
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model or latent Dirichlet allocation. Additionally, the results provide insight into mod-
elling choices that prevent inferred topics from being dominated by stop words. An
earlier version of the work in this chapter was presented at ICML5 (Wallach, 2006).

Chapter 4 introduces a Bayesian dependency parsing model for natural language,
based on the hierarchical Pitman-Yor process (Pitman and Yor, 1997; Teh, 2006). I
show that a classic dependency parser (Eisner, 1996a,b) can be substantially improved
by (a) using a hierarchical Pitman-Yor process as a prior over the distribution over
dependents of a word, and (b) sampling the parameters of the prior. These modelling
choices give roughly equal improvements in parse accuracy. An advantage of using
a Bayesian approach is the ease with which other latent variables can be included in
the model. I propose a second Bayesian dependency parsing model in which latent
state variables mediate the relationships between words and their dependents. The
model clusters parent–child dependencies into states using a similar approach to that
employed by Bayesian topic models when clustering words into topics. The latent
states may be viewed as specialised part-of-speech tags or “syntactic topics” that arise
from the relationships between words and their dependents. This is verified by in-
spection of the inferred states and by showing that they lead to modestly improved
accuracy when substituted for part-of-speech tags in the parsing model. The work in
this chapter was done with input from Charles Sutton and Andrew McCallum, who
provided useful discussions and high-level advice. This work was presented at the
Prior Knowledge for Text and Language Processing workshop6 (Wallach et al., 2008).

In chapter 5, I present a nonparametric Bayesian model for clustering documents into
groups using latent topics. The model alternates between clustering documents into
groups and inferring latent topics for each document, resulting in a topic-based group-
ing of documents. The model is evaluated using a collection of academic papers, and
assigns a higher probability to unseen test documents than either a word-based clus-
tering model or latent Dirichlet allocation. Additionally, the cluster-specific distribu-
tions over topics exhibit a good correspondence with well-known research areas. Fi-
nally, I extended the model to incorporate author information by characterising each
cluster by two distributions, one over authors and one over topics. This extension
results in finer-grained clusters, and highlights the relationships between particular
groups of topics and authors. The work in this chapter arose out of collaborations with
David Mimno (Mimno et al., 2007) and Mark Dredze (Dredze and Wallach, 2008).

In the final chapter, I summarise the key contributions of this thesis and discuss the
implications of these findings as well as possibilities for future exploration.

523rd International Conference on Machine Learning, http://www.icml2006.org/
6http://prior-knowledge-language-ws.wikidot.com/

http://www.icml2006.org/
http://prior-knowledge-language-ws.wikidot.com/


Chapter 2

Efficient Computation in
Dirichlet-Multinomial
Distributions

The work in this chapter provides a foundation for the models presented in sub-
sequent chapters and for other applications of Dirichlet-multinomial distributions.
I introduce two new methods for estimating the hyperparameters of a Dirichlet-
multinomial distribution and compare them with several previously-introduced
methods, using both real and synthetic data. This comparison demonstrates that an
algorithm introduced by MacKay and Peto (1995) is the fastest of the methods com-
pared, followed closely a new method, based on the digamma recurrence relation.
These methods are both over an order of magnitude faster than the standard estima-
tion techniques (Minka, 2003). The new method is more accurate than MacKay and
Peto’s algorithm, and can also be extended to incorporate a gamma prior over the hy-
perparameters. Finally, I show that it is possible to efficiently compute the log proba-
bility of data under a Dirichlet-multinomial distribution using the log gamma recur-
rence relation. These results have implications not only for situations where data are
directly modelled using a Dirichlet-multinomial distribution, but also for situations
where a Dirichlet-multinomial distribution forms a component of a larger model.

2.1 Dirichlet-Multinomial Distributions

Many applications involve estimating probabilities from count data—these include
text-based applications, such as language modelling (Chen and Goodman, 1998;
Rosenfeld, 2000) and topic modelling (Steyvers and Griffiths, 2007), where the prob-
abilities of interest are those of observing particular words in some context or topic,
and biological applications (Durbin et al., 1999), where the probabilities of interest of-
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ten relate to a particular nucleotide occurring at a some position in a DNA sequence.
In Bayesian statistics, such data are typically modelled using a Dirichlet-multinomial
model. Given a set of data D = {x(1), . . . ,x(D)}, consisting of D instances or contexts,
each of which consists of N·|d K-valued observations, it is assumed that these data
were generated from a set of D K-dimensional probability vectors Θ = {θd}Dd=1—one
for each context. The probability of the data under these vectors is given by

P (D |Θ) =
D∏
d=1

K∏
k=1

θ
Nk|d
k|d , (2.1)

where the quantity Nk|d is the number of observations in context d that were observed
to take on value k. It is clear from this expression that these counts contain all the
relevant information conveyed by the data about the probability vectors Θ.

Uncertainty about Θ is represented by a prior distribution over possible values. This
prior is typically taken to be a Dirichlet distribution (MacKay, 2003):

Dir (θ |αm) =
Γ(α)∏K

k=1 Γ(αmk)

K∏
k=1

θαmk−1
k δ

(
K∑
k=1

θk − 1

)
, (2.2)

where Γ(·) is the gamma function (Davis, 1972), given by

Γ(x) =
∫ ∞

0
ux−1e−u du (2.3)

for x > 0. If x is an integer, then Γ(x) = (x − 1)!. The Dirichlet distribution is pa-
rameterised by αm: Probability vector m is the mean of the distribution, also known
as the base measure, while α is a concentration parameter that determines the extent
to which typical samples from this distribution will differ from the mean m. Given a
Dirichlet prior and the dataD, the posterior distribution of each θd is another Dirichlet
with parameters {Nk|d +αmk}Kk=1. The predictive probability of observing outcome k
in context d—the original probability of interest—is therefore given by

P (k | d,D, αm) =
∫
θk|d Dir (θd | {Nk|d + αmk}Kk=1) dKθd =

Nk|d + αmk

N·|d + α
, (2.4)

where the quantityNk|d is the number of times that outcome k was observed in context
d. The quantity N·|d =

∑K
k=1Nk|d is the total number of observations in context d. The

value αmk acts as an initial “pseudocount” for outcome k in all contexts.

Given the Dirichlet-multinomial model described above, there are typically three tasks
of interest: Inferring the model “hyperparameters” αm, computing the probability
of some observed data under the model, also known as the “evidence”, and mak-
ing predictions about future observations. Performing these tasks as efficiently and
accurately as possible is important, especially for applications where they may be re-
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peated many times. For example, when inferring latent topics using a topic model, the
inference algorithm may alternate between sampling latent topics (and computing the
probability of the data given these topic assignments so convergence can be detected)
and inferring model hyperparameters (Wallach, 2006). These steps may be repeated
several thousand times, so it is particularly desirable for each individual step to take
as little time as possible. For language modelling, hyperparameters need only be in-
ferred once. However, the number of hyperparameters can be vast since there must
be an mk for every word in the vocabulary and it is common for vocabulary sizes for
large corpora to be as high as 50,000 words (Chen and Goodman, 1998).

2.2 Hyperparameter Inference

In an ideal Bayesian setting, the hyperparameters should be given a proper prior and
marginalised over when making predictions, yielding the true predictive distribution:

P (k | d,D) =
∫
P (k | d,D, αm)P (αm | D) dKαm. (2.5)

However, for many applications the posterior distribution over hyperparameters
P (αm | D) is sufficiently sharply peaked in αm that it is effectively a delta function
in comparison with P (k | d,D, αm). Equation 2.5 may therefore be approximated by
P (k | d,D, [αm]?), where [αm]? are the optimal hyperparameters (MacKay, 1992).

Assuming an improper, noninformative prior over the hyperparameters, the optimal
hyperparameters [αm]? are those that maximise the “evidence” or probability of the
data given the hyperparameters P (D |αm). The evidence is given by

P (D |αm) =
D∏
d=1

Γ(α)
Γ(N·|d + α)

K∏
k=1

Γ(Nk|d + αmk)
Γ(αmk)

(2.6)

and is concave in αm, meaning that there are no local maxima.

2.3 Estimation Techniques

The primary resource on finding the optimal hyperparameters [αm]? of a Dirichlet-
multinomial distribution given data D is by Minka (2003). Minka describes several
methods for jointly estimating α? =

∑
k [αmk]? andm?, including:

• a fixed-point iteration on the log evidence,

• a Newton iteration on the log evidence, and

• a fixed-point iteration on the leave-one-out log evidence.



Estimation Techniques 19

Unfortunately, Minka does not provide empirical results indicating how these meth-
ods compare to each other or to less well-known methods. It is therefore hard to tell
which estimation method is most appropriate (i.e., fastest and most accurate) for a
particular data set without implementing them all. A comparison of hyperparameter
estimation methods for data sets with different dimensionalities, numbers of contexts
and numbers of observations per context is consequently a much-needed resource.

In this chapter, I describe the three methods mentioned above, along with a fixed-point
iteration on the log evidence introduced by MacKay and Peto (1995). I also present
two new methods, one based on the digamma recurrence relation and one based on
an approximation for digamma differences originally described by MacKay and Peto.
I compare these methods in terms of speed and accuracy using several types of data.

2.3.1 Minka’s Fixed-Point Iteration

Minka’s fixed-point iteration for estimating optimal hyperparameters [αm]? may be
derived by starting with the logarithm of the evidence P (D |αm):

logP (D |αm) =
D∑
d=1

[
log Γ(α)− log Γ(N·|d + α) +

K∑
k=1

log Γ(Nk|d + αmk)− log Γ(αmk)

]
. (2.7)

This function may be bounded from below using the following bounds:

log Γ(z)− log Γ(z + n) ≥

log Γ(ẑ)− log Γ(ẑ + n) + [Ψ(ẑ + n)−Ψ(ẑ)] (ẑ − z) (2.8)

and

log Γ(z + n)− log Γ(z) ≥

log Γ(ẑ + n)− log Γ(ẑ) + ẑ [Ψ(ẑ + n)−Ψ(ẑ)] (log z − log ẑ), (2.9)

where n is a constant positive integer, z is a “true” positive real number, ẑ is an “ap-
proximate” positive real number and Ψ(·) is the first derivative of the log gamma
function, known as the digamma function (Davis, 1972). Treating the optimal param-
eter values [αm]? as the “true” z and the current estimate αm as the approximation ẑ,
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equations 2.8 and 2.9 may be substituted into equation 2.7, yielding

logP (D | [αm]?) ≥ B([αm]?) =
D∑
d=1

[
log Γ(α)− log Γ(N·|d + α) +

[
Ψ(N·|d + α)−Ψ(α)

]
(α− α?) +

K∑
k=1

log Γ(Nk|d + αmk) + log Γ(αmk) +

αmk

[
Ψ(Nk|d + αmk)−Ψ(αmk)

]
(log [αmk]? − log [αmk])

]
. (2.10)

All terms that do not involve [αm]? can be grouped into a constant term C:

logP (D | [αm]?) ≥ B([αm]?) =
D∑
d=1

[[
Ψ(N·|d + α)−Ψ(α)

]
(−α?) +

K∑
k=1

αmk

[
Ψ(Nk|d + αmk)−Ψ(αmk)

]
(log [αmk]?)

]
+ C. (2.11)

It is now possible to take the derivative of bound B([αm]?) with respect to [αmk]?:

∂ B([αm]?)
∂ [αmk]?

=

D∑
d=1

[
αmk

[
Ψ(Nk|d + αmk)−Ψ(αmk)

]
[αmk]?

−
[
Ψ(N·|d + α)−Ψ(α)

]]
. (2.12)

Finally, equation 2.12 can be set to zero and solved for [αmk]?:

[αmk]? = αmk

∑D
d=1 Ψ(Nk|d + αmk)−Ψ(αmk)∑D

d=1 Ψ(N·|d + α)−Ψ(α)
. (2.13)

When used repeatedly, this fixed-point iteration will result in the convergence of
[αm]? to the hyperparameter values that maximise P (D |αm) as desired.
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2.3.2 Minka’s Newton Iteration

Minka’s Newton iteration may be obtained using the first and second derivatives of
the log evidence. The first derivative of the log evidence is given by

gk =
∂ logP (D |αm)

∂ [αmk]
=

D∑
d=1

[
Ψ(α)−Ψ(N·|d + α) + Ψ(Nk|d + αmk)−Ψ(αmk)

]
. (2.14)

Similarly, the second derivatives, or Hessian, are given by

∂ logP (D |αm)
∂ [αmk]2

=

D∑
d=1

[
Ψ′(α)−Ψ′(N·|d + α) + Ψ′(Nk|d + αmk)−Ψ′(αmk)

]
(2.15)

and

∂ logP (D |αm)
∂ [αmk] ∂ [αmj ]

=
D∑
d=1

[
Ψ′(α)−Ψ′(N·|d + α)

]
k 6= j, (2.16)

where Ψ′(·) is the derivative of the digamma function, known as the trigamma func-
tion (Davis, 1972). The Hessian may also be written as a K ×K matrixH :

H = Q+ 11T z (2.17)

where

qjk = δ (j − k)
D∑
d=1

[
Ψ′(Nk|d + αmk)−Ψ′(αmk)

]
, (2.18)

z =
D∑
d=1

[
Ψ′(α)−Ψ′(N·|d + α)

]
, (2.19)

and 1 is a K-dimensional vectors, whose elements are all 1.

Given the Hessian matrix H and gradient vector g (with elements given by equa-
tion 2.14), a single Newton iteration (Nocedal and Wright, 1999) is

αm = [αm]old −H−1g. (2.20)

Minka (2003) showed that it is not necessary to explicitly invert or storeH when com-
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1: while not converged {
2: abort := false
3: λ := 1/2
4: lold := logP (D |αm)
5: while true {
6: if [H−1g]k < αmk for all k {
7: l := logP (D |αm−H−1g)
8: if l > lold {
9: lold := l

10: αm := αm−H−1g
11: λ := λ/2
12: break
13: }
14: }
15: λ := λ ∗ 2
16: if λ > 120 {
17: abort := true
18: break
19: }
20: }
21: if abort = true {
22: break
23: }
24: }

Algorithm 2.1: Minka’s Newton algorithm for optimising αm.

puting the update vectorH−1g. SinceH−1 can be written as

H−1 = Q−1 − Q
−111TQ−1

1
z + 1TQ−11

, (2.21)

the update term [H−1g]k for each αmk may be computed directly as follows:

[H−1g]k =
gk − b
qkk

, (2.22)

where

b =
1TQ−1g
1
z1

TQ−11
=

∑
j
gj
qjj

1
z +

∑
j

1
qjj

. (2.23)

Direct calculation of each update term [H−1g]k saves both computation time and stor-
age space. Minka’s entire Newton algorithm is shown in algorithm 2.1.
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2.3.3 Minka’s “Leave-One-Out” Fixed-Point Iteration

Instead of finding the hyperparameters that maximise the log evidence, as described
in section 2.2, it is also possible to approximate the log evidence by the leave-one-out
log evidence and compute the hyperparameters that optimise this function. This ap-
proximation has the advantage of involving no log gamma, digamma or trigamma
functions. It is therefore possible to use this approximation to derive a fixed-point it-
eration that uses no special functions (even log), thereby reducing computation time.

The leave-one-out log evidence is obtained by treating each observation as the last
to arrive and computing the log probability of that observation given all other ob-
servations and the hyperparameters using the predictive distribution (given in equa-
tion 2.4). The sum of these log probabilities is the leave-one-out evidence:

logP (D |αm) ' L(αm) =
D∑
d=1

K∑
k=1

Nk|d log
(
Nk|d − 1 + αmk

N·|d − 1 + α

)
. (2.24)

Minka (2003) uses the following bounds to bound equation 2.24 from below:

log (n+ z) ≥ q log z − (1− q) log n− q log q − (1− q) log (1− q) (2.25)

where

q =
ẑ

N + ẑ
, (2.26)

and

log z ≤ ẑ−1z − 1 + log ẑ. (2.27)

As was the case with the bounds in section 2.3.1, n is a constant positive integer, z is a
“true” positive real number, and ẑ is an “approximate” positive real number.

The derivative with respect to [αmk]? of the lower bound on the leave-one-out log
evidence can be set to zero and solved for [αmk]?, yielding the following expression:

[αmk]? = αmk

∑D
d=1

Nk|d

Nk|d + αmk∑D
d=1

N·|d

N·|d + α

. (2.28)

When used repeatedly, this fixed-point iteration will cause the hyperparameters [αm]?

to converge to the values that maximise the leave-one-out log evidence. A signifi-
cant advantage of this method is that it does not require any special functions, unlike
Minka’s fixed-point iteration on the log evidence or Newton iteration.
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2.3.4 MacKay and Peto’s Fixed-Point Iteration

MacKay and Peto (1995) present a fixed-point iteration on the log evidence for use in
situations where [αmk]? < 1 for all k and α? > 1. This iteration may be obtained by
starting with the first derivative of the log evidence, as given in equation 2.14.

MacKay and Peto note that for Nk|d ≥ 1, the digamma recurrence relation (Davis,
1972) may be used to express Ψ(Nk|d + αmk)−Ψ(αmk) as follows:

Ψ(Nk|d + αmk)−Ψ(αmk) =
1

αmk
+

1
1 + αmk

+ · · ·+ 1
Nk|d − 1 + αmk

(2.29)

=
1

αmk
+
Nk|d∑
f=2

1
f − 1 + αmk

. (2.30)

If αmk < 1, the sum in equation 2.30 can be approximated using a first-order Taylor
series expansion around αmk = 0—i.e., a Maclaurin series (Riley et al., 2006):

Nk|d∑
f=2

1
f − 1 + αmk

'
Nk|d∑
f=2

1
f − 1

− αmk

Nk|d∑
f=2

1
(f − 1)2

+O([αmk]2). (2.31)

Substituting this approximation into equation 2.30 gives

Ψ(Nk|d + αmk)−Ψ(αmk) '
1

αmk
+
Nk|d∑
f=2

1
f − 1

− αmk

Nk|d∑
f=2

1
(f − 1)2

. (2.32)

By taking the derivative of Stirling’s approximation for the log gamma function (Riley
et al., 2006), Ψ(α) and Ψ(N·|d + α) can be approximated as follows:

Ψ(α) ' logα− 1
2α
, (2.33)

Ψ(N·|d + α) ' log (N·|d + α)− 1
2(N·|d + α)

. (2.34)

These approximations are appropriate for large α. Substituting equations 2.32, 2.33
and 2.34 into the first derivative of the log evidence (equation 2.14) gives

∂ logP (D |αm)
∂ [αmk]

'

∑
{d |Nk|d≥1}

Nk|d∑
f=2

1
f − 1

− αmk

Nk|d∑
f=2

1
(f − 1)2

+
1

αmk

+

D∑
d=1

[
logα− 1

2α
− log (N·|d + α) +

1
2(N·|d + α)

]
. (2.35)
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Letting

K(α) = −
D∑
d=1

[
logα− 1

2α
− log (N·|d + α) +

1
2(N·|d + α)

]
(2.36)

=
D∑
d=1

log
N·|d + α

α
+

1
2

D∑
d=1

N·|d

α(N·|d + α)
, (2.37)

equation 2.35 can be written as

∂ logP (D |αm)
∂ [αmk]

'

∑
{d |Nk|d≥1}

Nk|d∑
f=2

1
f − 1

− αmk

Nk|d∑
f=2

1
(f − 1)2

+
1

αmk

−K(α), (2.38)

Having done this, equation 2.38 can be set to zero and multiplied by x = 1/αmk:

∑
{d |Nk|d≥1}

x2 + x

Nk|d∑
f=2

1
f − 1

−
Nk|d∑
f=2

1
(f − 1)2

− xK(α) = 0. (2.39)

The resultant equation can then be rearranged as follows:

Vk x
2 + (Gk −K(α)) x−Hk = 0, (2.40)

where

Vk =
∑

{d |Nk|d≥1}

1, (2.41)

Gk =
∑

{d |Nk|d≥1}

Nk|d∑
f=2

1
f − 1

, (2.42)

Hk =
∑

{d |Nk|d≥1}

Nk|d∑
f=2

1
(f − 1)2

. (2.43)

The quantity Vk is the number of contexts in which outcome k has been seen at least
once. The expression for Gk can be simplified by rewriting equation 2.42 as

Gk =
∑

{d |Nk|d≥1}

maxdNk|d∑
f=2

1
f − 1

δ (f ≤ Nk|d). (2.44)

The delta function δ (f ≤ Nk|d) ensures that terms involving f =
Nk|d + 1 . . . maxdNk|d are excluded from the sum over f . Having rewritten Gk



Estimation Techniques 26

in this manner, the order of the sum over d and f can be reversed to give

Gk =
maxdNk|d∑

f=2

∑
{d |Nk|d≥1}

1
f − 1

δ (f ≤ Nk|d) (2.45)

=
maxdNk|d∑

f=2

Nfk

f − 1
(2.46)

where Nfk =
∑
{d |Nk|d≥1} δ (f ≤ Nk|d) is the number of contexts in which outcome k

has been seen f or more times. Similarly, the expression for Hk may be simplified to

Hk =
maxdNk|d∑

f=2

Nfk

(f − 1)2
. (2.47)

MacKay and Peto’s fixed-point iteration is finally obtained by solving equation 2.40
for x = 1/αmk using the quadratic formula (Riley et al., 2006). This gives:

αmk =
2Vk

K(α)−Gk +
√

(K(α)−Gk)2 + 4HkVk
. (2.48)

The optimal hyperparameters [αm]? can be found by alternating between using equa-
tion 2.48 to find αm and setting α to

∑K
k=1 αmk until convergence is reached. This

equation has two nice properties: Firstly, it contains no special functions. Secondly,
the only term that depends on the hyperparameters is K(α)—the other terms depend
only on the data and therefore do not need to be recomputed during estimation.

2.3.5 Two New Fixed-Point Iterations

In this section, I present two new methods for estimating Dirichlet-multinomial hy-
perparameters. Both methods use Minka’s fixed-point iteration on the log evidence
as a starting point and neither involve any special functions other than log. Unlike
MacKay and Peto’s fixed-point iteration (described in the previous section) these new
methods are valid for all αmk and α. The first method arises from two observations:
Firstly, that identical terms may be grouped together, and secondly, that the difference
between two digamma functions may be computed efficiently using the digamma re-
currence relation. The second method also involves the grouping of identical terms,
but combines this rearrangement with an approximation for the difference between
two digamma functions, originally introduced by MacKay and Peto (1995).
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Method 1: Using the Digamma Recurrence Relation

The first method may be derived by starting with Minka’s fixed-point iteration:

[αmk]? = αmk

∑D
d=1 Ψ(Nk|d + αmk)−Ψ(αmk)∑D

d=1 Ψ(N·|d + α)−Ψ(α)
. (2.49)

Letting Ck(n) be the number of contexts in which k has been seen exactly n times,

Ck(n) =
D∑
d=1

δ (Nk|d − n), (2.50)

the numerator in equation 2.49 may be rewritten as follows:

D∑
d=1

Ψ(Nk|d + αmk)−Ψ(αmk) =

maxdNk|d∑
n=1

Ck(n) [Ψ(n+ αmk)−Ψ(αmk)] . (2.51)

Similarly, the denominator may be rewritten as

D∑
d=1

Ψ(N·|d + α)−Ψ(α) =
maxdN·|d∑
n=1

C·(n) [Ψ(n+ α)−Ψ(α)] , (2.52)

where C·(n) is the number of contexts that contain a total of n observations:

C·(n) =
D∑
d=1

δ (N·|d − n). (2.53)

For each outcome k, {Ck(n)}maxdNk|d
n=1 can be considered to be a histogram with

maxdNk|d bins, each containing the number of contexts in which k has been seen ex-

actly n times. Similarly, {C·(n)}maxdN·|d
n=1 may be viewed as a histogram with maxdN·|d

bins, each containing the number of contexts that contain exactly n observations.

Substituting equations 2.51 and 2.52 into equation 2.49 gives

[αmk]? = αmk

∑maxdNk|d
n=1 Ck(n) [Ψ(n+ αmk)−Ψ(αmk)]∑maxdN·|d

n=1 C·(n) [Ψ(n+ α)−Ψ(α)]
. (2.54)

The extent to which this rearrangement will speed up computation depends on the
number of contexts that are identical to each other along some dimension k. If many
contexts d have the same count value Nk|d = n for some outcome k, then the time
taken to compute equation 2.54 will be reduced. The more outcomes for which this
is the case, the greater the reduction. Finally, when using the rearrangement as part
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of an algorithm that alternates between updating the counts to reflect latent state and
estimating the hyperparameters (e.g., when inferring latent topics in a topic model),
the histograms do not need to be computed from scratch prior to each round of hyper-
parameter estimation—they can be incrementally updated as the counts are changed.

Digamma functions are usually computed using algorithm AS 103 (Bernardo, 1976)
which relies on an asymptotic expansion involving Bernoulli numbers. However, if
the only calculations involving digamma functions are differences of digamma func-
tions, then the digamma recurrence relation (Davis, 1972) can be used instead:

Ψ(1 + z) = Ψ(z) +
1
z
. (2.55)

This identity can be expanded recursively for any positive integer n to give

Ψ(n+ z) = Ψ(z) +
n∑
f=1

1
f − 1 + z

. (2.56)

Rewriting gives the following expression:

Ψ(n+ z)−Ψ(z) =
n∑
f=1

1
f − 1 + z

. (2.57)

Substituting equation 2.57 into equation 2.54 gives:

[αmk]? = αmk

∑maxdNk|d
n=1 Ck(n)

∑n
f=1

1
f−1+αmk∑maxdN·|d

n=1 C·(n)
∑n

f=1
1

f−1+α

. (2.58)

However, for any positive integer n,

n∑
f=1

1
f − 1 + z

=
n−1∑
f=1

1
f − 1 + z

+
1

n− 1 + z
. (2.59)

Consequently, for each n in equation 2.58, where n = 1 . . .maxdNk|d in the case of
the numerator and n = 1 . . .maxdN·|d in the case of the denominator, the (previously-
computed) digamma difference for n − 1 may be used as a starting point, thereby
reducing the number of new calculations required for each successive n to one. Pseu-
docode for the complete fixed-point iteration is given in algorithm 2.2.

Method 2: Approximating Digamma Differences

Instead of decomposing the digamma differences in equation 2.54 using the digamma
recurrence relation, it is also possible to approximate them using the following ap-
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1: while not converged {
2: D := 0
3: S := 0
4: for n = 1 . . .maxdN·|d {
5: C·(n) :=

∑D
d=1 δ (N·|d − n)

6: D := D + 1/(n− 1 + α)
7: S := S + C·(n)D
8: }
9: for k = 1 . . .K {

10: D := 0
11: Sk := 0
12: for n = 1 . . .maxdNk|d {
13: Ck(n) :=

∑D
d=1 δ (Nk|d − n)

14: D := D + 1/(n− 1 + αmk)
15: Sk := Sk + Ck(n)D
16: }
17: αmk := αmk Sk/S
18: }
19: }

Algorithm 2.2: The first new fixed-point algorithm. This method is based on
grouping identical terms and using the digamma recurrence relation.

proximation, described by MacKay and Peto (1995)1:

Ψ(n+ z)−Ψ(z) =
1
z

+ log
n+ z − 1

2

z + 1
2

. (2.60)

This results in the second of the two new fixed-point iterations:

[αmk]? = αmk

∑maxdNk|d
n=1 Ck(n)

(
1

αmk
+ log n+αmk− 1

2

αmk+
1
2

)
∑maxdN·|d

n=1 C·(n)
(

1
α + log n+α− 1

2

α+ 1
2

) . (2.61)

2.3.6 Efficiently Computing Nfk in MacKay and Peto’s Method

The histograms described in the previous section can also be used in MacKay and
Peto’s fixed-point iteration (section 2.3.4) to efficiently compute each Nfk value (the
number of contexts in which outcome k has appeared f or more times) for f =

1MacKay and Peto originally suggested this approximation for use in a gradient-based algorithm,
such as conjugate gradient (Nocedal and Wright, 1999). In practice, even with this approximation, con-
jugate gradient was found to be much slower than the other methods discussed in this chapter.
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2 . . .maxdNk|d. This can be seen by noting that Nfk may be defined as follows:

Nfk =
D∑
d=1

δ (f ≤ Nk|d) (2.62)

=
maxdNk|d∑

n=f

D∑
d=1

δ (Nk|d − n) (2.63)

=
maxdNk|d∑

n=f

Ck(n) (2.64)

= N(f+1)k + Ck(f). (2.65)

In other words, the complete set of {Nfk}
maxdNk|d
f=2 values for any k can be computed

by starting with f = maxdNk|d and working down to f = 2 using equation 2.65.

2.4 Experiments

The following seven hyperparameter estimation algorithms (all described in the pre-
vious section) were compared using synthetic data and natural language data:

• Minka’s fixed-point iteration on the log evidence,

• Minka’s Newton iteration on the log evidence,

• Minka’s fixed-point iteration on the leave-one-out log evidence,

• MacKay and Peto’s fixed-point iteration on the log evidence,

• new method based on the digamma recurrence relation,

• new method based on MacKay and Peto’s digamma difference approximation,

• MacKay and Peto’s method with histogram-based computation of Nfk .

All seven estimation methods were compared in terms of computation time and accu-
racy. Computation time was measured in milliseconds, while accuracy was computed
using two metrics: the Kullback-Leibler divergence between the true base measure
and inferred base measure, and the relative error in the concentration parameter esti-
mate. The Kullback-Leibler divergence is a measure (in bits) of the distance between
a “true” probability distribution (in this case, the true base measure mtrue) and some
other probability distribution (in this case, the inferred base measurem?):

DKL(mtrue ‖m?) =
K∑
k=1

mtrue
k log2

mtrue
k

m?
k

. (2.66)
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The relative error in the concentration parameter estimate α? is given by

ε =
|αtrue − α?|

αtrue . (2.67)

The log probability of unseen test data was not used as an accuracy metric. A less
accurate estimation method may actually assign a higher probability to unseen test
data than a more accurate method, by effectively performing smoothing and reduc-
ing overfitting.2 Although this property may superficially seem desirable, using an
estimation method to perform smoothing is not a principled way of alleviating over-
fitting, and there are better ways of addressing this problem (for example, by using
an appropriate prior). Consequently, none of the methods discussed in this chapter
were evaluated using the log probability of unseen test data. Instead, the estimated
hyperparameters were compared to the true hyperparameters, as described above.

2.4.1 Synthetic Data

There are several different quantities that can be varied when generating synthetic
data from a Dirichlet-multinomial distribution. These are:

• Dimensionality K,

• the number of instances or contexts D,

• the number of observations per context N ,

• the concentration parameter α, and

• the base measurem.

To compare the seven hyperparameter estimation methods, 1,296 types of synthetic
data were generated, each characterised by a particular set of K, D, N and α values.
The values used to generate the data sets are shown in table 2.1. The base measure m
was fixed for all data sets of dimensionality K, and was itself drawn from a Dirichlet
distribution with a concentration parameter of 1.0 and a uniform base measure. Fif-
teen data sets of each type (i.e., set of K, D, N and α values) were generated so that
results for a given type of data could be averaged over multiple different data sets.

Each method was assumed to have converged when the absolute change between
successive iterations in every αmk value was less than 10−6. The computation times3

for each method are shown in figure 2.1a. Every point represents the time taken by a

2Minka’s fixed-point iteration on the leave-one-out log evidence is an example of a less accurate esti-
mation method that often assigns a higher probability to test data than more accurate methods. This is
due to its use of the leave-one-out evidence, a function which is based on cross-validation and has pre-
viously been used to derive smoothing methods, such as Good-Turing (McAllester and Schapire, 2003).

3All code was written in JavaTM. All experiments were run on a single core of a two processor, dual-
core, hyperthreaded Intel R© Xeon 3GHz machine with 8GB of RAM, which was otherwise unutilised.
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Dimensionality # Contexts # Observations Conc. Parameter
K D N α

5 50 50 0.5
10 100 100 1
20 200 200 2
50 500 500 5

100 1,000 1,000 10
200 2,000 2,000 20

Table 2.1: Full set of parameter values used for synthetic data generation.

single method on a particular type of data (characterised by a set ofK,D,N and α val-
ues), averaged over ten data sets of that type. For each method, the types of data are
ordered (left to right) by increasing K, D, N and α, in that order. The fastest estima-
tion method is almost always MacKay and Peto’s fixed-point iteration with histogram-
based computation of Nfk . The new method based on the digamma recurrence rela-
tion and MacKay and Peto’s method without histogram-based computation ofNfk are
also very fast—often over an order of magnitude faster than any of Minka’s methods.

Although figure 2.1a gives an idea of the overall ranking of each method, it is also
useful to look at the differences in log time between each method and a single “bench-
mark” method. This representation eliminates common structure in the results (i.e.,
estimation always takes longer on some data sets, regardless of the method used) and
highlights differences that might otherwise be obscured by the commonalities. For
each method and type of data, the difference in log time is computed as follows:

∆ = log t− log tbench, (2.68)

where t is the time taken (measured in milliseconds) by the method in question, and
tbench is the time taken by the benchmark method on the same type of data.

The differences in log time are shown in figure 2.1b. MacKay and Peto’s method with
histogram-based computation of Nfk was chosen as the benchmark method since it
appears to be faster than the other methods for almost all types of data. Figure 2.1b
confirms that this method is indeed faster than the other methods for almost all types
of data. However, Minka’s fixed-point iterations on the log evidence and leave-one-
out log evidence, as well as the new method based on the digamma recurrence relation
and the new method based on MacKay and Peto’s digamma difference approximation,
are faster than the benchmark method for 30, 95, 134 and 84 (out of 1,296) types of data,
respectively. The types of data for which the new methods are faster are characterised
by small K and D and large N—exactly the types of data for which the rearrange-
ments that gave rise to the new methods are likely to provide the most benefit.

The Kullback-Leibler divergences between the true base measures and the estimated
base measures are shown in figure 2.2a. Again, each point represents the performance
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(a) Computation time (ms) for each method.
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(b) Differences in log computation time (base e) for each method.

Figure 2.1: (a) shows the computation time for each method. (b) shows the differ-
ences in log time taken (base e) relative to MacKay and Peto’s fixed-point method
with histogram-based computation of Nfk

. “FP” is Minka’s fixed-point iteration
on the log evidence, “NR” is Minka’s Newton method, “LOO” is Minka’s fixed-
point iteration on the leave-one-out log evidence, “MP” is MacKay and Peto’s
method without histogram-based computation ofNfk

, “Exact” is the new method
based on the digamma recurrence relation, “Apprx.” is the new method based
on MacKay and Peto’s approximation for digamma differences, while “MP+H”
is MacKay and Peto’s algorithm with histogram-based computation of Nfk

.



Experiments 34

K
L

 D
iv

er
ge

nc
e

1e
−

04
1e

−
02

1e
+

00

NR LOO MP/MP+H FP/Exact Apprx.

(a) Kullback-Leibler divergence between the true and inferred base measures.
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(b) Differences in log Kullback-Leibler divergence (base e). Higher is worse.

Figure 2.2: (a) shows Kullback-Leibler divergence between the true and inferred
base measures for each method. (b) shows the differences in log Kullback-Leibler
divergence (base e) relative to the new method based on the digamma recurrence
relation. “NR” is Minka’s Newton method, “LOO” is Minka’s fixed-point iter-
ation on the leave-one-out log evidence, “MP/MP+H” is MacKay and Peto’s
fixed-point iteration (both with and without histogram-based computation of
Nfk

, “FP/Exact” is Minka’s fixed-point iteration on the log evidence and the new
method based on the digamma recurrence relation, and “Apprx.” is the new
method based on MacKay and Peto’s approximation for digamma differences.
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of a single method on a particular type of data. For each method, the types of data are
ordered (left to right) by increasing K, D, N and α, in that order. Since Minka’s fixed-
point iteration and the new method based on the digamma difference relation effec-
tively perform the same calculations, albeit using different methods, their Kullback-
Leibler divergences are identical. A single set of results is therefore reported for this
pair of methods. Similarly, the Kullback-Leibler divergences for MacKay and Peto’s
fixed-point iterations with and without the histogram-based computation of Nfk are
also identical, so a single set of results is reported for this pair of methods too.

The least accurate methods (measured in terms of the Kullback-Leibler divergence
between the true and estimated base measures) appear to be Minka’s fixed-point it-
eration on the leave-one-out log evidence and MacKay and Peto’s method. Minka’s
other methods and the two new methods all exhibit relatively similar accuracy.

It is also useful to examine the differences in log Kullback-Leibler divergence be-
tween each method and a benchmark method. These differences are shown in fig-
ure 2.2b, using the new method based on the digamma recurrence relation as the
benchmark method. The differences between the benchmark method and new method
based on MacKay and Peto’s digamma difference approximation are negligible. The
other methods—particularly Minka’s leave-one-out fixed-point iteration and MacKay
and Peto’s methods—all achieve worse accuracy than the benchmark method. For
MacKay and Peto’s methods, these differences are most pronounced for small K.

The relative errors in the estimated concentration parameters are shown in figure 2.3a.
The Newton method the worst relative error by far, particularly for data sets with
large K—for these data sets the relative error is sufficiently large that the method is
rendered effectively useless. MacKay and Peto’s fixed point iterations also exhibit
a fairly high relative error, particularly for data sets with small K. The new fixed-
point iteration based on the digamma recurrence relation exhibits smallest relative
error, followed by the new method based on MacKay and Peto’s digamma difference
approximation, and Minka’s fixed-point iteration on the leave-one-out log evidence.

Figure 2.3b shows the differences in log relative error between each estimation method
and the new method based on the digamma recurrence relation. It is clear from this
figure that the new method is almost always more accurate than the other methods,
measured in terms of the relative error in the estimated concentration parameter.

2.4.2 Natural Language Data

While the results in the previous section give a general guide to the relative speed and
accuracy of the seven estimation methods, the data used to compare the methods are
not especially representative of language data—the focus of this thesis. Each method
was therefore also used to estimate the hyperparameters of a Dirichlet-multinomial
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(a) Relative error in the estimated concentration parameters.
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(b) Differences in log relative error (base e).

Figure 2.3: (a) shows the relative error in the estimated concentration param-
eters. (b) shows the differences in log relative error (base e), using the the
new method based on the digamma recurrence relation as a benchmark. “NR”
is Minka’s Newton method, “LOO” is Minka’s leave-one-out fixed-point itera-
tion, “MP/MP+H” is MacKay and Peto’s fixed-point iteration (with and without
histogram-based computation of Nfk

), “FP/Exact” is Minka’s fixed-point itera-
tion and the new method based on the digamma recurrence relation, “Apprx.” is
the new method using MacKay and Peto’s digamma difference approximation.
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# Sentences # Tokens Vocabulary Size

5,000 119,202 14,048
10,000 238,431 20,269
15,000 357,690 24,828
20,000 476,599 28,562

Table 2.2: Average sizes for the data sets drawn from the Penn Treebank.

bigram language model, using natural language data. In a bigram language model,
each word in the vocabulary is treated as a context. The number of observations in
each context w is N·|w—the number of tokens that immediately follow a token of type
w. The data sets used to compare the methods were random subsets of the Penn Tree-
bank (Marcus et al., 1993), with sizes shown in table 2.2. The computation time for
each method and data set size was was obtained by averaging over fifteen randomly
sampled data sets of that size. Since these data are naturally occurring (the true hyper-
parameters are unknown), it is not possible to measure the accuracy of each method
using the Kullback-Leibler divergence between the true and estimated base measures,
or the relative error in the concentration parameter estimate. Although it is possible
to compute the probability assigned to unseen test data, this metric is undesirable due
to its bias towards less accurate estimation methods (as explained previously).

The computation times for each method are shown in figure 2.4. As data set size in-
creases, so does the time taken. Minka’s fixed-point iteration on the log evidence is
the slowest method. In contrast, the new fixed-point iteration based on the digamma
recurrence relation and MacKay and Peto’s method (with and without histogram-
based computation of Nfk are over an order of magnitude faster. The fastest method
is MacKay and Peto’s fixed-point iteration with histogram-based computation of Nfk .

2.5 Incorporating a Gamma Hyperprior

The estimation methods discussed in the previous sections all assumed an improper
prior over αm. However, if specific properties of the hyperparameters are known, it
may be desirable to compute the hyperparameter values that maximise

P (αm | D) ∝ P (D |αm)P (αm), (2.69)

where P (αm) is a proper “hyperprior” or prior over the hyperparameters.

Minka’s fixed-point iteration and the new fixed-point methods presented in sec-
tion 2.3.5 can all be modified to incorporate a hyperprior. Typically, each hyperpa-
rameter αmk is assumed to have been independently drawn from some univariate
prior distribution P (αmk). The gamma distribution is a common choice for positive
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Figure 2.4: Computation time for estimation method on natural language data.
“FP” is Minka’s fixed-point iteration, “NR” is Minka’s Newton method, “LOO” is
Minka’s leave-one-out fixed-point iteration, “MP” is MacKay and Peto’s method
(without histogram-based computation ofNfk

), “Exact” is the new method based
on the digamma recurrence relation, “Apprx.” is the new method based on
MacKay and Peto’s digamma difference approximation, and “MP+H” is MacKay
and Peto’s fixed-point iteration with histogram-based computation of Nfk

.

real-valued variables such as αmk. It is parameterised by two values s and c:

P (αmk | s, c) =
1

Γ(c)s

(αmk

s

)c−1
exp
−αmk

s
. (2.70)

In the limit sc = 1, c → 0, this distribution becomes a noninformative improper prior.
For certain values of s and c, the gamma distribution exhibits a spike at αmk = 0—
an artifact of an inappropriate choice of basis. However, this artifact can be avoid by
working in terms of lk = log (αmk). The distribution over lk is given by

P (lk | s, c) = P (αmk | s, c)
∣∣∣∣∂αmk

∂lk

∣∣∣∣ (2.71)

=
1

Γ(c)

(αmk

s

)c
exp
−αmk

s
. (2.72)

Minka’s fixed-point iteration can be modified to incorporate a gamma prior over each
αmk by adding the logarithm of equation 2.72 for each k to the lower bound on the
log evidence given in equation 2.11. This results in a lower bound on the posterior
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distribution over αm. Taking the derivative of this bound with respect to αmk gives

∂ B([αm]?)
∂ [αmk]?

=

D∑
d=1

[
αmk

[
Ψ(Nk|d + αmk)−Ψ(αmk)

]
[αmk]?

−Ψ(N·|d + α) + Ψ(α)

]
+

c

[αmk]?
− 1
s
. (2.73)

Setting this derivative to zero and solving for [αmk]? yields

[αmk]? = αmk

∑D
d=1

[
Ψ(Nk|d + αmk)−Ψ(αmk)

]
+ c∑D

d=1

[
Ψ(N·|d + α)−Ψ(α)

]
− 1

s

. (2.74)

The rearrangements described in section 2.3.5 can be applied to this fixed-point itera-
tion to give variants of the new methods that include a gamma prior over each αmk.

2.6 Efficiently Computing the Log Evidence

Rearrangements similar to those that gave rise to the new fixed-point methods de-
scribed in section 2.3.5 can also be used when computing the log evidence.

The log evidence is given by

logP (D |αm) =
D∑
d=1

[
log Γ(α)− log Γ(N·|d + α) +

K∑
k=1

log Γ(Nk|d + αmk)− log Γ(αmk)

]
. (2.75)

However, this may be rewritten as

logP (D |αm) =

K∑
k=1

maxdNk|d∑
n=1

Ck(n)
[
log Γ(Nk|d + αmk)− log Γ(αmk)

]−
maxdN·|d∑
n=1

C·(n)
[
log Γ(N·|d + α)− log Γ(α)

]
, (2.76)

where Ck(n) is the number of contexts that contain exactly n observations of value k
and C·(n) is the number of contexts that contain exactly n observations in total. Like
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1: L := 0
2: S := 0
3: for n = 1 . . .maxdN·|d {
4: C(n) :=

∑D
d=1 δ (N·|d − n)

5: L := L+ log (n− 1 + α)
6: S := S − C·(n)L
7: }
8: for k = 1 . . .K {
9: L := 0

10: for n = 1 . . .maxdNk|d {
11: Ck(n) :=

∑D
d=1 δ (Nk|d − n)

12: L := L+ log (n− 1 + αmk)
13: S := S + Ck(n)L
14: }
15: }
16: return S

Algorithm 2.3: Computing the log evidence.

the digamma function, the log gamma function also has a recurrence relation:

log Γ(n+ z) = log Γ(n− 1 + z) + log (n− 1 + z) (2.77)

=
n∑
f=1

log (f − 1 + z) + log (z). (2.78)

Rearranging equation 2.78 and substituting it into equation 2.76 gives

logP (D |αm) =

K∑
k=1

maxdNk|d∑
n=1

Ck(n)
n∑
f=1

log (f − 1 + αmk)

−
maxdN·|d∑
n=1

C·(n)
n∑
f=1

log (f − 1 + α). (2.79)

However, for any positive integer n,

n∑
f=1

log (f − 1 + z) =
n−1∑
f=1

log (f − 1 + z) + log (n− 1 + z). (2.80)

Consequently, for each n in equation 2.79, the (previously-computed) log gamma dif-
ference for n − 1 may be used as a starting point when computing the sum over f ,
thereby reducing the number of new calculations required for each n to one. Pseu-
docode for computing the log evidence using this method is in algorithm 2.3.
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2.7 Conclusions

In this chapter, I introduced two new methods for estimating the hyperparameters
of a Dirichlet-multinomial distribution, and compared them with several previously-
introduced estimation methods. Using both real and synthetic data, I demonstrated
that a method originally introduced by MacKay and Peto (1995), as well as a new
method based on the digamma recurrence relation, are faster than standard estima-
tion methods by over an order of magnitude. I also showed that the new method is
the most accurate, and can be extended to incorporate a gamma hyperprior. Lastly,
I demonstrated that decompositions similar to those used to derive the new estima-
tion methods may be used to derive an algorithm for efficiently computing the log
probability of data under a Dirichlet-multinomial model. Due to their speed and ac-
curacy benefits, the estimation method based on the digamma recurrence relation and
corresponding log probability algorithm are used throughout subsequent chapters.



Chapter 3

Topic Modelling: Beyond
Bag-of-Words

In this chapter, I develop a new hierarchical Bayesian model that incorporates both n-
gram statistics and latent topic variables by extending a unigram topic model (Blei
et al., 2003) to include properties of a bigram language model (MacKay and Peto,
1995). I compare several variants of this topic-based language model, involving differ-
ent priors and inference techniques, and introduce a new algorithm for “left-to-right”
evaluation of topic models. The new model exhibits better predictive performance
than even a trigram language model, and yields topics that are clearly interpretable.
Additionally, the model provides insight into modelling choices that prevent latent
topics discovered using unigram statistics from being dominated by stop words.

3.1 Introduction

Recently, much attention has been given to generative Bayesian models of textual cor-
pora, designed to reveal inter- or intra-document statistical structure. Such models
typically fall into one of two categories—those that generate each word on the basis
of some number of preceding words or word classes (MacKay and Peto, 1995; Gold-
water et al., 2006; Teh, 2006) and those that generate words based on latent topic vari-
ables inferred from word correlations independent of the order in which the words
appear (Blei et al., 2003, 2004; Li and McCallum, 2007; Blei and Lafferty, 2007).

Models that make predictions using some number of preceding words are known as n-
gram language models. While such models may use conditioning contexts of arbitrary
length, this chapter considers only bigram models—i.e., models that generate each
word using only the immediately preceding word as available context. To develop a
bigram language model, marginal and conditional word counts are determined from
a corpus w. The marginal count Nw is defined as the number of times that word w
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occurs in the corpus, while the conditional count Nw|w′ is the number of times word
w immediately follows word w′. The aim of bigram language modelling is to use
these counts to make predictions about the word wn at position n in any document.
In a non-Bayesian setting, this is done by computing estimators of both the marginal
probability of word w and the conditional probability of word w following word w′,
given by fw = Nw/N· and fw|w′ = Nw|w′/Nw′ , where N· is the number of tokens in
the corpus. If there were sufficient data available, the observed conditional frequency
fw|w′ could be used as an estimator for the predictive probability of w given w′. In
practice, the conditional frequency does not provide a good estimate: only a small
fraction of possible word pairs will have been observed in the corpus. Consequently,
the conditional frequency estimator has too large a variance to be used by itself.

To alleviate this problem, the predictive probability of word w given word w′ is ob-
tained by smoothing fw|w′ with the marginal frequency estimator fw:

P (wn=w |wn−1 =w′) = λ fw + (1− λ) fw|w′ . (3.1)

The parameter λmay be fixed or determined from data using cross-validation (Jelinek
and Mercer, 1980). This procedure works well in practice, despite its ad hoc nature.

The hierarchical Dirichlet language model (MacKay and Peto, 1995) is a bigram model
that is entirely driven by principles of Bayesian inference. This model has a similar
predictive distribution to models based on equation 3.1, with one key difference: the
bigram statistics fw|w′ in MacKay and Peto’s model are not smoothed with marginal
statistics fw but are smoothed with a quantity related to the number of different con-
texts in which each word has occurred. Smoothing higher-order counts with lower-
order counts that correspond to the number of unique contexts that share some prefix
is well-known to yield good predictive performance (Chen and Goodman, 1998).

Latent Dirichlet allocation (Blei et al., 2003) provides an alternative approach to mod-
elling text. Documents are modelled as finite mixtures over an underlying set of la-
tent topics (specialised distributions over words) inferred from correlations between
words, independent of word order. The assumption that word order can be ignored—
known as the bag-of-words assumption—makes sense from a point of view of compu-
tational efficiency, but is unrealistic. In many language modelling applications, such
as text compression (Bell et al., 1990), speech recognition (Rabiner and Juang, 1993; Je-
linek, 1998), and predictive text entry (Ward et al., 2000; Ward, 2001), word order is ex-
tremely important. Furthermore, word order can assist in topic inference. The phrases
“the department chair couches offers” and “the chair department offers couches” have
the same unigram statistics, but are about quite different topics. When inferring which
topic generated the word “chair” in the first sentence, knowing that it was immedi-
ately preceded by the word “department” makes it more likely to have been generated
by a topic that assigns high probability to words about university administration.
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Another difference between n-gram language models and topic models is the role
of stop words. To ensure that topics inferred using latent Dirichlet allocation do not
contain stop words (i.e., non-content words), such as “in”, “that”, “of” and “for”, these
words are removed from corpora prior to topic inference. While removing stop words
may be appropriate for tasks where word order does not play a significant role—
such as information retrieval—this is not appropriate for most language modelling
applications, where both stop words and content words must be accurately predicted.

Ideas from n-gram language modelling and Bayesian topic modelling have not pre-
viously been combined, yet models of text that capture both word order and topics
are clearly appealing. The remainder of this chapter presents a new framework for
integrating both approaches in a single Bayesian topic-based language model.

3.2 Hierarchical Dirichlet Language Modelling

As described in the previous section, bigram language models are specified by condi-
tional distributions P (wn = w |wn−1 = w′), described by W (W − 1) free parameters,
where W is the size of the vocabulary. These parameters can be denoted by Φ, a ma-
trix whose elements φw|w′ correspond to P (wn =w |wn−1 =w′). Φ may be thought of
as a transition probability matrix, in which each row φw′ is the probability vector for
transitions from word w′. Given a corpus w, the probability of w given Φ is

P (w |Φ) =
∏
w

∏
w′

φ
Nw|w′

w|w′ , (3.2)

where Nw|w′ is the number of times that word w′ immediately precedes word w.
MacKay and Peto (1995) extended this framework with a Dirichlet prior over Φ:

P (Φ |βn) =
∏
w′

Dir (φw′ |βn) (3.3)

=
∏
w′

Γ(β)∏
w Γ(βnw)

∏
w

φβnw−1
w|w′ δ

(∑
w

φw|w′ − 1

)
, (3.4)

characterised by the hyperparameters β, a nonnegative concentration parameter, and
n, a base measure whose elements sum to one. Together, equations 3.2 and 3.3 are
known as a Dirichlet-multinomial model, as described in the previous chapter.

Combining equations 3.2 and 3.3, and integrating over Φ, yields the probability of the
corpus w given the hyperparameters βn, also known as the “evidence”:

P (w |βn) =
∏
w′

∏
w Γ(Nw|w′ + βnw)

Γ(Nw′ + β)
Γ(β)∏

w Γ(βnw)
. (3.5)

As explained in section 2.1, under a Dirichlet-multinomial model, the predictive dis-
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Figure 3.1: (a) depicts a full hierarchical Dirichlet prior overφw′ , while (b) depicts
the approximation to this prior used by (MacKay and Peto, 1995).

tribution over words for each context w′ given the hyperparameters βn is

P (w |w′,w, βn) =
∫
φw|w′ Dir (φw′ | {Nw|w′ + βnw}Ww=1) dWφw′ (3.6)

=
Nw|w′ + βnw

Nw′ + β
. (3.7)

To explicate the relationship between equation 3.7 and the predictive probability given
by a simple non-Bayesian model (equation 3.1), P (w |w′,w, βn) may be rewritten as

P (w |w′,w, βn) = λw′ nw + (1− λw′) fw|w′ , (3.8)

where fw|w′ = Nw|w′/Nw′ and

λw′ =
β

Nw′ + β
. (3.9)

Each hyperparameter nw takes the role of the marginal statistic fw in equation 3.1,
while the concentration parameter β determines the extent of the smoothing.

In an ideal Bayesian setting, βn should be given a proper prior, such as a symmetric
Dirichlet distribution with uniform base measure u and concentration parameter β0,
as shown in figure 3.1a. The resultant prior induced over Φ is known as a hierarchi-
cal Dirichlet. Having given βn a proper prior, the true predictive distribution can be
obtained by computing the expectation of P (w |w′,w, βn) under the posterior distri-
bution over βn. However, as described in the previous chapter, it is often the case that
the posterior, P (βn |w), is sufficiently sharply peaked in βn that the true predictive
distribution may be approximated by P (w |w′,w, [βn]?), where [βn]? is the maximum
of P (βn |w). This approximation is shown in figure 3.1b and is exactly the approx-
imation used by MacKay and Peto. Furthermore, MacKay and Peto show that each
element of the optimal n, when estimated using this “empirical Bayes” procedure, is
related to the number of contexts in which the corresponding word has appeared.
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3.3 Latent Dirichlet Allocation

Latent Dirichlet allocation, originally introduced by Blei et al. (2003), represents doc-
uments as random mixtures over latent topics, where each topic is a specialised dis-
tribution over words. Word generation is defined by the conditional distributions
P (wn =w | zn = t), described by T (W − 1) free parameters, where T is the number of
latent topics and W is the size of the vocabulary. These parameters are denoted by the
matrix Φ, with elements φw|t = P (wn=w | zn= t). Φ may be thought of as an emission
probability matrix, in which the tth row is the distribution over words for topic t—the
probability vector φt. Similarly, topic generation is characterised by the conditional
distribution P (zn = t | dn = d), described by D(T − 1) free parameters, where D is the
number of documents in the corpus and T is the number of latent topics. These pa-
rameters form a matrix Θ with elements θt|d = P (zn = t | dn = d). The dth row of this
matrix is the distribution over topics for document d—the probability vector θd.

The joint probability of a corpus w and corresponding topic assignments z is

P (w, z |Φ,Θ) =
∏
w

∏
t

∏
d

φ
Nw|t
w|t θ

Nt|d
t|d , (3.10)

where Nt|d is the number of times that topic t has been used in document d and Nw|t

is the number of times that word w has been generated by topic t. To complete the
model, Blei et al. place a nonhierarchical Dirichlet prior over Φ,

P (Φ |βn) =
∏
t

Dir (φt |βn), (3.11)

and another over Θ,
P (Θ |αm) =

∏
d

Dir (θd |αm). (3.12)

Combining equations 3.11 and 3.12 with equation 3.10 and marginalising out Φ and Θ
and latent variables z gives the evidence for the hyperparameters:

P (w |αm, βn) =∑
z

∏
t

∏
w Γ(Nw|t + βnw)

Γ(N·|t + β)
Γ(β)∏

w Γ(βnw)∏
d

∏
t Γ(Nt|d + αmt)
Γ(N·|d + α)

Γ(α)∏
t Γ(αmt)

. (3.13)

The quantityN·|t =
∑

wNw|t is the total number of times any word has been generated
by topic t, while N·|d =

∑
tNt|d is the total number of tokens in document d.

Given a corpusw with corresponding topic assignments z, and hyperparameters αm
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and βn, the predictive probability of word w being generated by topic t is

P (w | t,w, z, βn) =
Nw|t + βnw

N·|t + β
. (3.14)

Similarly, the predictive probability of topic t in document d is given by

P (t | d,w, z, αm) =
Nt|d + αmt

N·|d + α
. (3.15)

These equations may be rewritten as follows:

P (w | t,w, z, βn) = (1− λt) fw|t + λt nw, (3.16)

P (t | d,w, z, αm) = (1− λd) ft|d + λdmt, (3.17)

where fw|t = Nw|t/Nt, ft|d = Nt|d/Nd, and

λt =
β

N·|t + β
, (3.18)

λd =
α

N·|d + α
. (3.19)

The quantity fw|t is effectively smoothed by the hyperparameter nw while ft|d is
smoothed by mt. Equations 3.16 and 3.17 have the same form as equation 3.8.

3.4 A Topic-Based Language Model

In this section, I introduce a new model that extends latent Dirichlet allocation by in-
corporating a notion of word order similar to that employed by MacKay and Peto’s
hierarchical Dirichlet language model. For simplicity, discussion is restricted to bi-
grams, however the underlying ideas also are applicable to models of higher order.

The new model characterises each topic by a set of W distributions over words—one
for each possible previous word context. Consequently, word generation is defined
by conditional distributions P (wn = w |wn−1 = w′, zn = t), described by WT (W − 1)
free parameters. As with latent Dirichlet allocation, these parameters form a matrix
Φ—this time with WT rows. Each row φw′t is the distribution over words for a the
context consisting of previous word w′ and topic t. Topic generation is identical to
latent Dirichlet allocation: Topics are drawn using the conditional probabilities P (zn=
t | dn=d), described by D(T − 1) free parameters, which form a matrix Θ.

The joint probability of a corpus w and corresponding set of topic assignments z is

P (w, z |Φ,Θ) =
∏
w

∏
w′

∏
t

∏
d

φ
Nw|w′t
w|w′t θ

Nt|d
t|d , (3.20)
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(c) Prior 3: nw′ per previous word.

Figure 3.2: Three nonhierarchical Dirichlet priors over φw′t.

where Nw|w′t is the number of times word w has occurred in the context of preceding
word w′ and topic t. Nt|d is the number of times topic t has been used in document d.

The prior over Θ is the same as that used in latent Dirichlet allocation:

P (Θ |αm) =
∏
d

Dir (θd |αm). (3.21)

However, the additional conditioning context w′ in the distributions that define word
generation in the new model affords greater flexibility in choosing a prior for Φ than
in either latent Dirichlet allocation or the hierarchical Dirichlet language model. The
priors over Φ used in both MacKay and Peto’s language model and Blei et al.’s latent
Dirichlet allocation are “coupled” priors: learning the probability vector for a single
context—φw′ the case of MacKay and Peto’s model and φt in Blei et al.’s—gives in-
formation about the probability vectors for other contexts w′′ and t′, respectively. This
dependence comes from the hyperparameters βn, which are shared, in the case of the
hierarchical Dirichlet language model, between all possible previous word contexts
w′ and, in the case of latent Dirichlet allocation, between all possible topics t. In the
new model, word generation is conditioned upon both w′ and t. Consequently, there
is more than one way in which hyperparameters for the prior over Φ might be shared.
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Prior 1: A single hyperparameter vector βn can be shared between all w′t contexts:

P (Φ |βn) =
∏
w′

∏
t

Dir (φw′t |βn). (3.22)

Here, learning about one probability vector φw′t will reveal information about the
probability vectors for all other w′′t′ contexts. This prior is shown in figure 3.2a.

Prior 2: Alternatively, there can be T hyperparameter vectors—one for each topic t:

P (Φ | {βnt}Tt=1) =
∏
w′

∏
t

Dir (φw′t |βnt). (3.23)

Information is now shared only between probability vectors that have same topic con-
text as each other: Learning about the distribution over words for context w′t yields
information about the distributions over words for other contextsw′′t that also involve
topic t, but not about distributions for other topic contexts t′. This prior (shown in fig-
ure 3.2b) captures topic-specific similarities between the distributions over words.

Prior 3: Finally, there can be W sets of hyperparameters—one for each w′:

P (Φ | {βnw′}Ww′=1) =
∏
w′

∏
t

Dir (φw′t |βnw′). (3.24)

Here, information is shared between all distributions that share the same previous
word context w′: Learning about the distribution over words for context w′t yields
information about only those distributions for other contexts w′t′ that also correspond
to previous word context w′. This prior (shown in figure 3.2c) captures the notion of
common bigrams—word pairs that always occur together, regardless of topic.

For each of the three priors described above, it is possible to either (a) integrate out
the base measures n, {nt}Tt=1 and {nw′}Ww′=1 after giving them proper priors (known
as hyperpriors) or (b) assume noninformative priors over all hyperparameters and
estimate βn, {βnt}Tt=1 and {βnw′}Ww′=1 from data, using a similar approach to that
described in section 3.2. For completeness, both approaches are described.

3.4.1 Estimating Hyperparameters from Data

Given a corpus w and noninformative hyperpriors, the optimal hyperparameter val-
ues may be found by maximising the evidence or probability of w given the hyper-
parameters. For the hierarchical Dirichlet language model, this procedure is equiva-
lent to estimating the hyperparameters of a Dirichlet-multinomial distribution, as de-
scribed in chapter 2. For models with topics—either latent Dirichlet allocation or the
new topic-based language model—the situation is more complex because the evidence
contains latent variables z that must be marginalised out. Previous sampling-based
treatments of latent Dirichlet allocation (Griffiths and Steyvers, 2004) have therefore



A Topic-Based Language Model 50

1: initialise z and U
2: while not converged {
3: E-step: draw {z(s)}Ss=1 ∼ P (z |w, U)
4: M-step: U := arg max

U

1
S

∑S
s=1 logP (w, z(s) |U)

5: }

Algorithm 3.1: Gibbs EM for topic models.

not included any form of hyperparameter optimisation—i.e., all base measures are set
to the uniform distribution. However, the approach described in this section may be
applied to latent Dirichlet allocation as well as the new model.

For the new model, the evidence is given by

P (w |U) =
∑

z

P (w | z, U)P (z |U), (3.25)

where U denotes the full set of model hyperparameters,

P (w | z, U) =
∏
w′

∏
t



∏
w Γ(Nw|w′t + βnw)

Γ(N·|w′t + β)
Γ(β)∏

w Γ(βnw)
prior 1∏

w Γ(Nw|w′t + βnw|t)
Γ(N·|w′t + β)

Γ(β)∏
w Γ(βnw|t)

prior 2∏
w Γ(Nw|w′t + βnw|w′)

Γ(N·|w′t + β)
Γ(β)∏

w Γ(βnw|w′)
prior 3

(3.26)

and

P (z |U) =

∏
t Γ(Nt|d + αmt)
Γ(N·|d + α)

Γ(α)∏
t Γ(αmt)

. (3.27)

The presence of latent variables z means that the evidence may be maximised
with respect to the hyperparameters using an expectation-maximisation (EM) algo-
rithm (Dempster et al., 1977). Since each topic assignment zn can take on one of T
values, the expectation step involves a sum over TN· terms, where N· is the total num-
ber of tokens in the corpus. This sum is intractable. However, it can be approximated
using Gibbs sampling (Griffiths and Steyvers, 2004), resulting in a Gibbs EM algo-
rithm (Andrieu et al., 2003), shown in algorithm 3.1. This algorithm can be used to
find the hyperparameters that maximise the evidence: U? = {[αm]?, [βn]?} (prior 1),
U? = {[αm]?, {[βnt]?}Tt=1} (prior 2) or U? = {[αm]?, {[βnw′ ]?}Ww′=1} (prior 3).

E-Step

Gibbs sampling involves sequentially resampling each variable of interest, zn in this
case, from its conditional posterior, given the data and current values of all other vari-
ables. Letting the subscript “\n” denote a quantity that excludes data from the nth
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position in the corpus, the conditional posterior for zn is given by

P (zn= t | z\n,w, U) ∝ P (wn | zn= t, z\n,w, U)
(Nt|dn)\n + αmt

(N·|dn)\n + α
(3.28)

where

P (wn | zn= t, z\n,w, U) =



(Nwn|wn−1t)\n + βnwn
(N·|wn−1t)\n + β

prior 1

(Nwn|wn−1t)\n + βnwn|t

(N·|wn−1t)\n + β
prior 2

(Nwn|wn−1t)\n + βnwn|wn−1

(N·|wn−1t)\n + β
prior 3

(3.29)

Drawing a single set of topic assignments z(s) takes time proportional to the size of the
corpus N· and the number of topics T . The E-step therefore takes time proportional to
N·, T and the number of Gibbs sampling iterations used to obtain the S samples.

M-Step

Given a set of samples {z(s)}Ss=1, [αm]? can be computed using a variant of the fixed-
point iteration described in section 2.3.5, modified to use all S samples:

[αmt]? = αmt

∑
s

∑
d

∑maxdN
(s)
t|d

n=1 Ct(n)
∑n

f=1
1

f−1+αmt∑
s

∑
d

∑maxdN
(s)
·|d

n=1 C·(n)
∑n

f=1
1

f−1+α

(3.30)

where N (s)
t|d is the number of times topic t has been used in document d in the sth

sample. A similar method can be used to optimise the other hyperparameters.

Note that the samples used in this step must come from a single Markov chain. The
model is unaffected by permutations of topic indices. Consequently, there is no corre-
spondence between topic indices across samples from different Markov chains: topics
with index t in two different chains need not have similar distributions over words.

Predictive Distributions

Given a corpus w, corresponding topic assignments z, and hyperparameters U =
{αm, βn} (prior 1), U = {αm, {βnt}Tt=1} (prior 2) or U = {αm, {βnw′}Ww′=1} (prior 3),
the predictive probability of topic t occurring in document d is

P (t | d,w, z, U) =
Nt|d + αmt

N·|d + α
. (3.31)
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Similarly, the predictive probability of word w occurring in context w′t is

P (w |w′, t,w, z, U) =



Nw|w′t + βnw

N·|w′t + β
prior 1

Nw|w′t + βnw|t

N·|w′t + β
prior 2

Nw|w′t + βnw|w′

N·|w′t + β
prior 3

(3.32)

In the predictive probability for prior 1 (single n vector), the quantity Nw|w′t/N·|w′t is
always smoothed by hyperparameter nw regardless of the conditioning context w′t.
In contrast, in the predictive probability for prior 2 (nt for each topic t), Nw|w′t/N·|w′t

is smoothed by nw|t, which varies depending on the topic t. Finally, in the predictive
probability for prior 3 (nw′ for each possible previous word context w′), Nw|w′t/N·|w′t

is smoothed by nw|w′ , which varies depending on the previous word w′. These predic-
tive probabilities are very similar to those used in non-Bayesian interpolated language
models (equation 3.1). If t were the word two positions before the word being pre-
dicted, instead of a topic, the predictive probability for prior 1 would correspond to
smoothing trigram counts with some unigram function nw specific to the current word
w. Similarly, the predictive probability for prior 3 would correspond to smoothing tri-
gram counts with some bigram function nw|w′ specific to the current word and the
word immediately preceding it. Finally, the predictive probability for prior 2 would
correspond to smoothing the trigram counts with some function of the skip-1 bigram
consisting of the current word and the word two positions back. In other words, the
three priors can be thought of as different interpolation schemes. Returning to the
scenario of interest, where t is a topic, the first prior treats the identity of the word as
the most important piece of information after the identity of the word and its entire
context w′t. Meanwhile, the second prior uses the identity of the current word and
topic. Finally, the third prior uses the identity of the current and previous words.

3.4.2 Using Hierarchical Priors

Instead of estimating the hyperparameters from data, as described in the previous
section, the base measures n (prior 1), {nt}Tt=1 (prior 2) or {nw′}Ww′=1 (prior 3) can
themselves be given proper priors—known as hyperpriors—and integrated out.

Prior 1: For prior 1 (single n), an appropriate choice of hyperprior is

P (n |β0u) = Dir (n |β0u). (3.33)

In other words, base measuren is given a Dirichlet hyperprior with uniform base mea-
sure u and concentration parameter β0. (Concentration parameters β and β0 are both
given noninformative hyperpriors.) This hyperprior induces a hierarchical Dirichlet
prior overφw′t, henceforth referred to as “hierarchical prior 1” and shown in figure 3.3.



A Topic-Based Language Model 53

β

n

φw′t

u

β0

W

T

Figure 3.3: Hierarchical version of prior 1 (single n vector).

w|w′t v|w′t w|w′t w|w′t

γ1 =w γ2 =v γ3 =w

n

Figure 3.4: Generating four observations (w, v, w, w) from a nonhierarchical
Dirichlet-multinomial distribution for context w′t with base measure n.

The consequences of placing a hierarchical Dirichlet prior over φw′t are best explained
in terms of the effects on the generative process and predictive probabilities, starting
without any hyperpriors. For nonhierarchical prior 1 (single n), the predictive proba-
bility of generating a new observation with value w in context w′t is given by

P (w |w′, t,w, z, βn) =
Nw|w′t + βnw

N·|w′t + β
. (3.34)

If value w has not previously been seen in the context of w′t, the counts Nw|w′t and
N·|w′t will be zero, and the probability of generating w is just nw. One way of describ-
ing the generative process1, that will become more useful as hyperpriors are added,
is to say that generating an observation means instantiating the observation with the
value of some context-specific draw from the base measure n. Figure 3.4 depicts the
process of drawing four observations from the Dirichlet-multinomial for conditioning
context w′t. When drawing the first observation, there are no existing draws from
the base measure, so a new one γ1 must be generated. The first observation is then
instantiated with the value of this draw, w in the case of figure 3.4. The second ob-
servation is drawn by either selecting γ1, with probability proportional to the number

1The generative process can also be described using the Chinese restaurant process metaphor (Aldous,
1985) and its hierarchical extension, the Chinese restaurant franchise (Teh et al., 2006).
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w|w′t v|w′t w|w′t w|w′t

γ1 =w γ2 =v γ3 =w

v|w′′t′ v|w′′t′ v|w′′t′ v|w′′t′

γ1 =v γ2 =v

γ1 =w γ2 =v γ3 =v

u

Figure 3.5: Generating observations (w, v,w,w and v, v, v, v) from the hierarchical
Dirichlet-multinomial distributions for conditioning contexts w′t and w′′t′.

of observations that have been previously “matched” to γ1, or a new draw from the
base measure, with probability proportional to β. In figure 3.4, a new draw is selected,
so γ2 is drawn from n and the second observation is instantiated with its value, in
this case v. The next observation is drawn using the same procedure: existing draws
γ1 and γ2 are selected with probabilities proportional to the numbers of observations
with which they have previously been matched. With probability proportional to β,
the observation is matched to a new draw from the base measure. In figure 3.4, γ1 is
selected, meaning there are now two observations matched to γ1. The third observa-
tion is instantiated with the value of γ1. In general, the probability of a new observa-
tion being instantiated with the value of an existing draw from the base measure γi is
proportional to N (i)

·|w′t—the number of observations previously matched to that draw.
Consequently, the probability of generating value w in context w′t is given by

P (w |w′, t,z,w, βn) =
N̂w|w′t + βnw

N̂·|w′t + β
(3.35)

where N̂·|w′t =
∑

w N̂w|w′t. The quantity N̂w|w′t is given by

N̂w|w′t =
I∑
i=1

N
(i)
·|w′t δ (γi − w), (3.36)

where I is the current number of draws from the base measure for context w′t and
N

(i)
·|w′t is the number of observations matched to γi. Since every observation is matched

to a draw from the base measure, N̂w|w′t is equal toNw|w′t—the number of times w has
been seen in context w′t. Equations 3.35 and 3.34 are therefore equivalent.

Giving n a Dirichlet prior with parameters u and β0 (as shown in figure 3.3) and inte-
grating over n has the effect of replacing n in equation 3.35 with a “parent” Dirichlet-
multinomial, shared with the Dirichlet-multinomials for all other conditioning con-
texts w′′t′. Figure 3.5 depicts the process of drawing eight observations—four in con-



A Topic-Based Language Model 55

text w′t and four in context w′′t′. When an observation is drawn from the Dirichlet-
multinomial for context w′t, it is (as before) instantiated with the value of an existing
“internal draw” γi with probability proportional to the number of observations pre-
viously matched to that draw. With probability proportional to β, it is instantiated
with the value of a new internal draw. However, since the base measure has been
integrated out, the new internal draw must be obtained from the parent Dirichlet-
multinomial distribution. At the parent level, the new internal draw is treated as if
it were an observation, and instantiated with the value of an existing parent-level in-
ternal draw γj with probability proportional to the number of bottom-level internal
draws previously matched to γj . With probability proportional to β0, it is instantiated
with the value of a new parent-level draw. In this case, the new parent-level internal
draw is drawn from the top-level base measure u. In this way, the internal draws at
one level are treated as observations by the next level up in the hierarchy, and there is
path from every observation to the top-level base measure u, via the internal draws.
The predictive probability of generating word w in conditioning context w′t under the
hierarchical version of prior 1 (portrayed in figure 3.3) is therefore given by

P (w |w′, t,w, z, β, β0) =
∫
P (w |w′, t,w, z, βn)P (n |w, z, β0u) dWn (3.37)

=
∫
N̂w|w′t + βnw

N̂·|w′t + β
Dir (n | {N̂w + β0uw}Ww=1) dWn (3.38)

=
N̂w|w′t + β

N̂w + β0uw

N̂· + β0

N̂·|w′t + β
(3.39)

where

N̂w|w′t =
I∑
i=1

N
(i)
·|w′t δ (γi − w), (3.40)

N̂w =
J∑
j=1

N
(j)
· δ (γj − w) (3.41)

and I and J are the current number of bottom-level and parent-level internal draws,
respectively. The quantity N

(i)
·|w′t is the number of observations matched to bottom-

level internal draw γi, while N
(j)
· is the number of bottom-level internal draws

matched to parent-level internal draw γj . As before, the bottom-level count N̂w|w′t

is equal to Nw|w′t—the number of times word w has been observed in context w′t.
However, N̂w is not necessarily equal to Nw—the number of tokens of type w.

In practice, for real-world data w and z, the number of internal draws for each
Dirichlet-multinomial and the paths from the observations to the top-level base mea-
sure u are unknown. This information is only available for synthetic data explicitly
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w|w′t v|w′t w|w′t w|w′t v|w′′t′ v|w′′t′ v|w′′t′ v|w′′t′

u

Figure 3.6: The only available information prior to inference: The values of the
observed variables (bottom row); that there is Dirichlet-multinomial per condi-
tioning context (bottom grey boxes), each of which can ultimately have a max-
imum of four internal draws; that these Dirichlet-multinomials share a parent
Dirichlet-multinomial (top grey box), which can ultimately have a maximum of
eight internal draws; that the internal draws for this parent Dirichlet-multinomial
(currently unknown) will ultimately come from the top-level base measure u.

generated using the model. As depicted in figure 3.6, the only information avail-
able for real-world data is the value of each observation (and hence the bottom-level
counts—the number of times each word w has been observed in each context w′t), the
number of Dirichlet-multinomials at each level, and the number of levels in the hierar-
chy. It is therefore necessary to infer the internal draws for each Dirichlet-multinomial,
along with the path from each observation to the top-level base measure. The most
general way of doing this is by using Gibbs sampling (Teh et al., 2006). However,
two approximations to the Gibbs sampling procedure (Cowans, 2006) are particularly
useful due to their computational efficiency and ease of implementation:

• Maximal path assumption: Every observation is assumed to have been gener-
ated by using a new internal draw. Furthermore each internal draw is assumed
to have been generated by using a new parent-level internal draw. The number
of internal draws used in each Dirichlet-multinomial in the hierarchy is therefore
the largest possible. Under this assumption, the counts for every level are equal
to the raw observation counts: e.g., N̂w =

∑J
j=1N

(j)
· δ (γj−w) is simply equal to

Nw—the total number of times that word w has been observed in any context.

• Minimal path assumption: An observation is assumed to have been generated
by using a new internal draw if and only if there is no existing internal draw
with the same value as that observation. Each internal draw is similarly as-
sumed to have been generated by using a new parent-level internal draw if and
only if there is no existing parent-level internal draw with the same value as
the (child-level) draw in question. The number of internal draws used in each
Dirichlet-multinomial is therefore the smallest possible—in any given Dirichlet-
multinomial, no two internal draws will have the same value w. Under this as-
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u

(a) Maximal path assumption.
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γ1 =w γ2 =v

v|w′′t′ v|w′′t′ v|w′′t′ v|w′′t′

γ1 =v

γ1 =w γ2 =v

u

(b) Minimal path assumption.

Figure 3.7: The maximal and minimal path assumptions.

sumption, the counts used in every level in the hierarchy, except for the bottom-
most level, are type counts: e.g., N̂w =

∑J
j=1N

(j)
· δ (γj−w) is equal to the number

of different conditioning contexts w′t in which word w has been observed.

The process of drawing data under each of these assumptions is depicted in figure 3.7.

As in the model variants without hyperpriors, the evidence for the hyperparameters
U = {β, β0, αn} under the hierarchical version of prior 1 is given by

P (w |U) =
∑

z

P (w | z, U)P (z |U). (3.42)

However, P (w | z, U) is now given by

P (w | z, β, β0) =
∏
n

(N̂wn|wn−1zn)<n + β
(N̂wn)<n + β0uwn

(N̂·)<n + β0

(N̂·|wn−1zn)<n + β
, (3.43)
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Figure 3.8: Hierarchical versions of prior 2.

where the subscript “< n” denotes a quantity that includes only data from positions
1 . . . n− 1. The probability P (z |U) is unchanged from equation 3.27.

Prior 2: There are two possible hyperpriors for prior 2. The first is

P (nt |β0u) = Dir (nt |β0u), (3.44)

while the second is

P (nt |β1n) = Dir (nt |β1n) (3.45)

P (n |β0u) = Dir (n |β0u). (3.46)

In the first hyperprior (equation 3.44), each topic-specific base measure nt is given
a Dirichlet distribution with uniform base measure u and concentration parameter
β0. In the second hyperprior (equations 3.45 and 3.46), each nt is given a Dirichlet
distribution with base measure n and concentration parameter β1, where n is itself
drawn from a Dirichlet, with uniform base measure u and concentration parameter
β0. (β, β0 and β1 are all given noninformative priors.) The hierarchical Dirichlet priors
over φw′t induced by these hyperpriors (referred to henceforth as “hierarchical prior
2a” and “hierarchical prior 2b”, respectively) are shown in figures 3.8a and 3.8b. In
both of these hierarchical priors, the base measures nt and nt′ for (nonidentical) topics
t and t′ are related, via u in 2a and via n and u in 2b. In the nonhierarchical version of
prior 2, described in section 3.4.1, the base measures for t and t′ are independent.

As with prior 1, the effects of these hyperpriors are best discussed in terms of the
predictive probability of generating word w in the context of previous word w′ and
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topic t. Under hierarchical prior 2a (nt per topic, tied via u) this probability is

P (w |w′, t,w, z, β, β0) =

N̂w|w′t + β
N̂w|t + β0uw

N̂·|t + β0

N̂·|w′t + β
, (3.47)

while under hierarchical prior 2b (nt per topic, tied via n and u) it is

P (w |w′, t,w, z, β, β1, β0) =

N̂w|w′t + β

N̂w|t + β1

N̂w + β0uw

N̂· + β0

N̂·|t + β1

N̂·|w′t + β
. (3.48)

The effects of the two different hyperpriors may be understood by examining equa-
tions 3.47 and 3.48: Under hierarchical prior 2a (nt per topic t, tied via u), N̂w|w′t/N̂·|w′t

is effectively smoothed with N̂w|t/N̂·|t—a quantity which depends on word w and
topic t—and uw = 1/W . Under hierarchical prior 2b (nt per topic t, tied via n and
u), N̂w|w′t/N̂·|w′t is effectively smoothed with N̂w/N̂· (which depends on word w only)
as well as N̂w|t/N̂·|t and uw = 1/W . In other words, under 2a, words that have not
previously been seen in topic t are given equal probabilities of occurring in topic t in
the future. Under 2b, however, words that have never been seen in topic t are given
unequal, word-specific probabilities of being seen in that topic in the future.

Prior 3: There are also two possible hyperpriors for prior 3. The first is

P (nw′ |β0u) = Dir (nw′ |β0u), (3.49)

while the second is

P (nw′ |β1n) = Dir (nw′ |β1n) (3.50)

P (n |β0u) = Dir (n |β0u). (3.51)

Under the prior over φw′t induced by the first of these hyperpriors (nw′ per previous
word context w′, tied via u), the predictive probability of w given w′t is given by

P (w |w′, t,w, z, β, β0) =

N̂w|w′t + β
N̂w|w′ + β0uw

N̂·|w′ + β0

N̂·|w′t + β
. (3.52)
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Figure 3.9: Hierarchical version of prior 3.

The second hyperprior (nw′ per w′, tied via n and u) gives rise to

P (w |w′, t,w, z, β, β1, β0) =

N̂w|w′t + β

N̂w|w′ + β1

N̂w + β0uw

N̂· + β0

N̂·|w′ + β1

N̂·|w′t + β
. (3.53)

Again, the effects of the two hyperpriors may be understood from the correspond-
ing predictive probabilities. Using the first hyperprior, N̂w|w′t/N̂·|w′t is smoothed with
Nw|w′/N·|w′—a quantity specific to words w and w′—and uw = 1/W . Using the sec-
ond hyperprior, these quantities are also smoothed with N̂w/N̂·. This means that for
a given context w′, the first hyperprior will result in all words w that have not previ-
ously been seen in this context being given an equal probability of occurring in this
context in the future. The second hyperprior, however, will cause each unseen word
w to be given a probability that is related to its unigram count (under the maximal
path assumption, the number of times w has occurred in w; under the minimal path
assumption, the number of w′ contexts in which w has appeared in w). These hyper-
priors have been well-studied in the context of language modelling, with the latter
giving significantly better results, due to the sparsity of word pair occurrences. For
this reason, only the second hyperprior is considered henceforth. The resultant hierar-
chical Dirichlet prior induced over φw′t (“hierarchical prior 3”) is shown in figure 3.9.

Sampling Concentration Parameters

Given a corpusw and any of the hierarchical priors described above, typical values for
the hyperparameters β, β1 and β0 can be inferred by alternating between resampling
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Figure 3.10: Hierarchical priors for latent Dirichlet allocation.

the topic assignments z (using Gibbs sampling) and resampling the hyperparameters
given the current topic assignments (using slice sampling (Neal, 2003)). Each topic
assignment zn is resampled from its conditional posterior given all other variables:

P (zn= t | z\n,w, U) ∝ P (wn |wn−1, zn= t,w\n, z\n, U)
(Nt|dn)\n + αmt

(N·|dn)\n + α
, (3.54)

where the subscript “\n” denotes a quantity that excludes data from the nth position
in the corpus, and U = {β, β0, αm} (hierarchical priors 1 and 2a) or {β, β1, β0, αm}
(2b and 3). Finally, P (wn |wn−1, zn = t,w\n, z\n, U) may be obtained by treating the
nth observation as the last to arrive and using either equation 3.39, 3.47, 3.48 or 3.53.

Slice sampling (Neal, 2003) is a Markov chain Monte Carlo method that adapts to the
sampled distribution by sampling uniformly from the area under its density function.
In the one-dimensional case, where the goal is to sample from P (x) ∝ P ∗(x), slice
sampling works by making transitions from one two-dimensional point (x, u) under
the plot of P ∗(x) to another (x′, u′), such that the distribution of points tends to a
uniform distribution over the area under P ∗(x). This approach can be generalised to
efficiently produce S multidimensional samples, as shown in algorithm 3.2.

When slice sampling the hyperparameters {β, β0} (hierarchical priors 1 and 2a) or
{β, β1, β0} (2b and 3), the relevant density is P (U |w, z). Placing an improper
noninformative prior over these hyperparameters, this density is proportional to
P (w | z, U), which may be computed using the predictive distribution over words:

P (w | z, U) =
∏
t

P (wn |wn−1, zn,w<n, z<n, U). (3.55)
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1: for s := 1 . . . S {
2: draw u′ ∼ Uniform (0, P ∗(x))
3: for each dimension i {
4: draw r ∼ Uniform (0, 1)
5: xli := xi − rσi
6: xri := xli + σi
7: }
8: while true {
9: for each dimension i {

10: draw x′i ∼ Uniform (xli, x
r
i )

11: }
12: if P ∗(x′) > u′ {
13: break
14: else
15: for each dimension i {
16: if x′i < xi {
17: xli := x′i
18: else
19: xri := x′i
20: }
21: }
22: }
23: }
24: x := x′

25: output x
26: }

Algorithm 3.2: Multidimensional slice sampling. The algorithm requires an ini-
tial value x, a “step size” vector σ, and the desired number of samples S.

3.5 Experiments

To evaluate the new topic-based language model, all but one of the model variants
described in the previous section2 were compared with latent Dirichlet allocation and
MacKay and Peto’s (bigram) hierarchical Dirichlet language model. The model vari-
ants without proper hyperpriors were trained identically using 20,000 iterations of
the Gibbs EM algorithm described in section 3.4.1. Topic assignments and hyperpa-
rameters for the model variants with proper hyperpriors were obtained by alternating
between Gibbs sampling topics (once) and slice sampling the hyperparameters (for
five iterations). This was repeated 20,000 times. For simplicity, only the maximal path
assumption was used. To enable a fair comparison, two versions of the baseline mod-
els were used: When evaluating the model variants with improper hyperpriors, latent
Dirichlet allocation was trained using the Gibbs EM algorithm, while the hyperparam-
eters of the hierarchical Dirichlet language model were inferred using the fixed-point

2Results for the model variant with a βnw′ hyperparameter vector for each previous word context w′

and an improper noninformative hyperprior were not computed as the number of hyperparameters is
extremely large—W (W − 1)—with comparatively little data from which to estimate them.
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iteration employed in the M-step. When evaluating the model variants with proper
hyperpriors, latent Dirichlet allocation and MacKay and Peto’s hierarchical Dirichlet
language model were also given proper hyperpriors and their concentration parame-
ters were inferred using slice sampling. Two different hyperpriors were used for la-
tent Dirichlet allocation—the resultant hierarchical Dirichlet priors over φt (depicted
in figure 3.10) are analogous to hierarchical priors 2a and 2b for the topic-based lan-
guage model. The hierarchical Dirichlet prior over φw′ for MacKay and Peto’s model
is shown in figure 3.1a. All experiments involving latent Dirichlet allocation and the
topic-based language model were run with 2, 5, 10, 20, 50, 100, 200 and 500 topics.

3.5.1 Data

The models were compared using 250 papers from the proceedings of the NIPS confer-
ence3, drawn randomly from the “nips stream” data set of Steyvers and Griffiths4. 200
papers were used as training data, while the remaining fifty were used to evaluate the
models. Punctuation characters were replaced with a PUNC type, while all numbers
were replaced with a NUMBER type. To enable evaluation on documents containing
words not present in the training data, words that occurred once in the training data
(and zero times in the test data) or one or more times in the test data, but never in the
training data, were replaced with the following UNSEEN types (Eisner, 1996a):

• UNSEEN-SHORT: used for words less than six characters long.

• UNSEEN-XX: used for words of six or more characters in length. XX is replaced
with the last two characters of the word.

Preprocessing the data in this manner led to a vocabulary of 4,858 words. To improve
computation speed, each paper was truncated after 500 tokens. This truncation re-
sulted in a training data set of 99,836 tokens, and a test data set of 25,000 tokens.

3.5.2 Results

Bayesian generative models are typically evaluated by computing the probability of
unseen test data w, given training data wtrain and hyperparameters U : The better the
model, the higher the probability. For models of text, these results are usually reported
in terms of the “information rate” of the test data, measured in bits per word. The
information rate is computed from P (w |wtrain, U) as follows:

R = − log2 P (w |wtrain, U)
N·

, (3.56)

3Conference on Neural Information Processing Systems, http://www.nips.cc/
4MATLAB Topic Modeling Toolbox 1.3.2, http://psiexp.ss.uci.edu/research/programs_

data/toolbox.htm

http://www.nips.cc/
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
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where N· is the number of tokens inw. For the hierarchical Dirichlet language model,
P (w |wtrain, U) may be computed directly. However, for topic-based models, com-
puting P (w |wtrain, U) involves summing over both training and test topics. As men-
tioned in section 3.4.1, this is intractable. Within the topic modelling literature (Grif-
fiths and Steyvers, 2004; Griffiths et al., 2005) it is common to approximate these sums
using a single set of topics ztrain for the training data, obtained using Gibbs sampling.
Given these training topics and hyperparameters U , the sum over test topics z can be
approximated using importance sampling (Kass and Raftery, 1995), in the following
manner: Rather than approximating

∑
z P (w, z |wtrain, ztrain, U) using samples drawn

from the prior over z, the posterior P (z |w, U) can be used as the sampling density in
an importance sampler, thereby resulting in the following approximation:

P (w |wtrain, ztrain, U) ' S∑S
s=1

1
P (w |z(s))

(3.57)

= HM ({P (w | z(s))}Ss=1), (3.58)

where HM (·) denotes the harmonic mean. Unfortunately, this approximation is un-
stable (Newton and Raftery, 1994). It also results in an unfair bias towards models
with topics. This is because the topic assignments used in equation 3.57 are obtained
by Gibbs sampling from the posterior distribution. Gibbs sampling repeatedly resam-
ples each topic assignment zn from the conditional posterior for that variable given
all other variables. Consequently, topic assignments from positions n′ > n influence
the assignment at position n and words from positions n′ > n implicitly influence
the probability of the word at position n. Sampling topic assignments using Gibbs
sampling means that the probability of each word, as used in equation 3.57, is im-
plicitly influenced by future words, via the topic assignments. Models with topics are
therefore given an unfair advantage over the hierarchical Dirichlet language model,
where evaluation is performed in a strictly “left-to-right” fashion and later words can-
not influence the probability of earlier words. A more realistic estimate of predictive
performance can be obtained by decomposing P (w |wtrain, ztrain, U)5 as

P (w |wtrain, ztrain, U) =
∏
n

P (wn |w<n,w
train, ztrain, U) (3.59)

=
∏
n

∑
z≤n

P (wn, z≤n |w<n,w
train, ztrain, U), (3.60)

and using an algorithm inspired by sequential Monte Carlo methods (Doucet et al.,
2001) to approximate the sums over z≤n, as in algorithm 3.3. This approxima-
tion method is appropriate for a wider range of language modelling applications—
including predictive text entry systems (Ward et al., 2000; Ward, 2001) and speech
recognition systems (Rabiner and Juang, 1993; Jelinek, 1998)—than the importance

5As mentioned previously, the training topic assignments ztrain should ideally be marginalised out
along with z. However, for simplicity, they are instead clamped after training.
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1: initialise l := 0
2: for each position n in the test data w {
3: pn = 0
4: for each particle r = 1 to R {
5: for n′ < n {
6: resample zn′ ∼ P (zn′ | (z<n)\n′ ,w<n,w

train, ztrain)
7: }
8: pn := pn +

∑
t P (wn | zn= t, z<n,w<n,w

train, ztrain)P (zn= t | z<n, ztrain)
9: }

10: pn := pn/R
11: l := l + log pn
12: sample zn ∼ P (zn | z<n,w≤n,wtrain, ztrain)
13: }
14: return l

Algorithm 3.3: A “left-to-right” evaluation algorithm for topic models. The algo-
rithm computes l '

∑
n log

∑
z≤n

P (wn, z≤n |w<n,w
train, ztrain, U) using R parti-

cles. In practice, it is sufficient to approximate the resampling loop (lines 5–7) by
resampling only the topic assignments for tokens in the current document.

Prior 1 Prior 2

Dir (φw′t |βn) Dir (φw′t |βnt)

Table 3.1: The two topic-based language model variants with nonhierarchical
priors and optimised hyperparameters that were experimentally compared with
the hierarchical Dirichlet language model and latent Dirichlet allocation.

sampling approximation in equation 3.57, because of its “left-to-right” operation.

Nonhierarchical Priors

The information rates of the test data, computed using algorithm 3.3 and twenty par-
ticles, are shown in figure 3.11 for the hierarchical Dirichlet language model and two
of the topic-based language model variants with improper hyperpriors and optimised
hyperparameters (prior 1 and prior 2, summarised in table 3.1). The information rate
for latent Dirichlet allocation, even with 500 topics, is much worse than the other
models (8.90 bits per word) and is therefore not shown. For the models with top-
ics, performance improves as the number of topics is increased, levelling off at around
100 topics. (With just one topic, both variants of the topic-based language model are
identical to the hierarchical Dirichlet language model.) The hierarchical Dirichlet lan-
guage model exhibits an information rate of 8.12 bits per word, while the best perfor-
mance (7.98 bits per word) is achieved by the topic-based language model variant with
prior 2 (βnt per topic) and 200 topics. These results clearly indicate that for models
with improper hyperpriors and optimised hyperparameters, the topic-based language
model—particularly with prior 2 (βnt per topic)—is better able to model the test data
than either latent Dirichlet allocation or the hierarchical Dirichlet language model.
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Figure 3.11: Information rates of the test data (computed using the “left-to-right”
algorithm) for each of the model variants with improper hyperpriors. The fewer
the bits per word, the better the model. The training data consisted of 99,863
tokens, while the test data consisted of 25,000. “HDLM” is MacKay and Peto’s
hierarchical Dirichlet language model, “TLM Prior 1” is the new topic-based lan-
guage model with prior 1 (single βn vector), while “TLM Prior 2” is the new
model with prior 2 (βnt vector per topic). Latent Dirichlet allocation (not shown)
achieves a worse information rate than the other models: 8.90 bits per word.

In addition to comparing predictive performance, it is also instructive to look at the
inferred topics. Table 3.2 shows the words most frequently assigned to a selection of
topics inferred from the training data by latent Dirichlet allocation and the topic-based
language model variants with improper hyperpriors. Content words are highlighted
in bold. Stop words, such as “to”, “and” and “the”, were identified by their presence
on a standard list of stop words6. For each model, the topic shown in the final column
consists almost entirely of stop words and is used more often than the other topics.

The topics inferred using latent Dirichlet allocation contain many stop words. This
is not normally a problem for latent Dirichlet allocation, because stop words are re-
moved prior to inference. However, when constructing a language model, word or-
der plays a significant role and both content words and stop words must be accu-
rately predicted—removing stop words is therefore inappropriate. The topics for the
new topic-based language model with prior 1 (single βn) are also dominated by stop
words, though to a slightly lesser extent. Inspection of the estimated αm hyperparam-
eters indicates that for latent Dirichlet allocation the inferred αmt value for the topic

6http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
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shown in the final column (mainly stop words) is roughly 0.05, while the mean αmt

value for the other topics is 0.008. For the new model with prior 1 (single βn), this
difference is even more pronounced: the inferred αmt value for the stop word topic is
4.7, while the mean value for the other topics is 0.04. The larger difference is likely to
be the reason why the topics inferred by the new model with prior 1 are slightly less
dominated by stop words than are those inferred by latent Dirichlet allocation.

The most interpretable topics are those inferred by the topic-based language model
with prior 2 (βnt vector per topic). Except for the topic shown in the final column, very
few topics contain stop words and the words in each topic are clearly semantically
related. As expected, the inferred αmt for the stop word topic is much larger than the
mean inferred αmt for the other topics: 50.7 versus 0.80. The separate hyperparameter
vector for each topic (βnt) means that model is able to use the hyperparameters to
capture the characteristics of the different topics. With prior 1 (single βn), the model
is unable to do this and all topic-specific information must be captured by the counts.

Hierarchical Priors

The information rates of the test data, computed using algorithm 3.3, are shown in
figure 3.12 for the hierarchical Dirichlet language model and the topic-based language
model variants with proper hyperpriors and sampled concentration parameters (hier-
archical priors 1, 2a, 2b and 3, summarised in table 3.3). Results for latent Dirichlet al-
location are not shown: With hierarchical prior 1a (see figure 3.10a and table 3.4; sym-
metric Dirichlet), latent Dirichlet allocation achieves a much worse information rate
(8.93 bits per word) than the other models. Meanwhile, in every experiment involv-
ing latent Dirichlet allocation and hierarchical prior 1b (see figure 3.10b and table 3.4;
single n vector), the inferred value of β0 was sufficiently large that n was effectively
ignored, making the model equivalent to latent Dirichlet allocation with hierarchical
prior 1a. This was verified by inspection of the sampled values of the other hyper-
parameters, which were identical to those obtained using latent Dirichlet allocation
with hierarchical prior 1a. Information rates for the new topic-based language model
with hierarchical prior 3 (nw′ per previous word w′) are only shown for 50, 100, 200
and 500 topics. With two topics, either the inferred value of β was vast, thereby re-
ducing the model to the hierarchical Dirichlet language model, or the inferred value
of β1 was vast and the model was reduced to the topic-based language model with
hierarchical prior 1 (single n). This was confirmed by inspection of the other hyper-
parameters, which were either identical to those of the hierarchical Dirichlet language
model or to the new model with hierarchical prior 1. With five topics, the inferred
β was also sufficiently large that the model was reduced to the hierarchical Dirichlet
language model. With ten topics, the inferred α hyperparameter was so small that all
tokens were assigned to a single topic, again causing the model to be reduced to a hi-
erarchical Dirichlet language model. With 50 or more topics, the model outperformed
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Topic-Based Language Model (Prior 1)
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Topic-Based Language Model (Prior 2)
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Table 3.2: Example topics inferred by latent Dirichlet allocation and the new
topic-based language model with improper hyperpriors and 100 topics.
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Figure 3.12: Information rates of the test data (computed using the “left-to-right”
algorithm) for each of the model variants with proper hyperpriors. The fewer
the bits per word, the better the model. The training data consisted of 96,836 to-
kens, while the test data consisted of 25,000. “Bigram HDLM” is the bigram ver-
sion of MacKay and Peto’s hierarchical Dirichlet language model, while “Trigram
HDLM” is the trigram version. “TLM Prior 3” is the new topic-based language
model with hierarchical prior 3 (nw′ per previous word w′, tied via n and u),
“TLM Prior 1” is the new model with hierarchical prior 1 (single n), “TLM Prior
2b” is the new model with hierarchical prior 2b (nt per topic, tied via n and u),
and “TLM Prior 2a” is the new model with hierarchical prior 2a (nt per topic, tied
via u). Latent Dirichlet allocation with hierarchical prior 1a (symmetric Dirichlet)
exhibits the worst performance (8.93 bits per word) and is therefore not shown.

MacKay and Peto’s hierarchical Dirichlet language model, but did not perform as well
as the other model variants. These results indicate that hierarchical prior 3 (nw′ per
previous word w′) is not a good choice of prior for the topic-based language model.

With hierarchical priors 1 (single n), 2a (nt per topic, tied via u) and 2b (nt per topic,
tied via n and u), the topic-based language model outperforms MacKay and Peto’s
hierarchical Dirichlet language model for all numbers of topics. The model variants
with hierarchical priors 2a and 2b perform better than the variant with hierarchical
prior 1. Interestingly, with 200 or fewer topics, there is almost no difference in the in-
formation rates obtained using hierarchical priors 2a and 2b. Inspection of the inferred
hyperparameters indicates that this is because the inferred value of β0 for hierarchi-
cal prior 2b (nt per topic, tied via n and u) is sufficiently large that n is effectively
ignored, making the prior equivalent to hierarchical prior 2a (nt per topic, tied via
u). With 200 or 500 topics, β0 has a more reasonable value, however the subsequent
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Prior 1 Prior 2a Prior 2b Prior 3

Dir (φw′t |βn) Dir (φw′t |βnt) Dir (φw′t |βnt) Dir (φw′t |βnw′)
Dir (n |β0u) Dir (nt |β0u) Dir (nt |β1n) Dir (nw′ |β1n)
— — Dir (n |β0u) Dir (n |β0u)

Table 3.3: The four topic-based language model variants with hierarchical priors
and sampled concentration parameters that were experimentally compared with
the hierarchical Dirichlet language model and latent Dirichlet allocation.

Prior 1a Prior 1b

Dir (φt |βu) Dir (φt |βn)
— Dir (n |β0u)

Table 3.4: The two latent Dirichlet allocation variants that were experimentally
compared with the topic-based language model variants with hierarchical priors.

information rates are worse than those obtained using hierarchical prior 2a.

The most striking feature of figure 3.12 is that all variants of the new model—
particularly hierarchical prior 2a (nt per topic, tied via u)—exhibit much better infor-
mation rates than even a trigram hierarchical Dirichlet language model. The difference
between the information rates achieved by the trigram hierarchical Dirichlet language
model and the topic-based language model with hierarchical prior 2a and 50 topics is
roughly three times the difference between the trigram and bigram language models.

Example topics inferred by latent Dirichlet allocation with hierarchical prior 1a (sym-
metric Dirichlet) and the topic-based language model with hierarchical priors 1 (sin-
gle n) and 2a (nt per topic, tied via u) are shown in table 3.5. Example topics are not
shown for the model variant with hierarchical prior 3 (nw′ per previous word w′, tied
via n and u): Very few of the inferred topics contain anything other than stop words.

The topics inferred by the model variant with hierarchical prior 1 contain several stop
words. This is because the quantity Nw|w′t/N·|w′t is smoothed with Nw/N·. Since stop
words occur more often then other words, Nw/N· is larger for stop words, and they
dominate the topics. In contrast, few of the topics inferred by the model variant with
hierarchical prior 2a contain any stop words. These are instead captured by a separate
(automatically inferred) stop word topic, shown in the final column of table 3.5.

As mentioned previously, the topics inferred by latent Dirichlet allocation with an
improper hyperprior and optimised hyperparameters are heavily dominated by stop
words. In contrast, only one of the topics (displayed in the final column of table 3.5) in-
ferred by latent Dirichlet allocation with hierarchical prior contains a significant num-
ber of stop words. This is most likely due to the fact that under hierarchical prior
1a, the Nw|t/N·|t is smoothed by a constant value, 1/W . The latent Dirichlet alloca-
tion variant with improper hyperpriors smooths Nw|t/N·|t with nw—a quantity that
is directly related to the number of different topics in which word w occurs. In other
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Latent Dirichlet Allocation (Hierarchical Prior 1a)

analog stimuli synapses robot the
vlsi responses activity navigation PUNC

chip response feedback environment of
architecture population synaptic module a

circuit experiments during have to
complex behavioural connections avoidance is

implementation activities learning world in
circuits underlying feedforward modules and
design e.g. selective obstacle by

hardware active associative mobile that

Topic-Based Language Model (Hierarchical Prior 1)

PUNC PUNC PUNC PUNC PUNC

* the number the the
and stimulus and to of

analog i.e. synapses our a
the receptive synaptic of to

number in in * *
architecture and is robot number

with that * in in
active several of these and

for of during and is

Topic-Based Language Model (Hierarchical Prior 2a)

analog stimuli synapses robot PUNC

chip receptive synaptic modules the
hardware responses during hand of

digital stimulus feedback navigation to
implementation response activity path number

circuit multiple at obstacle a
circuits due learning environment is

technology cells models module in
real behavioural nervous internal and

applications field associative vlsi *

Table 3.5: Example topics inferred by latent Dirichlet allocation and the new
topic-based language model with proper hyperpriors and 100 topics.
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words, when using an improper hyperprior and optimised hyperparameters, words
that occur in many different contexts (e.g., stop words) will have a high probability
of occurring in all topics, causing the model to more closely resemble a unigram lan-
guage model. These results suggest that when using latent Dirichlet allocation with
improper hyperpriors, only β should be optimised; n should be fixed to the uniform
distribution. It is also important to optimise αm—a nonuniform m is precisely what
enables the model to infer a separate (more frequently used) stop word topic. This ob-
servation has implications for the work of Griffiths et al. (2005) on integrating syntax
and topics. Their model, which handles stop words and other function words using
a hidden Markov model and content words using latent Dirichlet allocation, was mo-
tivated by the fact that they found the topics inferred by latent Dirichlet allocation to
be heavily dominated by stop words. In fact, if they had simply optimised αm, la-
tent Dirichlet allocation would have automatically handled stop words as desired (by
placing them in a separate topic) eliminating the need for a composite model.

3.6 Conclusions

In this chapter, I presented a new Bayesian model that integrates n-gram-based
and topic-based approaches to document modelling, and compared several different
model variants. The new model, especially with a topic-specific hierarchical Dirich-
let prior (nt per topic; tied via u) has several benefits. Firstly, the information rate
achieved by the new (bigram) model is much better than that achieved by even tri-
gram hierarchical Dirichlet language model. Secondly, the topics inferred by the new
model are clearly interpretable and contain words that are semantically related. Few
topics contain stop words; instead, stop words are automatically grouped into a sepa-
rate stop word topic, which is used more frequently than any of the other topics.

Finally, while investigating different variants of the new model and their effects on
the inferred topics, I demonstrated that previous treatments of latent Dirichlet alloca-
tion, which either set the base measures of the Dirichlet priors over topics and words
to be uniform distributions or optimise both of these base measures along with the
concentration parameters, are inappropriate for data containing stop words. When
modelling such data using latent Dirichlet allocation, it is important to (a) allow a
nonuniform base measure in the Dirichlet prior over topic distributions and (b) use
a uniform base measure in the Dirichlet prior over topic-specific word distributions.
Together, these modelling choices prevent the topics from being dominated by stop
words, and allow the model to automatically discover a separate stop word topic.



Chapter 4

Bayesian Models for Dependency
Parsing Using Pitman-Yor Priors

In this chapter, I introduce a Bayesian dependency parsing model for natural lan-
guage, based on the hierarchical Pitman-Yor process. This model arises from a
Bayesian reinterpretation of a classic dependency parser (Eisner, 1996b). I show that
parsing performance can be substantially improved by (a) using a hierarchical Pitman-
Yor process as a prior over the distribution over dependents of a word, and (b) sam-
pling model hyperparameters. I also present a second Bayesian dependency model
in which latent state variables mediate the relationships between words and their de-
pendents. The model clusters parent–child dependencies into states using a similar
approach to that employed by Bayesian topic models when clustering words into top-
ics. Each latent state may be viewed as a sort of specialised part-of-speech tag or
“syntactic topic” that captures the relationships between words and their dependents.
This is verified by inspection of the inferred states and by showing that they lead to
improved parse accuracy when substituted for part-of-speech tags in the model.

4.1 Introduction

The previous chapter focused on language structure from the low-level perspective of
word order. However, language also exhibits other, more complex, syntactic struc-
tures. Dependency graphs—which have seen recent successes in relation extrac-
tion (Culotta and Sorensen, 2004), hypernym discovery (Snow et al., 2004) and ma-
chine translation (Ding and Palmer, 2005)—are one way of representing this kind of
higher-level structure. Dependency graphs encode relationships between words and
their sentence-level, syntactic dependents by representing each sentence in a corpus as
a directed graph with nodes consisting of the part-of-speech-tagged words in that sen-
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ROOT The[DET] girl[N] hit[V] the[DET] ball[N] .[PUNC]

Figure 4.1: An example dependency graph for a tagged, cased sentence.

tence, with their letter case (capitalised or uncapitalised) left intact.1 Figure 4.1 shows
the dependency graph for the sentence, “The[DET] girl[N] hit[V] the[DET] ball[N]
.[PUNC]”. A directed edge from the word at position n to the word at position n′ indi-
cates that the word at position n′ is a dependent of the word at position n. For example,
consider the word “hit[V]” in figure 4.1. “hit[V]” has two immediate dependents—
“girl[N]” on the left and “ball[N]” on the right. This is because the noun phrases
“The[DET] girl[N]” and “the[DET] ball[N]” are both dependents of a hitting event.
More precisely, they are the subject and object of the verb “hit[V]”. Since “The[DET]”
and “the[DET]” are dependents of “girl[N]” and “ball[N]”, respectively, the immediate
dependents of “hit[V]” are therefore ”girl[N]” and “ball[N]” (Manning and Schütze,
2000). Throughout the rest of this chapter, dependent words will be referred to as
children, while the words upon which they depend will be referred to as parents.

These graph structures give rise to an important difference between dependency mod-
elling and n-gram language modelling. In n-gram language modelling, all relevant
information is observed: Word identities and word order are known; only model pa-
rameters must be inferred in order to compute the probability of a newly observed
sentence. In contrast, computing the probability of a new sentence under a generative
dependency model also requires inference of the latent structure of the dependency
graph for that sentence—i.e., the identity of the parent of each word in the sentence.

Despite this difference, generative models of dependency graphs and n-gram lan-
guage models share the following property: Both rely on decomposing the probability
of words in a sentence into a product of probabilities of individual words given some
word-based context. In the case of n-gram language modelling, this context is some
number of words immediately preceding the word of interest, while in dependency
modelling, this context is the word’s parent and sometimes its siblings. Thus, while
the actual contexts used by the two types of model are different, the underlying idea—
that the contexts that consist of some number of nearby words—is the same.

The work in this chapter exploits this connection between generative dependency
models and n-gram language models to expand the reach of Bayesian methods to de-
pendency parsing. I introduce a new dependency parsing model based on the Pitman-
Yor process (section 4.4). The resultant model exhibits higher parsing accuracy than
previous generative dependency parsing models. Furthermore, the use of a generative
framework allows for the incorporation of additional latent variables. In section 4.5, I

1Words with intact letter casing will henceforth be referred to as “cased” words.
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present a model capable of inferring “syntactic topics” from dependency graphs.

4.2 Generative Dependency Modelling

As described in the previous section, dependency models represent syntactic mod-
ification relationships between words in a sentence using graphs. More formally, a
dependency graph for a tagged, cased sentence is a directed graph, with nodes corre-
sponding to words and a single unique ROOT node, artificially inserted at the begin-
ning of the sentence (as shown in figure 4.1). In addition to this, most dependency
representations, including the one used throughout this chapter, assume that each de-
pendency graph must also satisfy the following properties (McDonald, 2006):

• The graph is weakly connected—that is, every node is reachable from every
other node, if the direction of the edges is ignored.

• Each node has a single parent (i.e., incoming edge), except for ROOT.

• The graph is acyclic.

• The graph must contain exactly N − 1 edges, where N is the number of tagged,
cased words in the sentence (including ROOT).

Any graph that satisfies the above four properties must be a tree. Therefore, the de-
pendency graphs in this chapter will be referred to henceforth as dependency trees.

Another common restriction is that of projectivity. For a dependency tree to be pro-
jective, an edge from wn to wn′ can only exist if there is also a directed path from wn

to every word between wn and wn′ in the sentence. Equivalently, a projective de-
pendency tree is one in which all edges are non-crossing—that is, if the words in the
corresponding sentence are written in the order in which they occur and all edges be-
tween them are drawn above the words, then it is possible to draw the edges such that
no edge crosses any other edge. If this is not possible, the tree is not projective. The
following sentence has a non-projective dependency tree: “I bought a computer yes-
terday which was ThinkPad.” Since non-projective dependency trees are not common
in written English, and the largest corpus of English dependency trees is automatically
constructed from the Penn Treebank so as to be projective (Yamada and Matsumoto,
2003), this chapter deals with projective dependency trees only. This representation of
dependencies is isomorphic to a restricted form of phrase-structured grammar.

4.3 Previous Work

In this section I review the generative dependency model of Eisner (1996a,b) and re-
cent research on Bayesian n-gram language modelling. I also briefly discuss other
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recent work on applying Bayesian techniques to parsing, and highlight the main dif-
ferences between the models presented in this chapter and these approaches.

4.3.1 Eisner’s Dependency Model

The best-known generative modelling framework for dependency trees is that of Eis-
ner (1996a,b). This model generates a tagged, cased sentence and its corresponding
dependency graph using a parent-outward process. Beginning with the ROOT node,
each parent generates a sequence of children starting in the centre and moving out-
ward to the left and then similarly to the right. Generation of each child is conditioned
upon the identity of the tagged, cased parent, the direction of the child in relation to
the parent (left or right) and the most recently generated sibling child. That is, condi-
tioned on the parent, the sequence of children in each direction is a first order Markov
chain. The final child on each side of the parent is always a special STOP symbol, in-
dicating that no more children should be generated in that direction. It is these STOP

symbols at each level that give rise to the simultaneous generation of words and trees.

For example, to generate the sentence and tree in figure 4.1, the first tagged, cased
word to be generated is “hit[V]”, as the first child of ROOT (other than ROOT’s left
STOP). Having done this, “hit[V]” is now considered as a parent, and the subtree
rooted at “hit[V]” is generated: First, “girl[N]” is generated as a left child. The process
is then recursively repeated at the subtree rooted at “girl[N]”, generating “The[DET]”
(and its left and right STOPs) to the left, then a left STOP, and then a right STOP. Once
the subtree rooted at “girl[N]” has been generated, “hit[V]” generates a left STOP, in-
dicating that generation of left children is now complete, and begins generating right
children. The process terminates after the generation of ROOT’s right STOP.

The probability of a sentence consisting of words w, with corresponding case values
c, part-of-speech tags s and tree t, generated according to this process, is

P (s,w, c, t) =∏
n

P (sn, wn, cn | sπ(n), wπ(n), cπ(n), sσ(n), dn)∏
n

P (STOP | sn, wn, cn, sy(n), dSTOP =←)P (STOP | sn, wn, cn, sy(n), dSTOP =→) (4.1)

where dn ∈ {←,→} is the direction ofwn with respect to its parent, π(n) is the position
of wn’s parent, σ(n) is the position of wn’s immediately preceding sibling (moving
outward from wn’s parent in direction dn), y(n) is the position of wn’s final child, and
dSTOP indicates whether the corresponding STOP is a left (←) or right (→) STOP. The
case cn of each word wn can be one of four values: Lower case, upper case, mixed
capitalisation, or first capitalised word in the sentence. Eisner further decomposes the
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P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn) P (wn | sn, sπ(n), wπ(n), cπ(n), dn) P (cn | sn, wn)

sπ(n), wπ(n), cπ(n), sσ(n), dn sn, sπ(n), wπ(n), cπ(n), dn sn, wn
sπ(n), sσ(n), dn sn, sπ(n), dn sn,

sπ(n), dn sn,

Table 4.1: Contexts (in order) used by Eisner for estimating probabilities.

probability P (sn, wn, cn | sπ(n), wπ(n), cπ(n), sσ(n), dn) as follows:

P (sn, wn, cn | sπ(n), wπ(n), cπ(n), sσ(n), dn) =

P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn)

P (wn | sn, sπ(n), wπ(n), cπ(n), dn)

P (cn | sn, wn). (4.2)

To compute each of the probabilities in equation 4.2 from training data D (tagged,
cased sentences and their corresponding dependency trees), Eisner constructs esti-
mators of the probability of each variable of interest, sn, wn and cn, in contexts of
varying length. Each context is a reduction of the full conditioning context for the
probability to be estimated. The complete set of context reductions for each vari-
able is shown in table 4.1. For each context, Eisner estimates the probability of the
variable of interest in that context using the ratio of conditional and marginal counts.
For example, Eisner estimates the probability of wn in context sσ(n)dn by computing
fwn|sσ(n)dn = Nwn|sσ(n)dn/N·|sσ(n)dn where Nwn|sσ(n)dn is the number of times wn has
occurred in the context of sσ(n)dn in the training data and N·|sσ(n)dn =

∑
wNw|sσ(n)dn .

Having constructed estimators for the probability of each variable of interest (sn, wn
and cn) in each of the contexts given in table 4.1, Eisner then computes the probability
of each variable by interpolating between the relevant estimators. For instance, the
probability P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn) is computed as follows:

P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn) =

λ2 fsn|sπ(n)wπ(n)cπ(n)sσ(n)dn +

(1− λ2)λ1 fsn|sπ(n)sσ(n)dn +

(1− λ2) (1− λ1)λ0 fsn|sπ(n)dn +

(1− λ2) (1− λ1) (1− λ0)
1
S

(4.3)
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where

λ2 =
N·|sπ(n)wπ(n)cπ(n)sσ(n)dn

N·|sπ(n)wπ(n)cπ(n)sσ(n)dn + 3
(4.4)

λ1 =
N·|sπ(n)sσ(n)dn

N·|sπ(n)sσ(n)dn + 3
(4.5)

λ0 =
N·|sπ(n)dn

N·|sπ(n)dn + 0.5
(4.6)

and S is the number of possible part-of-speech tags. This approach is similar to that
used in non-Bayesian n-gram language modelling (see section 3.1): Estimators for
more specific contexts are smoothed by estimators for less specific contexts. The choice
of context reductions is different, however. In language modelling, the choice of con-
texts is obvious: For instance, when estimating the trigram probability of a word wn

the relevant contexts are wn−1wn−2 and wn−1—that is, the nearer a word is to wn the
more important it is considered to be when reducing context. In the case of depen-
dency modelling, the choice is not clear and must be decided by the modeller.

4.3.2 Bayesian n-gram Language Models

Bayesian n-gram language modelling was first explored by MacKay and Peto (1995),
who drew connections between non-Bayesian interpolated language models and hi-
erarchical Dirichlet priors, as described in section 3.2. More recently, Teh (2006) and
Goldwater et al. (2006) demonstrated that Kneser-Ney smoothing (Kneser and Ney,
1995) can be viewed as an approximate inference scheme in a hierarchical Pitman-Yor
process, thereby reinterpreting one of the most successful non-Bayesian n-gram lan-
guage modelling techniques as a hierarchical Bayesian model. In this section, I review
the hierarchical Pitman-Yor process and its application to n-gram language modelling.

The Dirichlet distribution, defined in equation 2.2, is the finite version of the Dirich-
let process (Ferguson, 1973): The Dirichlet distribution is a prior over finite discrete
distributions—i.e., distributions over a set of finite elements—while the Dirichlet pro-
cess is a prior over infinite continuous probability distributions. (Despite this, draws
from a Dirichlet process are discrete with probability one.) Like the Dirichlet distri-
bution, the Dirichlet process may be used hierarchically—the base measure may itself
be given a Dirichlet process prior (Teh et al., 2006). In the context of language mod-
elling, the Dirichlet distribution is an appropriate choice of prior for language models
with a fixed vocabulary, while the Dirichlet process can be used to create a hierarchical
Bayesian language model with a potentially infinite vocabulary (Cowans, 2006).

The Dirichlet distribution and the Dirichlet process are both special cases of the
Pitman-Yor process (Pitman and Yor, 1997). Unlike the Dirichlet distribution and pro-
cess, no distinction is made between the finite and infinite versions of the Pitman-Yor
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process in terms of nomenclature. The discussion in the remainder of this section
assumes a finite Pitman-Yor process, though the ideas are directly applicable to the
infinite case and merely require a change of top-level base measure. Like the Dirichlet
distribution, the Pitman-Yor process has a concentration parameter α and a base mea-
sure m. However, it also has an extra “discount” parameter 0 ≤ ε < 1 which, like α,
controls variability around the base measure. When this discount parameter is set to
zero, the (finite) Pitman-Yor process reduces to a Dirichlet distribution.

As explained in section 3.2, n-gram language models are specified by conditional dis-
tributionsP (wt=w |wt−1wt−2 . . . wt−(n−1) =h), described byWn−1(W−1) free param-
eters, where W is the size of the vocabulary. These parameters are typically denoted
by the matrix Φ, in which each row φh is the distribution over words given context h.
The probability of a corpus w given parameters Φ is therefore written as

P (w |Φ) =
∏
t

P (wt |wt−1, . . . , wt−(n−1),Φ) (4.7)

=
∏
w

∏
h

φ
Nw|h
w|h , (4.8)

where the quantity Nw|h is the number of times that word w immediately follows h in
w. Rather than placing a Dirichlet prior over each probability vector φh, as in MacKay
and Peto’s hierarchical Dirichlet language model (1995), Teh (2006) and Goldwater
et al. (2006) recommend giving each φh a Pitman-Yor process prior:

P (Φ |αn−1,mρ(h), εn−1) =
∏
h

PY (φh |αn−1,mρ(h), εn−1), (4.9)

where ρ(h) is the reduction of h to a sequence of n − 2 words (obtained by drop-
ping the left-most word) and PY (· |αn−1,mρ(h), εn−1) is a finite Pitman-Yor prior with
parameters αn−1, mρ(h) and εn−1. The base measure mρ(h) is shared between con-
texts h′ with reduction ρ(h), while the other parameters αn−1 and εn−1 are shared
between contexts h′ with length n − 1. Although there is no known analytic form for
PY (· |αn−1,mρ(h), εn−1), when used as a prior over discrete distributions (Teh, 2006),
the resultant predictive distributions (obtained by integrating over Φ) are tractable.

As with the Dirichlet (section 3.4.2), the consequences of using the prior in equation 4.9
are best described in terms of the effects on the generative process and predictive dis-
tributions over words for each context h (of length n− 1) with φh integrated out. The
generative process may be described exactly as in section 3.4.2 with one key difference:
The new observation is instantiated to the value of “internal” draw γi from the base
measure mρ(h) with probability proportional to the number of previous observations
matched to γi minus some discount εn−1. This is the only difference between the Pitman-
Yor process and the Dirichlet distribution (or process). The predictive probability of
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word w in context h under a Pitman-Yor prior over φh is therefore

P (w |h, αn−1,mρ(h), εn−1) =∑Ih
i=1 (N (i)

·|h − εn−1) δ (γi − w) + (αn−1 + εn−1Ih)mw|ρ(h)∑Ih
i=1N

(i)
·|h + αn−1

, (4.10)

where Ih is the current number of internal draws from the base measure mρ(h), and
N

(i)
·|h is the number of observations matched to internal draw γi. Since every obser-

vation is matched to a draw from the base measure,
∑Ih

i=1N
(i)
·|h δ (γi − w) is equal to

Nw|h—the number of times wordw has been seen in context h—and
∑Ih

i=1N
(i)
·|h = N·|h.

The Pitman-Yor process may be used hierarchically. Consequently, mρ(h) can also be
given a Pitman-Yor prior, with parameters αn−2, mρ(ρ(h)) and εn−2, and integrated
out. Continuing in this fashion, the base measures for all context reductions may be
given Pitman-Yor priors and integrated out, leaving only u, the base measure for the
empty context ∅—the uniform distribution over all words in the vocabulary:

P (w |h, αn−1,mρ(h), εn−1) =

∑Ih
i=1 (N (i)

·|h − εn−1) δ (γi − w) + (αn−1 + εn−1Ih)
· · ·+ (α0 + ε0I∅)uw

· · ·∑Ih
i=1N

(i)
·|h + αn−1

. (4.11)

There is now a Pitman-Yor process for each context and reductions, arranged in a hier-
archical fashion. The resultant generative process is identical to that of the hierarchical
Dirichlet (described in section 3.4.2), except for the inclusion of discount parameters.

Given real-world data w, the number of internal draws for each Pitman-Yor process
and the paths from the observations to the top-level base measure u are unknown
and must be inferred. As with the hierarchical Dirichlet, this can be done either using
Gibbs sampling or one of two standard approximate inference schemes—the maximal
and minimal path assumptions. These schemes are described in detail in section 3.4.2.

Teh (2006) and Goldwater et al. (2006) showed that using a hierarchical Pitman-Yor
process prior for n-gram language modelling leads to a model of which Kneser-Ney
smoothing (Kneser and Ney, 1995) is a special case: Kneser-Ney smoothing corre-
sponds to setting all α parameters to zero and using the minimal path assumption.

4.3.3 Bayesian Parsing Models

Recently two other Bayesian approaches to parsing have been proposed: Firstly, John-
son et al. (2007b) presented two Markov chain Monte Carlo algorithms for probabilis-
tic context-free grammars. They used these algorithms, in conjunction with nonhierar-
chical Dirichlet priors, to demonstrate that Bayesian techniques are capable of generat-
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ing reasonable morphological analyses. Since probabilistic context-free grammars are
unlexicalised and therefore do not suffer from severe sparsity problems, Johnson et al.
did not need to use hierarchical Dirichlet priors. They also used fixed concentration
parameters. In contrast, the lexicalised nature of dependency models means that hier-
archical priors are necessary for achieving good modelling performance. The model
presented in the next section therefore uses hierarchical Pitman-Yor priors. Addition-
ally, the model hyperparameters are inferred from training data using slice sampling.

The second application of Bayesian techniques to parsing is that of Johnson et al.
(2007a), who presented a framework for combining Pitman-Yor priors and probabilis-
tic context-free grammars. While they did not provide any empirical results applying
this framework to syntax, they did show that the framework subsumes their earlier
(experimental) work on morphology using Pitman-Yor priors (Goldwater et al., 2006).

4.4 A Hierarchical Pitman-Yor Dependency Model

In this section, I introduce a new Bayesian framework for generative dependency
modelling that draws on the similarities between generative dependency models and
n-gram language models described in the previous section. The framework uses the
same generative process and decomposition of P (s,w, c, t) as Eisner’s dependency
model (Eisner, 1996a,b), combined with a hierarchical Pitman-Yor process prior over
each probability, eliminating the estimator-based approach described in section 4.3.1.

4.4.1 Reinterpreting Eisner’s Dependency Model

The new model is best explained by starting with a reinterpretation of Eisner’s model
from a Bayesian perspective. In Eisner’s model, the probability of a sentence w with
corresponding case values c, part-of-speech tags s and tree tmay be written as

P (s,w, c, t) =∏
n

θsn|sπ(n)wπ(n)cπ(n)sσ(n)dn φwn|sn,sπ(n)wπ(n)cπ(n)dn ψcn|snwn∏
n

θSTOP|snwncnsy(n)dSTOP=← θSTOP|snwncnsy(n)dSTOP=→, (4.12)

where dn is the direction of token wn with respect to its parent (← or →), π(n) is
the position of wn’s parent, σ(n) is the position of wn’s immediate sibling (moving
outward from wn’s parent in direction dn), y(n) is the position of wn’s final child, and
dSTOP indicates whether the corresponding STOP is a left (←) or right (→) STOP. The
probability vector θs′w′c′s′′d is the distribution over part-of-speech tags (and STOP) for
the context consisting of parent tag s′, parent word w′, parent case value c′, sibling
tag s′′, and direction d. Similarly, the vector φss′w′c′d is the distribution over words for
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the context defined by part-of-speech tag s, parent tag s′, parent word w′, parent case
value c′, and direction d. Finally, the probability vectorψsw represents the distribution
over case values for the context consisting of part-of-speech tag s and word w.

Given a set of training data D consisting of tagged, cased sentences and their corre-
sponding trees, Eisner computes each of the probabilities in equation 4.12 using esti-
mators, as described in section 4.3.1. In a Bayesian setting, however, each probability
vector θs′w′c′s′′d, φss′w′c′d and ψsw should instead be given a prior and integrated out
to form the true predictive distribution. One appropriate choice of prior is the hierar-
chical Dirichlet distribution. Using the same context reductions as Eisner,

sπ(n) =s′, wπ(n) =w′, cπ(n) =c′, sσ(n) =s′′, dn=d

⇓
sπ(n) =s′, sσ(n) =s′′, dn=d

⇓
sπ(n) =s′, dn=d,

(4.13)

where π(n) is the position of wn’s parent, dn is the direction of wn with respect to its
parent, and σ(n) is the position of wn’s immediately preceding sibling moving out-
ward from wπ(n) in direction dn, the prior over θs′w′c′s′′d can be defined as

P (θs′w′c′s′′d |α2,ms′s′′d) = Dir (θs′w′c′s′′d |α2,ms′s′′d) (4.14)

P (ms′s′′d |α1,ms′d) = Dir (ms′s′′d |α1,ms′d) (4.15)

P (ms′d |α0,u) = Dir (ms′d |α0,u). (4.16)

Under this prior, the predictive probability of part-of-speech tag s given α0, α1, α2 and
data D (with θs′w′c′s′′d and the base measures integrated out) is given by

P (s | s′, w′, c′, s′′, d,D, α0, α1, α2) =

∑
iN

(i)
·|s′w′c′s′′d δ (γi − s) + α2

· · ·+ α0us

· · ·∑
iN

(i)
·|s′w′c′s′′d + α2

. (4.17)

The predictive probabilities for w and and c may be obtained similarly, also using
hierarchical Dirichlet priors and the context reductions and orders shown in table 4.1.

As with the language model described in section 4.3.2, number of internal draws for
each level in the hierarchy and the paths from the observations to the top-level base
measureu—equivalently, the counts to be used in all but the bottom-most level of each
predictive distribution—are unknown for real data. They must therefore be inferred
using either Gibbs sampling or one of the maximal and minimal path assumptions.

In the case where the maximal path assumption is used and α2 = α1 = 3 and α0 = 0.5,
this Bayesian model is equivalent to Eisner’s model for dependency trees: Under the
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maximal path assumption, the counts in equation 4.17 correspond to the raw observa-
tion counts—e.g.,

∑
iN

(i)
·|s′w′c′s′′d δ (γi − s) is equal to Ns|s′w′c′s′′d, the number of times

part-of-speech tag s has been seen in the context of parent tag s′, parent word w′, par-
ent case value c′, sibling tag s′′ and direction d. Consequently, using the maximal path
assumption and α2 = α1 = 3, α0 = 0.5, equation 4.17 may be written as follows:

P (s | s′, w′, c′, s′′, d,D, α0, α1, α2) =

Ns|s′w′c′s′′d + 3
Ns|s′s′′d + 3

Ns|s′d + 0.5 1
S

N·|s′d + 0.5
N·|s′s′′d + 3

N·|s′w′c′s′′d + 3
. (4.18)

To make the relationship to Eisner’s model explicit, this equation may be rewritten as

P (s | s′, w′, c′, s′′, d,D, α0, α1, α2) =

λ2

Ns|s′w′c′s′′d

N·|s′w′c′s′′d
+

(1− λ2)λ1

Ns|s′s′′d

N·|s′s′′d
+

(1− λ2) (1− λ1)λ0

Ns|s′d

N·|s′d
+

(1− λ2) (1− λ1) (1− λ0)
1
S

(4.19)

where the quantities λ2, λ1 and λ0 are given by equations 4.4, 4.5 and 4.6 respectively.
Equation 4.19 and equation 4.18 are therefore identical to the predictive distribution
over part-of-speech tags used in Eisner’s dependency model, given in equation 4.3.

This Bayesian reinterpretation of Eisner’s model has three advantages: firstly, the con-
centration parameters may be sampled, rather than fixed to some particular value, as
is the case in Eisner’s model. Secondly, the counts need not correspond to the raw ob-
servation counts, as is the case when using the maximal path assumption; the minimal
path assumption and Gibbs sampling both give rise to other count values. Finally, it
is also possible to use priors other than the hierarchical Dirichlet distribution.

4.4.2 Using Pitman-Yor Process Priors

The lexicalised nature of dependency trees means that generative dependency parsing
models suffer from the same kinds of data sparsity as n-gram language models. Given
the successes of Kneser-Ney smoothing and hierarchical Pitman-Yor process priors
for language modelling, it is likely that the hierarchical Pitman-Yor process is a better
choice of prior for dependency modelling than the hierarchical Dirichlet distribution.
Indeed, the results presented in section 4.4.4 demonstrate that this is in fact the case.
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Under a hierarchical Pitman-Yor prior over θs′w′c′s′′d, given by

P (θs′w′c′s′′d |α2,ms′s′′d, ε2) = PY (θs′w′c′s′′d |α2,ms′s′′d, ε2) (4.20)

P (ms′s′′d |α1,ms′d, ε1) = PY (ms′s′′d |α1,ms′d, ε1) (4.21)

P (ms′d |α0,u, ε0) = PY (ms′d |α0,u, ε0), (4.22)

the predictive probability of part-of-speech tag s given data D is

P (s | s′, w′, c′, s′′, d,D, α0, α1, α2, ε0, ε1, ε2) =

∑
i (N (i)

·|s′w′c′s′′d − ε2) δ (γi − s) + (α2 + ε2Is′w′c′s′′d)
· · ·+ (α0 + ε0I∅)us

· · ·∑
iN

(i)
·|s′w′c′s′′d + α2

. (4.23)

The predictive probabilities for word w and case value cmay be obtained similarly. As
with θs′w′c′s′′d, when defining hierarchical Pitman-Yor priors over φss′w′c′d and ψsw,
the context reductions recommended by Eisner (shown in table 4.1) are used.

The evidence—or probability of data D given concentration and discount parameters,
inferred internal draws and inferred paths from the observations to the top-level base
measure via these draws—may be computed using the predictive distributions over
tags, words and case values: All counts are zeroed and, starting with the root of each
dependency tree, each node (tagged, cased word) is visited in the parent-outward
fashion described in section 4.3.1 until all nodes (including STOP nodes) have been
processed. As each node is visited, the probability of that tagged, cased word is com-
puted using the predictive distributions given the data seen so far and multiplied into
the estimate of the evidence. The node may then be added back into the hierarchy of
Pitman-Yor processes according to the current set of inferred internal draws and paths
(i.e., the counts are updated to reflect that node) before processing the next node.

4.4.3 Inference

Given the hierarchical Pitman-Yor dependency model introduced in the previous sec-
tion and a training corpus D, consisting of tagged, cased sentences and their trees,
there are two tasks of interest: sampling model hyperparameters given the training
data, and inferring trees for unseen test sentences. In this section, I describe how these
tasks may be accomplished. For computational efficiency, inference of internal draws
and paths is performed using either the maximal or minimal path assumption.

Having inferred a set of internal draws and paths for the training data D, typical con-
centration and discount parameters can be determined using slice sampling (Neal,
2003). As described in section 3.4.2, slice sampling is a Markov chain Monte Carlo
method that adapts to the distribution from which samples are being drawn by uni-
formly sampling from the area under its density function. When sampling concentra-
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tion and discount parameters, the density used is the evidence or probability of the
data, which may be computed as described in the previous section. Pseudocode for
drawing S multidimensional samples using slice sampling is given in algorithm 3.2.

Although dependency trees have non-trivial structures, the parents for all words in
a given sentence can be jointly sampled using an algorithm that combines dynamic
programming with the Metropolis-Hastings method. The algorithm is similar to that
of Johnson et al. (2007b,a) for unlexicalised probabilistic context-free grammars.

The dynamic program is responsible for proposing a new tree t′ for a cased sentence
w (with corresponding part-of-speech tags s and previously sampled tree t) given all
the other trees and sentences in the corpus D. The proposal tree t′ is sampled from

P (t′ | s,w, c,D\s,w,c,t, U) '

P (t′ | s,w, c,D\s,w,c,t, {θ̃s′w′c′s′′d, φ̃ss′w′c′d, ψ̃sw}, U) (4.24)

where

P (t′ | s,w, c,D\s,w,c,t, {θ̃s′w′c′s′′d, φ̃ss′w′c′d, ψ̃sw}, U) ∝

P (s,w, c, t′ | D\s,w,c,t, {θ̃s′w′c′s′′d, φ̃ss′w′c′d, ψ̃sw}, U), (4.25)

U denotes the concentration and discount parameters andD\s,w,c,t is the corpusD ex-
cluding the tagged, cased sentence of interest and its previously sampled tree. (When
sampling a tree for an unseen test sentence, the corpus D is considered to be the
training data plus all other trees in the test data.) The probability vectors θ̃s′w′c′s′′d,
φ̃ss′w′c′d and ψ̃sw are the predictive distributions over tags, words and case values
given D\s,w,c,t and the currently inferred internal draws and paths. Conditioned
on these probability vectors, each node is independent of the other nodes in the
tree. P (s,w, c, t′ | D\s,w,c,t, {θ̃s′w′c′s′′d, φ̃ss′w′c′d, ψ̃sw}, U) may therefore be computed
by taking the product of the probabilities of each tagged, cased word in the sentence
under these predictive distributions without updating the counts used to construct
them. This independence is necessary to derive an efficient dynamic program.

The dynamic program is based on Eisner’s O(n3) algorithm for parsing—that is, for
choosing the most probable tree for a given sentence—adapted to perform sampling.
The algorithm is analogous to the forward–”sample-backward” algorithm for hid-
den Markov models: First a bottom-up dynamic programming (forward) pass is per-
formed to marginalise over all possible subtrees for the sentence in question. Sam-
pling is then performed in a top-down (backward) fashion. A four-dimensional dy-
namic programming chart is used to store the sums over subtrees. Each chart entry
C[a][b][c][d] contains the sum of the probabilities of all possible subtrees spanning posi-
tions a through b > a with “complete value” c ∈ {0, 1, 2} and direction d ∈ {←,→,−}.
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There are five different types of chart entry:

1. C[a][b][1][→] contains the sum of the probabilities of all possible complete sub-
trees rooted at position a, spanning a through b > a. The “complete value” of
c = 1 means that the word at a cannot receive any more right dependents.

2. C[a][b][1][←] contains the sum of the probabilities of all possible complete sub-
trees rooted at b, spanning a through b > a. The subtrees are complete (i.e.,
c = 1), in that the word at position b cannot receive any more left dependents.

3. C[a][b][0][→] contains the sum of the probabilities of all possible incomplete sub-
trees rooted at a, spanning positions a through b > a. The “complete value” of 0
indicates that these subtrees can still gather more right dependents.

4. C[a][b][0][←] contains the sum of the probabilities of all possible incomplete sub-
trees rooted at b, spanning positions a through b > a. The subtrees are incom-
plete (i.e., c = 0), so the word at position b can gather more left dependents.

5. C[a][b][2][−] contains the sum of the probabilities of all possible forests consisting
of two trees, one rooted at a spanning a through m, where a ≤ m < b, and one
rooted at b spanning m + 1 through b. These trees will ultimately be combined
such that the words at both a and b will be dependents of a word at some other
position. This type of chart entry is necessary for keeping track of siblings.

The chart is built in a bottom-up fashion by considering subtrees of increasing length.
The sum over all possible trees for sentence w with tags s and case values c is con-
tained in the final entry to be completed, C[0][|w|][1][→], where |w| is the length of w
(excluding ROOT). Algorithm 4.1 shows the dynamic program for building the chart.
A proposal tree t′ may be sampled by recursively traversing the completed chart.

Having generated a proposal tree t′ using the completed chart, t′ is accepted as the
current tree assignment for w with probability given by the minimum of 1 and

P (s,w, c, t′ | D\s,w,c,t, U)
P (s,w, c, t | D\s,w,c,t, U)

P (s,w, c, t | D\s,w,c,t, Θ̃, Φ̃, Ψ̃, U)

P (w, s, c, t′ | D\w,s,c,t, Θ̃, Φ̃, Ψ̃, U)
, (4.26)

where Θ̃ = {θ̃s′w′c′s′′d}, Φ̃ = {φ̃ss′w′c′d} and Ψ̃ = {ψ̃sw}. If the proposal tree
t′ is rejected, then the previously sampled tree t is accepted instead and kept as
the current assignment. This Metropolis-Hastings step is necessary to compensate
for the fact that t′ was not drawn from the true posterior distribution over trees
P (t′ | s,w, c,D\w,s,c,t, U). (It is not clear how to sample directly from the true poste-
rior by constructing a collapsed, block Gibbs sampler based on the dynamic program
described above. Integrating out the model parameters couples the nodes in each tree,
invalidating the independence assumptions required by the dynamic program.)

In practice, Metropolis-Hastings rarely rejects a proposed tree: For any given sentence,
the conditioning contexts (s′w′c′s′′d, ss′w′c′d or sw) for which the probability vectors
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1: function CREATECHART(w, s)

2: % initialise chart
3: C[a][a][1][d] := PROB(STOP, a, START, d) ∀d ∈ {←,→}
4: C[a][a][c][d] := 1.0 ∀d ∈ {←,→,−}, ∀c ∈ {0, 2}
5: C[a][a][1][−] := 1.0 ∀a ∈ {0, . . . , |w|}

6: for k := 1 to |w| {% width of the subtree
7: for a := 0 to |w| − k {
8: b := a+ k

9: % create “sibling” entry
10: C[a][b][2][−] :=

∑
a≤m<bC[a][m][1][→]C[m+ 1][b][1][←]

11: % parent picks up first child
12: l := C[a][b− 1][1][→]C[b][b][0][←] PROB(a, b, START,←)
13: r := C[a][a][0][→]C[a+ 1][b][1][←] PROB(b, a, START,→)

14: % parent picks up subsequent child (through sibling)
15: C[a][b][0][←] := l +

∑
a≤m<bC[a][m][2][−]C[m][e][0][←] PROB(a, b,m,←)

16: C[a][b][0][→] := r +
∑

a<m≤bC[a][m][0][→]C[m][b][2][−] PROB(b, a,m,→)

17: % create “complete” entries
18: C[a][b][1][←] :=

∑
a≤m<bC[a][m][1][←]C[m][b][0][←] PROB(STOP, b,m,←)

19: C[a][b][1][→] :=
∑

a<m≤bC[a][m][0][→]C[m][b][1][→] PROB(STOP, a,m,→)
20: }
21: }
22: }

23: function PROB(a, b, m, d)
24: if a = STOP {
25: if m = START {
26: return θ̃STOP|wb sb cb START d

27: else
28: return θ̃STOP|wb sb cb sm d

29: }
30: else
31: if m = START {
32: return θ̃sa|wb sb cb START d φ̃wa|sa wb sb cb d ψ̃ca|wa sa
33: else
34: return θ̃sa|wb sb cb sm d φ̃wa|sa wb sb cb d ψ̃ca|wa sa
35: }
36: }
37: }

Algorithm 4.1: Constructing the dynamic programming chart.
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θ̃s′w′c′s′′d, φ̃ss′w′c′d or ψ̃sw are exactly equal to the true predictive probabilities (i.e.,
those that would cause the dynamic program to generate a sample from the true poste-
rior distribution over trees) are those that not only occur exactly once in that sentence,
but whose context reductions similarly occur exactly once also. However, for contexts
that occur many times in the corpus, θ̃s′w′c′s′′d, φ̃ss′w′c′d or ψ̃sw will be very close to
the true predictive probabilities. Many contexts fall into one of these two categories.
Consequently, for most sentences, the distribution from which the dynamic program
generates a sample is close to the true posterior over trees P (t′ | s,w, c,D\w,s,c,t, U).

4.4.4 Results

Dependency parsing models are typically evaluated by computing parse accuracy—
i.e., the percentage of parents correctly identified. Punctuation is usually excluded.
The hierarchical Pitman-Yor dependency model was used to parse the Wall Street Jour-
nal sections of the Penn Treebank (Marcus et al., 1993). To facilitate comparison with
other dependency parsing algorithms, the standard train/test split was used (sections
2–21 for training, and section 23 for testing), and parse accuracies were computed
using the maximum probability trees rather than sampled trees. The Penn Treebank
training sections consist of 39,832 sentences, while the test section consists of 2,416
sentences. No preprocessing was performed except for replacing words that occurred
once in the training data (and never in the test data) or one or more times in the test
data, but never in the training data, with one of several UNSEEN types (Eisner, 1996a):

• UNSEEN-SHORT: used for words less than six characters long.

• UNSEEN-NUM: used for words whose last character is a digit.

• UNSEEN-PUNC: used for words consisting entirely of punctuation characters.

• UNSEEN-XX: used for words of six or more characters in length. XX is replaced
with the last two characters of the word.

Gold standard part-of-speech tags were used for the training data, while tags for the
test data were inferred using a standard part-of-speech tagger (Ratnaparkhi, 1996).2

Parse accuracy was computed for several different model variants:

• Hierarchical Dirichlet (i.e., no discount parameters) with fixed concentration pa-
rameters, set to the values used by Eisner. When used with the maximal path
assumption, this model variant is identical to Eisner’s model.

• Hierarchical Dirichlet with slice-sampled concentration parameters.

2The generative nature of the dependency parser means that it is possible to sample part-of-speech
tags for test data at the same time as sampling trees. However, it is computationally expensive and
results in very similar performance to using part-of-speech tags from Ratnaparkhi’s tagger.



A Hierarchical Pitman-Yor Dependency Model 89

• Pitman-Yor with fixed concentration parameters, set to the values used by Eis-
ner, and fixed discount parameters, all set to 0.1.

• Pitman-Yor with slice-sampled concentration and discount parameters.

For each model variant, all experiments were performed using both the maximal and
minimal path assumptions. For the variants with fixed concentration and discount
parameters, the concentration parameters were set to the values recommended by
Eisner (see section 4.3.1), while the discount parameters were set to 0.1. For the model
variants with sampled concentration and discount parameters, fifty iterations of slice
sampling proved sufficient to reach convergence. Results are shown in figure 4.2.

The parse accuracies for the model variant equivalent to Eisner’s dependency model
(hierarchical Dirichlet prior, fixed concentration parameters) are lower than those re-
ported in Eisner’s work (1996a; 1996b). This is because Eisner’s results were obtained
using an extensively filtered smaller data set (e.g., sentences with conjunctions are dis-
carded). In the time since Eisner’s model was published a different train/test split has
become standard, and the results in figure 4.2 are reported on the now-standard split.

The results in figure 4.2 clearly demonstrate that using a hierarchical Pitman-Yor prior
and sampling hyperparameters both give considerable improvements over a hier-
archical Dirichlet model with fixed concentration parameters and the maximal path
assumption (i.e., Eisner’s original model). Interestingly, the differences in accuracy
between the maximal and minimal path assumptions are not significant. In the hier-
archical Dirichlet variant of the model, sampling hyperparameters gives an accuracy
improvement of approximately 4%. Using a hierarchical Pitman-Yor prior improves
accuracy over the hierarchical Dirichlet variant by approximately 3%. Sampling the
hyperparameters of the Pitman-Yor prior gives an accuracy improvement of 5% over
the Eisner-equivalent hierarchical Dirichlet model. This corresponds to a 26% reduc-
tion in error. Although state-of-the-art dependency models, such as the discrimina-
tive maximum-margin method of McDonald (2006), do achieve higher parse accuracy
(e.g., 91.5% for McDonald’s model; see figure 4.3) the hierarchical Pitman-Yor depen-
dency model uses exactly the same contexts and reductions as Eisner’s original model.
In contrast, McDonald’s model uses a very large number of potentially relevant fea-
tures. It is therefore possible that further consideration of contexts and reductions, as
well as other enhancements to the Pitman-Yor dependency model would yield simi-
lar results while retaining the benefits of a generative model. Possible enhancements
include aggregation across multiple samples, sampling of internal draws and paths,
and a letter-based language model as a top-level base measure (Cowans, 2006).
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Path Assumption

Maximal Minimal

Dirichlet fixed α values (Eisner, 1996a,b) 80.7 80.2
Dirichlet sampled α values 84.3 84.1

Pitman-Yor fixed α and ε values 83.6 83.7
Pitman-Yor sampled α and ε values 85.4 85.7
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Figure 4.2: Parse accuracy (percentage of words whose parents are correctly iden-
tified) for the hierarchical Pitman-Yor dependency model on Penn Treebank data.
Results are computed using the maximum probability tree. “Fixed” refers to fixed
hyperparameters, while “Sampled” refers to sampled hyperparameters.
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Figure 4.3: Parse accuracy by part-of-speech tag for McDonald’s discriminative
maximum-margin method (McDonald, 2006) and the best-performing Pitman-
Yor model variant (sampled hyperparameters, minimal path assumption).
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ROOT the girl hit the ball with the bat .

Figure 4.4: An example dependency tree for an untagged, uncased sentence.

4.5 A “Syntactic Topic” Dependency Model

One advantage of a generative approach to dependency modelling is that other latent
variables may be incorporated into the model. To demonstrate this, I present a de-
pendency parsing model with latent variables that mediate the relationships between
words and their dependents, resulting in a clustering of parent–child dependencies.

This model can be considered to be a dependency-based analogue of the syntactic
component from the syntax-based topic model of Griffiths et al. (2005). The models
differ in their underlying structure, however: In the model presented in this section,
the underlying structure is a tree that combines both words and unobserved syntactic
states; in Griffiths et al.’s model, the structure is a simply a chain over latent states.
This difference means that there are two kinds of latent information that must be in-
ferred in the dependency-based model: The structure of each dependency tree and the
identities of the latent states. In Griffiths et al.’s model, only the latter need be inferred.

4.5.1 Model Structure

The generative process underlying the model in this section is similar to that of the
model presented in the previous section, with four key differences:

• Sentences are untagged and uncased,

• STOP symbols are handled differently,

• siblings are not taken into account (i.e., it is a first order model),

• latent state variables mediate the relationships between parents and children.

Generation of STOP symbols is handled by a separate two-valued (STOP/CONTINUE)
distribution. Prior to generating a child, a value is sampled from this distribution. If
the value is CONTINUE a child is generated; otherwise, no more children are generated
in that direction. Although it is possible to handle STOP generation by incorporating
the STOP symbol into the distribution over latent states (similar to the way in which it
is incorporated into the distribution over part-of-speech tags in the previous model),
a separate STOP/CONTINUE distribution results in slightly better performance here.

Models that ignore siblings are more computationally efficient. However, the decision
to ignore siblings means that conditioned on their parent, children are independent of
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Figure 4.5: Graphical model for the dependency model with latent states.

each other. This affects the model in the following way: Having observed the depen-
dency tree depicted in figure 4.4 (and nothing else), a model that ignores siblings is
just as likely to generate “The girl hit . with the bat the ball” as “The girl hit the ball
with the bat.”. A model that takes siblings into account will have only a very small (or
zero, depending on the hyperparameters) probability of generating the first sentence.

Most importantly, the inclusion of latent state variables means that the model does
not need to separately learn about the distributions over children for words that are
often used similar contexts (e.g., “ate” and “consumed”). Instead, the model can infer
that these words should have a high probability of generating some particular state
s, which is then responsible for generating children. (The model does not, however,
assume that all instances of word w must generate or be generated by the same state.)
This means that the model is better able to generalise about future dependencies.

The probability of a sentence w with latent states s and tree t is given by

P (s,w, t) =∏
n

θsn|wπ(n)
φwn|sn ψCONTINUE|wπ(n)dn∏

n

ψSTOP|wndSTOP=← ψSTOP|wndSTOP=→, (4.27)

where the vector θw′ is the distribution over latent states for parent wordw′, the vector
φs is the distribution over child words for latent state s, and the vector ψw′d is the
distribution that controls tree structure via STOP generation. In other words, parent
words are collapsed down to the latent state space and children are generated on the
basis of these states. As a result, the clusters induced by the latent states are expected
to exhibit syntactic properties and can be thought of as “syntactic topics”—specialised
distributions over words with a syntactic flavour. The model is depicted in figure 4.5.



A “Syntactic Topic” Dependency Model 94

Each of the probability vectors in equation 4.27 is given a Dirichlet prior:

P (θw′ |αm) = Dir (θw′ |αm), (4.28)

P (φs |βu) = Dir (φs |βu) (4.29)

and

P (ψw′,d | ζnd) = Dir (ψw′,d | ζnd) (4.30)

P (nd | ζ1n) = Dir (nd | ζ1n) (4.31)

P (n | ζ0u) = Dir (n | ζ0u). (4.32)

The base measure and concentration parameter for the prior over θw′ are optimised
using first of the two fixed-point methods described in section 2.3.5, while the base
measures for the prior over the stop probability vector ψw′d are integrated out.

4.5.2 Inference

Given a training corpus D = {w, t} consisting of uncased sentences and their corre-
sponding trees, there are two tasks of interest: Sampling latent states for the training
data, and sampling states and trees for unseen test sentences. Sampling states for a
training sentence is similar to sampling topics in latent Dirichlet allocation (Griffiths
and Steyvers, 2004)—the states are initialised randomly and then resampled using
Gibbs sampling. Each state sn is resampled from its conditional distribution given all
other state assignments, words and trees in the training data:

P (sn | {w}, {s}\n, {t}, U) ∝

P (wn | sn, {s}\n, {w}\n, {t})P (sn | {s}\n, {w}\n, {t}), (4.33)

where the subscript “\n” denotes a quantity that excludes data from the nth position
in the corpus. The variable U denotes the full set of model hyperparameters.

Given a set of training words and trees and a single sample of training states, the trees
and states for unseen test data may be sampled using an augmented version of the
inference algorithm described in section 4.4.3 in which states are marginalised over
when performing the bottom-up chart-building pass for a test sentence. States and a
tree for this sentence can then be sampled simultaneously in a top-down fashion.

4.5.3 Results

Penn Treebank sections 2–21 were used as training data. The true dependency trees
and words were used to obtain a single sample of states. These training states, trees
and words, were then used to sample states and trees for Penn Treebank section 23.
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Some example states or “syntactic topics” are shown in table 4.2. Each column in
each row consists of the ten words most likely to be generated by a particular state.
The states exhibit a good correspondence with parts-of-speech, but are more finely
grained. For example, the states in the first and third columns in the top row both cor-
respond to nouns. However, the first contains job titles, while the third contains place
names. Similarly, the states in the fourth and fifth columns in the top row both cor-
respond to verbs. However, the fourth contains transitive past-tense verbs, while the
fifth contains present-tense verbs. The state shown in the final column in the bottom
row is particularly interesting because the top words are entirely plural nouns. This
kind of specificity indicates that these states are likely to be beneficial in other tasks
where part-of-speech tags are typically used, such as named entity recognition.

As a measure of the quality of these “syntactic topics”, they can be used in place of
part-of-speech tags in parsing experiments. The parsing performance (parse accu-
racy) obtained using the latent state dependency model was compared with the per-
formance of an equivalent model in which the states were fixed to true part-of-speech
tags for both training and test data. These results are shown in figure 4.6. Using the
sampled states gives an improvement in accuracy of approximately 5% for sampled
trees and an improvement of 1.6% for the most probable trees. Although this is a
modest improvement in parsing accuracy, it is a clear quantitative indication that the
discovered states do indeed capture syntactically meaningful information.

4.6 Conclusions

In this chapter, I introduced a new dependency parsing model based on the hierarchi-
cal Pitman-Yor process. Using this model, I showed that the performance of Eisner’s
generative dependency parsing model can be significantly improved by using a hi-
erarchical Pitman-Yor prior and by sampling model hyperparameters. On the Penn
Treebank data, this leads to a 26% reduction in parsing error over Eisner’s model. I
also presented a second Bayesian dependency model, in which the local dependency
distributions are mediated by latent variables that cluster parent–child dependencies.
Not only do the inferred latent variables look like finer-grained parts-of-speech, they
result in better parse accuracy when substituted for part-of-speech tags in the model.
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Type of Tree

Sampled Trees Most Probable Tree

50 states 59.2 63.8
100 states 60.0 64.1
150 states 60.5 64.7
200 states 60.4 64.5

POS tags 55.3 63.1

POS Tags 50 States 100 States 150 States 200 States
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Figure 4.6: Parse accuracy for the “syntactic topic” dependency model (percent-
age of words whose parents are correctly identified by the model) on the Penn
Treebank (standard train/test split). As a baseline, the latent states are fixed to
part-of-speech tags. “Sampled” refers to sampled trees, while “MP” refers to the
most probable tree. Results for sampled trees are averaged over ten samples.
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president year u.s. made is in
director years california offered are on
officer months washington filed was ,

chairman quarter texas put has for
executive example york asked have at

head days london approved were with
attorney time japan announced will and
manager weeks canada left had as

chief period france held ’s by
secretary week britain bought would up

10 would more his ms. sales
8 will most their mrs. issues
1 could very ’s who prices
50 should so her van earnings
2 can too and mary results
15 might than my lee stocks
20 had less your dorrance rates
30 may and own linda costs
25 must enough ’ carol terms
3 owns about old hart figures

Table 4.2: The top ten words most likely to be generated as children by twelve of
the states inferred from the true dependency trees for the Penn Treebank training
sections (sections 2–21). These examples were all from a model with 150 states.



Chapter 5

Cluster-Based Topic Modelling

In this chapter, I present a hierarchical Bayesian model for clustering documents by
topic. The model extends a well-known Bayesian topic model, latent Dirichlet alloca-
tion (Blei et al., 2003), to incorporate latent document groupings. Given a document
collection, these groupings, along with topic assignments for each document, are in-
ferred using an unsupervised approach. The model is evaluated on a collection of
academic papers, and exhibits better predictive accuracy than either latent Dirichlet al-
location or a clustering model without latent topics. Furthermore, the groups inferred
by the new model are clearly interpretable and correspond well to known research ar-
eas. Finally, I also show how author information may be incorporated into the model,
resulting in a cluster-based author–topic model with even better predictive accuracy
and finer-grained groupings than the model variant without author information.

5.1 Introduction

The models presented in the previous two chapters concentrated on sentence-level
document structure. However, collections of documents also exhibit higher-level
structure, including structure across document boundaries. For example, academic
papers from a particular conference or journal may be seen as arising from groups
or communities of individuals working on closely related topics. Information about
these document groupings is useful for performing coarse-grained analyses, e.g.,
“How fragmented is this conference? Should it be split in two?”, and for making
instance-level predictions, e.g., “Which individuals will co-author a paper together
next year?”, as well as for organising and navigating conference proceedings. In prac-
tice, these kinds of relationships between documents are usually unobserved. Conse-
quently, there is a need for models that are able to use available data—such as docu-
ment content and authorship information—to determine latent document groupings.

This chapter introduces a nonparametric Bayesian model that uses a topic-based ap-
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proach to find groups of related documents. Unlike earlier models that cluster docu-
ments into groups using raw word counts, such that of Nigam et al. (1998), the model
presented in this chapter has the advantage of being robust to variations in vocabu-
lary: Documents that are about similar topics but use slightly different terminology
will be grouped together. Furthermore, the use of nonparametric Bayesian techniques
means that the new model will automatically discover the most appropriate number
of clusters for the data, rather than requiring that this number be specified in advance.
Finally, the new model can be extended to account for other relevant information, such
as authorship information, thereby resulting in a more informed clustering.

The model presented in this chapter is related to the information bottleneck-based
model of Slonim and Tishby (2000), in that document groupings are inferred using
a low-dimensional representation of each document. However, the models differ in
three ways: Firstly, the topics in Slonim and Tishby’s model are categorical—i.e., each
word must belong to exactly one topic. In contrast, the topics used by the model in this
chapter are componential: Multiple topics can account for the same word. Secondly,
in Slonim and Tishby’s model, topics are inferred just once, prior to cluster inference,
and then fixed. Here, clusters and topics are inferred simultaneously. Thirdly, Slonim
and Tishby’s model uses a predetermined number of document clusters, whereas the
new model can automatically select the number of clusters that best describes the data.

The new model is also similar to Dirichlet enhanced latent semantic analysis (Yu et al.,
2005). There is, however, an important difference between the two models: In Dirich-
let enhanced latent semantic analysis, the cluster-specific distributions over topics are
used, without modification, as document-specific topic distributions. More precisely,
when generating a new document using Dirichlet enhanced latent semantic analy-
sis, the distribution over topics for that document is taken to be the distribution over
topics for the cluster to which that document belongs. When generating a document
using the new model introduced in this chapter, the cluster-specific topic distribu-
tion is instead used as the base measure for a Dirichlet distribution, from which the
document-specific topic distribution is drawn. This difference means that the new
model is more flexible than Dirichlet-enhanced latent semantic analysis: The topic dis-
tributions for documents belonging to a single cluster are allowed to vary around the
cluster-specific topic distribution. This property is appealing: Although documents in
the same cluster should have similar topic distributions, their topic distributions need
not be identical. One consequence of this difference is as follows: When making pre-
dictions about the occurrence of future topics in some document, Dirichlet enhanced
latent semantic analysis treats the topic usage counts for that document as being no
more important than the topic usage counts for the entire cluster. In contrast, the
model presented in this chapter can automatically determine the extent to which the
document-specific topic usage counts should influence the selection of future topics,
and can therefore give them greater influence than the cluster-specific counts.
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5.2 Topic Modelling

In this section I briefly review latent Dirichlet allocation (Blei et al., 2003), and describe
how this framework can be extended to incorporate known document groupings, to
give a model that is the finite analogue of Teh et al.’s model (2006) for multiple corpora.

5.2.1 Latent Dirichlet Allocation

As described in section 3.3, latent Dirichlet allocation (Blei et al., 2003) models docu-
ments as finite mixtures over latent topics, where each topic is characterised by a dis-
tribution over words. Given a corpus w, each token wn is assumed to have been gen-
erated by first drawing a topic assignment zn from a document-specific distribution
over topics, and then drawing wn from the distribution over words that characterises
that topic. Letting W , T and D be respectively the size of the vocabulary, the number
of topics and the number of documents in the corpus, the model parameters are typi-
cally denoted by Φ, a T ×W matrix with elements given by φw|t = P (wn=w | zn= t),
and Θ, a D × T matrix with elements given by θt|d = P (zn = t | dn = d). The joint
probability of corpus w and corresponding topic assignments z is therefore

P (w, z |Φ,Θ) =
∏
w

∏
t

∏
d

φ
Nw|t
w|t θ

Nt|d
t|d , (5.1)

where Nt|d is the number of times that topic t has been used in document d and Nw|t

is the number of times that word w has been generated by topic t. Finally, Blei et al.
place (nonhierarchical) Dirichlet distribution priors over Φ and Θ:

P (Φ |βn) =
∏
t

Dir (φt |βn) (5.2)

P (Θ |αm) =
∏
d

Dir (θd |αm). (5.3)

The hyperparameters βn and αm are given improper noninformative priors.

The use of a nonhierarchical Dirichlet prior over the document-specific topic distri-
butions is certainly appropriate for corpora where all documents are part of the same
underlying group. In this case, the base measure m acts as a single “prototype” dis-
tribution over topics for the group, while the concentration parameter α controls the
extent to which the θd probability vectors will vary from this prototype. For other
sorts of corpora, however, this prior may not be the best choice: For example, a collec-
tion of news articles may contain some articles about sport and others about business.
While the articles about sport are likely to use similar topics to each other, they are
less likely to use the topics that occur in articles about business. Consequently, when
inferring topics for a new article, the identity of its group—sport or business—will
reveal useful information about its topic composition. A topic model that accounts for
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these sorts of groupings is therefore a better model of the data than one that doesn’t.

5.2.2 Incorporating Document Groupings

If document groupings are known, it is easy to extend latent Dirichlet allocation to
incorporate group information: Rather than drawing each document-specific topic
distribution θd from a single Dirichlet prior, each distribution can instead be drawn
from a group-specific Dirichlet, thereby respecting the document groupings. Letting cd
denote the group for document d, the distribution over θd is now given by

P (θd |αmcd) = Dir (θd |αmcd). (5.4)

In order to capture topic similarities between groups—that is, the overall prevalence
of each topic in the corpus—the group-specific base measures {mc}Cc=1 may also be
given Dirichlet priors, with a single, shared, corpus-level base measurem:

P (mc |α1m) = Dir (mc |α1m). (5.5)

The concentration parameter α1 determines the extent to which the group-specific
base measures (and hence the document-specific distributions over topics) are influ-
enced by the corpus-level base measure. Finally, the corpus-level base measure may
itself be given a Dirichlet prior, this time with uniform base measure u:

P (m |α0u) = Dir (m |α0u). (5.6)

The prior induced over θd by equations 5.4, 5.5 and 5.6 is a hierarchical Dirichlet.
When combined with equation 5.1 and Blei et al.’s prior over topic-specific word dis-
tributions (equation 5.2), the resultant model is a finite version of the hierarchical
Dirichlet process document model for multiple corpora described by Teh et al. (2006).

Using the terminology and notation introduced in section 3.4.2, the predictive proba-
bility of topic t occurring in document d under the prior described above is

P (t | d, cd, z, c, α, α1, α0) =

N̂t|d + α

N̂t|cd + α1

N̂t + α0 ut

N̂· + α0

N̂·|cd + α1

N̂·|d + α
(5.7)
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where the quantities N̂t|d, N̂t|cd and N̂t are given by

N̂t|d =
I∑
i=1

N
(i)
·|d δ (γi − t), (5.8)

N̂t|cd =
J∑
j=1

N
(j)
·|cd δ (γj − t), (5.9)

N̂t =
K∑
k=1

N
(k)
· δ (γk − t), (5.10)

and I , J and K are the current numbers of internal draws for the bottom-, middle-
and top-level (i.e., document-, group- and corpus-level) Dirichlet-multinomials. The
quantity N

(i)
·|d is the number of observations currently matched to bottom-level in-

ternal draw γi, while N
(j)
·|cd is the number of bottom-level internal draws matched

to middle-level internal draw γj . Finally, N (k)
· is the number of middle-level in-

ternal draws matched to top-level internal draw γk. Under the maximal path as-
sumption (described, along with the minimal path assumption, in section 3.4.2),
N̂t|cd =

∑
j N

(j)
·|cd δ (γj− t) is equal toNt|cd , the number of times topic t has been used in

group cd, while under the minimal path assumption it is equal to the number of differ-
ent documents belonging to cd that use t. Similarly, under the maximal path assump-
tion N̂t =

∑
kN

(k)
· δ (γk−t) is equal to the number of times t has been used in the entire

corpus, and under the minimal path assumption it is equal to the number of different
groups in which t has been used. The bottom-level quantity N̂t|d =

∑
iN

(i)
·|d δ (γi − t)

is always equal to the number of times topic t has been used in document d.

It is evident from equation 5.7 that the predictive probability of topic t is influenced
not only by document- and corpus-level topic usage (as in latent Dirichlet allocation),
but also group-level topic usage, as desired. The extent to which these levels affect the
predictive distribution is determined by the concentration parameters α and α1.

5.3 A Cluster-Based Topic Model

Although the model described in the previous section (as well as the infinite version
presented by Teh et al. (2006)) is appropriate for modelling corpora where document
groupings are fully observed, it cannot be directly used to model document collections
where groups or clusters are known to exist but are unobserved. In this situation, one
approach would be to treat clusters and topics separately and use some clustering
model to group the documents (on the basis of their word usage alone). The inferred
cluster labels could then be used as observed variables in the prior described in the
previous section. This is a rather unsatisfactory solution, however, as the latent topics
cannot influence cluster inference. A better approach would be to construct a single
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combined model, in which latent clusters and topics are simultaneously inferred.

One way of developing a single model for clusters and topics is to extend the model
in section 5.2.2 so that each document’s group or cluster membership cd is treated as
a latent variable. Assuming the number of clusters C is known, cluster generation is
defined by a C-dimensional probability vector ψ. The joint probability of a corpus w
with topic assignments z and cluster assignments c is now given by

P (w, z, c |Φ,Θ,ψ) =
∏
w

∏
t

∏
d

∏
c

φ
Nw|t
w|t θ

Nt|d
t|d ψ

Nc
c , (5.11)

where Nw|t is the number of times word w has been seen in topic t, Nt|d is the number
of times topic t has been used in document d and Nc is the number of documents in
cluster c. Since probability vector ψ is unknown, it can be given a prior:

P (ψ | ζu) = Dir (ψ | ζu), (5.12)

whereu is a uniform base measure over clusters 1 . . . C and ζ is a concentration param-
eter. Under this prior, the predictive probability of new document d being generated
by cluster c (given the existing cluster membership variables c<d) is

P (cd=c | c<d, ζu) =
Nc + ζuc∑
cNc + ζ

, (5.13)

where the quantity Nc is the number of documents generated by cluster c so far.

The prior over ψ (equation 5.12) can be combined with equation 5.11 and the priors
over Φ (equation 5.2) and Θ (equations 5.4, 5.5 and 5.6) to give joint distribution of w,
z, c, Φ, Θ, Ψ. Marginalising over unknown variables gives the evidence for the model
hyperparameters U = {βn, α, α1, α0, ζ} or the probability of w given U :

P (w |U) =
∑
z,c

P (w | z, U)P (z | c, U)P (c |U), (5.14)

where

P (w | z, U) =
∏
t

∏
w Γ(Nw|t + βnw)

Γ(N·|t + β)
Γ(β)∏

w Γ(βnw)
, (5.15)

P (z | c, U) =
∏
n

P (zn | dn, cdn , z<n, c<dn , U) (5.16)

and

P (c |U) =
∏
c Γ(Nc + ζuc)

Γ(
∑

cNc + ζ)
Γ(ζ)∏
c Γ(ζuc)

. (5.17)

The document for the nth word in the corpus is denoted by dn, while cdn is the group
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for that document. P (zn | dn, cdn , z<n, c<dn , U) may be computed using equation 5.7.

The latent cluster and topic assignments (c and z, respectively) can be inferred using a
Gibbs sampler that alternates between sampling cluster assignments given the current
topic assignments and topic assignments given the current cluster assignments.

5.3.1 Using an Unknown Number of Latent Clusters

For most real-world data, the number of groups or clusters, as well as the cluster
assignments, are unknown. In this situation, the model described in the previous
section can be modified to handle an unknown number of clusters by using a Dirichlet
process prior (Ferguson, 1973). To facilitate this, it is convenient to work directly in
terms of the cluster-specific base measures used in the hierarchical prior over Θ (given
in equations 5.4, 5.5 and 5.6), rather than the cluster assignment variables c.

The Dirichlet process, briefly mentioned in section 4.3.2, is the infinite generalisation
of the Dirichlet distribution. Although the Dirichlet process distributes probability
mass over an infinite set of points in a continuous space of probabilities, draws from a
Dirichlet process are discrete with probability one. It is therefore an appropriate choice
of prior for the cluster-specific base measures {mc}∞c=1, of which there are a finite but
unknown number. If a cluster-specific base measure is drawn for each document d
(thereby implicitly assigning document d to a cluster), the probability of drawing the
same base measuremc for multiple documents (i.e., assigning multiple documents to
the same cluster) should be nonzero. A Dirichlet process prior results in exactly this.

A Dirichlet process prior over the cluster-level base measures can be incorporated into
the hierarchical prior over Θ (equations 5.4, 5.5 and 5.6) as follows:

P (Θ | {αmc}∞c=1) =
∏
d

Dir (θd |αmd) (5.18)

P (md |G) = G(md) (5.19)

P (G | ζ,G0) = DP (G | ζ,G0), (5.20)

where G is is a random probability measure distributed according to a Dirichlet pro-
cess with base measure G0 and concentration parameter ζ. According to the stick-
breaking construction (Sethuraman, 1994), if G ∼ DP (G | ζ,G0), then

G(md) =
∞∑
c=1

πc δmc(md) (5.21)
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where δmc(·) is a point mass located atmc and

P (mc |G0) = G0(mc) (5.22)

πc = π′c

c−1∏
k=1

(1− π′k) (5.23)

P (π′c | ζ) = Beta (π′c | 1, ζ) (5.24)

Since eachmc is a probability vector, the base measure G0 must be a distribution over
probability vectors. In this case, G0 is a hierarchical Dirichlet distribution:

G0 = Dir (mc |α1m), (5.25)

where base measurem is also drawn from a Dirichlet distribution:

P (m |α0u) = Dir (m |α0u). (5.26)

Probability vector u is the uniform distribution over topics. This choice of G0 ensures
that the only effect of the Dirichlet process on the prior over Θ is to allow a vari-
able number of clusters—the predictive probability of topic t in document d (with un-
known probability vectors θd,md andm integrated out) is still given by equation 5.7.

Under this prior, the probability of new document d being assigned to cluster c is

P (cd=c | c<d, ζ) ∝

Nc c is an existing cluster

ζ c is a new cluster
(5.27)

where c<d is the set of previous cluster assignments, Nc is the number of documents
already in existing cluster c. The difference between this equation and equation 5.13
is that this equation reserves probability mass for new clusters while 5.13 does not.

The evidence for U = {βn, α, α1, α0, ζ} is still given by

P (w |U) =
∑
z,c

P (w | z, U)P (z | c, U)P (c |U), (5.28)

where P (w | z, U) and P (z | c, U) are given by equations 5.15 and 5.16, respectively.
However, the probability of cluster assignments P (c |U) is now given by

P (c |U) =
∏
d

P (cd | c<d, ζ) (5.29)

=
ζC
∏C
c=1(Nc − 1)!∏D

d=1 ζ + d− 1
, (5.30)

where C is the number of currently active clusters, Nc is the number of documents
currently in cluster c, and D is the total number of documents in the corpus. Note
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that the order in which the documents are processed does not affect the form of equa-
tion 5.30—in other words, the cluster assignments are exchangeable.

The cluster and topic assignments (c and z, respectively) for a collection of docu-
ments w may be inferred using Gibbs sampling. Since the cluster assignments are
exchangeable, it is possible to rearrange the documents in any order without chang-
ing the probability of their cluster assignments. Given a set of topic assignments z,
the cluster assignment for document d may therefore be resampled by treating this
document as the last to arrive, and drawing its cluster assignment cd from

P (cd | c\d, z, ζ, α, α1, α0) ∝ P (cd | c\d, ζ)P (zd | d, cd, c\d, z\d, α, α1, α0). (5.31)

The vector zd is the set of topic assignments for document d and z\d is the set of
all other topic assignments. P (cd | c\d, ζ) can be obtained using equation 5.27, while
P (zd | cd, c\c, z\d, α, α1, α0) is the probability of adding zd to cluster c, given the other
documents currently belong to that cluster, and may be computed using∏

{n | dn=d}

P (zn | d, cd, (zd)<n, z\d, c\d, α, α1, α0). (5.32)

Similarly, each topic assignment zn can be sampled from

P (zn |w, z\n, c, α, α1, α0, βn) ∝

P (wn |w\n, z, βn)P (zn | dn, cdn , c\dn , z\n, α, α1, α0). (5.33)

The topic assignments z can be initialised using latent Dirichlet allocation.

Figure 5.3.1 depicts the full graphical model for the new cluster-based topic model
with an unknown number of latent clusters, as introduced in this section.

5.3.2 Experiments

The cluster-based topic model (with an unknown number of clusters) was compared
with two baseline models: Latent Dirichlet allocation (Blei et al., 2003) and a word-
based Dirichlet process mixture model (depicted in figure 5.2). The latter differs from
the cluster-based topic model in that instead of characterising each cluster by a dis-
tribution over topics, clusters are characterised by distributions over words {nc}∞c=1.
The words that comprise document d are drawn from a document-specific distribution
over words φd, which is itself drawn from a Dirichlet distribution with base measure
nd and concentration parameter β. Each nd is distributed as follows:

P (nd|G) = G(nd) (5.34)

P (G | ζ,G0) = DP (G | ζ,G0), (5.35)
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Figure 5.1: Graphical model for the cluster-based topic model with an unknown
number of latent clusters. Observed variables (words w) are shown in grey. The
variablesm, u, α0 and α1 comprise the Dirichlet process base measure G0.

where G is is a random probability measure distributed according to a Dirichlet pro-
cess with base measure G0 and concentration parameter ζ. As a result,

G(nd) =
∞∑
c=1

πc δnc(nd), (5.36)

where δnc(·) is a point mass located at nc and

P (nc |G0) = G0(nc) (5.37)

πc = π′c

c−1∏
k=1

(1− π′k) (5.38)

P (π′c | ζ) = Beta (π′c | 1, ζ). (5.39)

Base measure G0 is chosen to be a hierarchical Dirichlet distribution:

G0 = Dir (nc |β1n), (5.40)
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Figure 5.2: Word-based Dirichlet process mixture model. Words w are observed.
Variables n, u, β1 and β0 comprise the Dirichlet process base measure G0.

where n is itself drawn from

P (n |β0u) = Dir (n |β0u). (5.41)

Given a set of documentsw, latent cluster assignments cmay be inferred using Gibbs
sampling. The cluster assignment cd for document d is resampled from

P (cd | c\d,w, ζ, β, β1, β0) ∝ P (cd | c\d, ζ)P (wd | cd, c\d,w\d, β, β1, β0), (5.42)

where

P (cd | c\d, ζ) ∝

Ncd cd is an existing cluster

ζ cd is a new cluster
(5.43)

and

P (wd | cd, c\d,w\d, β, β1, β0) =∏
{n | dn=d}

P (wn | d, cd, (wd)<n,w\d, c\d, β, β1, β0). (5.44)
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The probability P (wn | d, cd, (wd)<n,w\d, c\d, β, β1, β0) may be computed in a similar
fashion to P (zn | d, cd, (zd)<n, z\d, c\d, β, β1, β0), as shown in equation 5.7. This model
captures the fact that documents from different groups or clusters are likely to use
different vocabularies. It does not, however, capture the fact that there may be slight
variations in vocabulary between documents within a single group or cluster.

Twenty years of proceedings from the NIPS conference1 were used to compare the
models. Papers from 1987–2003 (2,325 papers in total) were treated as training data,
while papers from 2004–2006 (614 papers in total) were treated as test data.

All words that occurred exactly once in the training data (and zero times in the test
data) or one or more times in the test data, and not at all in the training data, were
removed and replaced with one of the following UNSEEN types (Eisner, 1996a):

• UNSEEN-SHORT: used for words less than six characters long.

• UNSEEN-NUM: used for words whose last character is a digit.

• UNSEEN-PUNC: used for words consisting entirely of punctuation characters.

• UNSEEN-XX: used for words of six or more characters in length. XX is replaced
with the last two characters of the word.

Words that appeared on a standard list of stop words2 were also removed. Finally, the
first seventy words of each paper were discarded so as to avoid modelling paper ti-
tles, author names, affiliations and addresses. Additionally, to improve efficiency each
paper was truncated to 180 tokens (roughly the length of a paper abstract). Prepro-
cessing each paper in this fashion resulted in a training data set consisting of 580,983
tokens, test data set consisting of 153,500 tokens, and a vocabulary of 16,376 words,

Training topics for latent Dirichlet allocation were obtained by running a Gibbs sam-
pler for 1,000 iterations. After each iteration, five iterations of slice sampling were used
to update the model hyperparameters. For the word-based mixture model, training
cluster assignments were obtained using 500 Gibbs sampling iterations. After each
iteration, the hyperparameter ζ for the Dirichlet process prior over clusters as well as
β, β1 and β2 were slice-sampled for five iterations. Cluster assignments and hyper-
parameters for the new cluster-based topic model were sampled similarly. Topic as-
signments were initialised using latent Dirichlet allocation and resampled after every
iteration. The number of topics was set to fifty for all experiments involving topics.

Experiments were run using both the minimal and maximal path assumptions (de-
scribed in section 3.4.2), however results are only presented for the minimal path as-
sumption. The maximal path assumption resulted in poor performance for both la-
tent Dirichlet allocation and the new cluster-based topic model, both in terms of the

1Data from 1987–2003 were provided by Sam Roweis and Gal Chechik. Data from 2004–1006 were
obtained from http://books.nips.cc/ and converted to plain text using pdftotext.

2http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

http://books.nips.cc/
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
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probability assigned to training and test data, as well as the interpretability of topics
and clusters. In latent Dirichlet allocation, the quantity N̂t|d/N̂·|d is “smoothed” with
N̂t/N̂·, where N̂t is either equal to the number of times that topic t has been used in the
entire corpus (under the maximal path assumption) or the number of different docu-
ments in which t has previously been seen (under the minimal path assumption). An
important difference between these two quantities is that the contributions to N̂t from
each document are unequal under the maximal path assumption—longer documents
contribute more than shorter documents. Hence, under the maximal path assump-
tion, a topic that occurs many times in a long document is more likely to be used in
a new document than a topic that occurs many times in a short document. This is
undesirable—that a topic was used in a longer document rather than a shorter one
should not influence the probability of that topic being used in future documents. In
addition to this, there are some topics that occur in almost every document, but are
used only a few times in each one. For example, in the case of NIPS papers, the topic
“methods approach based method problem...” occurs in the first 250 words of most
papers, but is used fewer times than other topics relating to the specific models and
applications presented in the paper. Under the maximal path assumption, this topic
will have a lower probability of occurring in a new document than a topic such as
“neurons neuron spike synaptic firing...”, which occurs in fewer papers, but many
more times in the papers in which it does occur. Again, this is undesirable—a topic
that is used in many papers should have a higher probability of occurring in a new
paper, regardless of the number of times it is used in each one. These differences be-
tween the minimal and maximal path assumptions have not been noted in previous
treatments of latent Dirichlet allocation and other topic-based models, most likely be-
cause these treatments have used nonhierarchical Dirichlet priors over the document-
specific topic distributions (both with and without hyperparameter optimisation).

The models were evaluated by computing the information rate of unseen test data w,
measured in bits per word: The fewer the bits per word, the better the model. The
information rate of w given training data wtrain and hyperparameters U is

R = − log2 P (w |wtrain, U)
N·

, (5.45)

where N· is the number of tokens in test data w. For all three models, computing
P (w |wtrain, U) involves an intractable sum over latent variables—topic assignments
for latent Dirichlet allocation, cluster assignments for the word-based mixture model,
and both topic and cluster assignments for the new cluster-based topic model. These
sums were approximated using the importance sampling approximation (Kass and
Raftery, 1995), described in 3.5.2. For latent Dirichlet allocation, 200 sets of topic as-
signments were used, taken every fifty iterations after a burn-in period of 1,000 itera-
tions. For the word-based Dirichlet process mixture model, 200 sets of cluster assign-
ments were used, taken every twenty-five iterations after 100 burn-in iterations. For
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Figure 5.3: Number of training documents assigned to each of the twelve clusters
inferred by the word-based Dirichlet process mixture model baseline.

the cluster-based topic model, 200 sets of topic and cluster assignments were used,
again taken every twenty-five iterations after a burn-in period of 100 iterations.

The word-based mixture model exhibits much worse performance than the other two
models, with an information rate of 10.54 bits per word. Latent Dirichlet allocation
exhibits significantly better performance, of 8.38 bits per word. However, the cluster-
based topic model achieves the best performance, of 8.33 bits per word. The cluster-
based topic model is therefore a much better document model than the word-based
mixture model and a slightly better document model than latent Dirichlet allocation.

It is also instructive to examine the clusters inferred by the two cluster-based models.
The word-based mixture model baseline inferred twelve clusters, while the cluster-
based topic model inferred seven. The cluster sizes for each of the models are shown
in figures 5.3 and 5.4. The top ten words generated by each of the twelve clusters in-
ferred by the word-based mixture model are given in table 5.1. Clusters 4, 6, 10 and
12 each contain several words that appear in the top ten words for only one cluster. It
is therefore relatively easy to determine what sorts of documents belong to these clus-
ters. Other clusters consist of more general words, such as “function”, “learning” and
“introduction”, common to many clusters. Two pairs of clusters have almost iden-
tical top words: Clusters 2 and 8 contain words related to general machine learning
concepts, while clusters 1 and 9 contain words roughly related to neural networks.

In contrast, the clusters inferred by the new cluster-based topic model are easier to
interpret. While there are some general topics that appear in every cluster, all but one
of the clusters use at least two specialised topics with high probability, thereby making
it easy to determine the types of papers associated with each cluster. Figure 5.5 depicts
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
(477 Documents) (356 Documents) (243 Documents) (225 Documents)

function data network neurons
learning set neural model

set introduction networks introduction
paper paper function neural

network problem introduction neuron
model algorithm number activity

networks function output network
introduction learning paper information

problem space learning function
neural training system synaptic

Cluster 5 Cluster 6 Cluster 7 Cluster 8
(190 Documents) (186 Documents) (173 Documents) (158 Documents)

learning visual introduction data
problem model model set
function introduction images introduction

paper system problem paper
algorithm cells based problem

based figure paper algorithm
introduction processing set function

reinforcement neural data learning
problems cortex approach space

control spatial object training

Cluster 9 Cluster 10 Cluster 11 Cluster 12
(143 Documents) (123 Documents) (46 Documents) (5 Documents)

learning introduction introduction learning
network model system set

introduction analysis model based
set linear control feedback

paper data motor individual
problem paper learning phase
networks component figure brain

model learning shown nucleus
neural approach movements auditory
based vector movement innate

Table 5.1: The most frequently used words for the clusters inferred by the word-
based mixture model baseline. Clusters are ordered by decreasing size. Words
that occur in the top ten words for a single cluster only are highlighted in bold.
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Figure 5.4: Cluster sizes (number of training documents assigned to each cluster)
for each of the seven clusters inferred by the cluster-based topic model.

the top fifteen topics used by each cluster, as well as the top five words for each topic.
This figure makes it clear that the topics that appear in all clusters are general scientific
topics (e.g., “model, models, properties, study, results...”). Topics that appear in only
one cluster are much more specific (e.g., “language, words, word, grammar, string...”).

Table 5.3 shows the most frequently used topics for each of the seven clusters. Each
topic is represented by the ten most probable words for that topic. Topics that occur
in the top fifteen topics for all clusters are not shown. Clusters 1 and 2 are the largest
clusters, with 914 and 351 documents, respectively. It is evident from looking at ta-
bles 5.3a and 5.3b that cluster 1 contains documents about machine learning, while
cluster 2 contains documents about neuroscience. This reflects the most prominent
dichotomy in the NIPS community: Machine learning versus neuroscience. Cluster
3 (table 5.3c) contains many topics related to neural networks, another research area
well-represented at NIPS. Meanwhile, cluster 4 (table 5.3d) contains topics to do with
reinforcement learning. Clusters 5 and 6 (shown in shown in tables 5.3e and 5.3f) are
slightly less well-defined. Cluster 5 contains several topics that initially seem quite dif-
ferent: Neural networks, speech recognition, object and image recognition, language,
face detection. However, these topics are all typical for application papers presented
at NIPS. All of the most frequently used topics for cluster 6 are also used by other
clusters. Nonetheless, it seems that cluster 6 contains documents about using neu-
ral networks and probabilistic models to model concepts from neuroscience. Finally,
cluster 7 (shown in table 5.3g), contains several image- and vision-related topics.
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 classification class training classifier classifiers
 units hidden network layer unit
 distribution energy field boltzmann approximation
 stimulus stimuli response attention task
 cortex connections cortical orientation activity
 information entropy statistical optimal mutual
 music rat place song direction
 object objects features recognition feature
 speech recognition word hmm system
 tree graph node nodes trees
 images face faces detection video
 neurons neuron spike synaptic firing
 distribution gaussian probability bayesian prior
 eye visual system movements position
 sequence prediction sequences series nonlinear
 user query data ranking users
 cells cell visual neurons response
 figure shown shows left single
 training learning output generalization error
 signal auditory signals frequency noise
 representations level representation rules structure
 vector vectors coding codes decoding
 matrix kernel linear space vector
 motion visual local scene direction
 language words word grammar string
 character recognition characters segmentation game
 learning task learn problem examples
 function local functions basis experts
 data space clustering points distance
 model models properties study results
 training data error set selection
 network neural networks architecture output
 problem solution optimization problems constraints
 methods approach based method problem
 color light optical reflectance red
 control motor model system trajectory
 independent source basis component ica
 phase sensory neurons receptor activity
 analog circuit chip circuits vlsi
 eeg brain activity data neural
 robot environment modules sensor sensors
 memory network dynamics neuron neurons
 system systems neural processing computer
 model data models parameters likelihood
 function functions case set paper
 routing control cost traffic problem
 policy action reinforcement learning actions
 number large performance high data
 learning algorithm gradient weight error
 bounds bound loss functions error

Figure 5.5: The top fifteen topics used in each cluster and the top five words for
each topic. Each cluster is a single column. Clusters are ordered from largest
to smallest (left to right). Each square is a single topic/cluster pair: Intensity
indicates how common that topic in that cluster (darker means more common).
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5.4 Incorporating Author Information

Although the clusters inferred by the new cluster-based topic model correspond well
to research areas within the NIPS community, true research areas are characterised
by groups of researchers as well as topics. Author information—the identities of the
authors responsible for each document—can be incorporated into the model by asso-
ciating each document d with two cluster-specific distributions, one (md) over topics
and one (qd) over authors: (md, qd) ∈ {(mc, qc)}∞c=1, distributed according to

P (md, qd |G) = G(md, qd) (5.46)

P (G | ζ,G0) = DP (G | ζ,G0), (5.47)

where G is is a random probability measure distributed according to a Dirichlet pro-
cess with base measure G0 and concentration parameter ζ. This means

G(md, qd) =
∞∑
c=1

πc δmc,qc(md, qd) (5.48)

P (mc, qc |G0) = G0(mc, qc) (5.49)

πc = π′c

c−1∏
k=1

(1− π′k) (5.50)

P (π′c | ζ) = Beta (π′c | 1, ζ). (5.51)

Since each draw from G0 must be a pair of probability vectors (mc, qc), G0 is defined
as the product of two hierarchical Dirichlet distributions, as follows:

G0 = Dir (mc |α1m) Dir (qc | η1q), (5.52)

where

P (m |α0u) = Dir (m |α0u), (5.53)

P (q | η0u) = Dir (q | η0v), (5.54)

and u and v are uniform distributions over topics and authors, respectively. This prior
means that authors are conditionally independent of topics given the clusters.

For each document d, the authors ad responsible for that document are assumed to
have been drawn directly from qd, the cluster-specific author distribution. The predic-
tive probability of author a in document d is therefore

P (a | d, cd,a, c, η1, η0) =
N̂a|cd + η1

N̂a + η0va

N̂· + η0

N̂·|cd + η1

, (5.55)
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Figure 5.6: The cluster-based author–topic model (an extension of the cluster-
based topic model in section 5.3.1). Words w and authors a are observed. Vari-
ablesm, u, α1, α0, q, v, η1, η0 comprise the Dirichlet process base measure G0.

where the quantities N̂a|cd and N̂a are given by

N̂a|cd =
L∑
l=1

N
(l)
·|cd δ (γl − a), (5.56)

N̂a =
M∑
m=1

N
(m)
· δ (γm − a), (5.57)

and L and M are the current numbers of internal draws from the bottom- and top-
level (i.e., group- and corpus-level) Dirichlet-multinomials. The quantity N (l)

·|cd is the
number of author observations currently matched to bottom-level internal draw γl,
while N (m)

· is the number of bottom-level internal draws currently matched to top-
level internal draw γm. Under the maximal path assumption (section 3.4.2) N̂a =∑

mN
(m)
· δ (γm − a) is equal to Na, the number of times author a has occurred in the

corpus. Under the minimal path assumption it is equal to the number of different
clusters in which a has appeared. The bottom-level quantity N̂a|cd =

∑
lN

(l)
·|cd δ (γl−a)

is always equal to the number of times author a has been seen in cluster cd.
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The complete model is referred to henceforth as the cluster-based author–topic model,
and is shown in figure 5.6. This model is related to the author–topic model of Rosen-
Zvi et al. (2004) (see also Steyvers et al. (2004)), but captures the notion of document
clusters or groups, unlike Rosen-Zvi et al.’s model. The models also differ in other
ways: In the cluster-based author–topic model, each document is generated by first
selecting a cluster for that document. Having done this, authors are drawn from
a cluster-specific author distribution, while topics are drawn from document- and
cluster-specific distributions over words. Authors and topics are independent, given
the cluster assignments. Finally, words are drawn from topic-specific word distri-
butions. In Rosen-Zvi et al.’s author–topic model, authors are used as conditioning
context—they are not generated by the model. Each word is generated by first select-
ing an author, uniformly from the set of authors for that document, and then drawing
a topic assignment from the corresponding author-specific topic distribution. Having
done this, the word is drawn from a topic-specific word distribution. There are no
document-specific distributions over topics—all document-specific properties must
instead be captured by particular combinations of author-specific topic distributions.

Given observed dataw and a, and concentration parameters U = {ζ, α, α1, α0, η1, η0},
the latent topics z and clusters c can be inferred by alternating between sampling
topics given the current cluster assignments and clusters given the current topic as-
signments. The latter is done by assigning document d to cluster c with probability

P (cd=c | c\d, z,a, U) ∝

P (cd=c | c\d, U)P (zd | d, cd, c\d, z\d, U)P (ad | d, cd, c\d,a\d, U). (5.58)

The first and second terms on the right-hand side are given by equations 5.27 and 5.32
respectively, while P (ad | d, cd, c\d,a\d, U) may be computed as follows:∏

{n | dn=d}

P (an | d, cd, (ad)<n,a\d, c\d, U). (5.59)

5.4.1 Experiments

The cluster-based author–topic model was evaluated using the data and experimental
set-up described in section 5.3.2. As with the cluster-based topic model, fifty topics
were used, along with the minimal path assumption. Training cluster and topic as-
signments were obtained using 500 Gibbs sampling iterations, while the information
rate of unseen test data was approximated using 200 sets of test topic and cluster as-
signments, taken every twenty five iterations after a burn-in period of 100 iterations.

The information rate achieved by the cluster-based author–topic model is 8.28 bits per
word. This rate is better than the information rate obtained by either the cluster-based
topic model (8.33 bits per word) or latent Dirichlet allocation (8.38 bits per word).
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Figure 5.7: Cluster sizes (number of training documents assigned to each cluster)
for the fifty-five clusters inferred by the cluster-based author–topic model.

 classification class classifier training classifiers
 units network hidden unit layer
 energy field boltzmann temperature distribution
 information feature features entropy approach
 tree graph belief node inference
 distribution probability gaussian bayesian prior
 figure shows shown left process
 training learning examples output error
 matrix kernel linear space data
 learning learn task problem tasks
 local function functions basis experts
 data space clustering distance points
 properties study results analysis structure
 data training error set regression
 network neural networks output architecture
 problem solution optimization problems constraints
 methods based method section approach
 system systems processing neural information
 model data models parameters variables
 function functions set case paper
 number large high data order
 learning algorithm gradient weight descent
 bound bounds algorithm loss functions

Figure 5.8: The top twenty topics for the two most frequently used clusters, along
with the top five words for each topics. Each cluster is a single column (clusters 1
and 2, left to right). Each square represents a single topic/cluster pair: Intensity
indicates how common that topic is in that cluster (darker means more common).

These results indicate that the inclusion of author information enables the model to
identify cluster and topic assignments that better account for document content.

Cluster sizes for the cluster-based author–topic model are shown in figure 5.7. The
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Cluster 1 Cluster 2
(219 Documents) (183 Documents)

G. Hinton J. Shawe-Taylor
M. Jordan A. Smola

C. Williams B. Scholkopf
Z. Ghahramani P. Bartlett

M. Opper R. Williamson
T. Jaakkola V. Vapnik

D. Saad Y. Bengio
P. Sollich R. Herbrich
C. Bishop T. Graepel
D. Barber J. Weston

Table 5.2: The ten authors most frequently associated with each of the two largest
clusters (see also figure 5.8) inferred by the cluster-based author–topic model.

number of clusters inferred by the model (fifty-five) is significantly higher than the
number of clusters inferred by the cluster-based topic model (seven). This is unsur-
prising: Papers that use similar topics, but are written by different groups of peo-
ple are unlikely to be placed in the same cluster. This effect is most pronounced for
the two largest clusters, inferred by the cluster-based author–topic model. Figure 5.8
shows the top twenty topics used in each of these clusters. Seventeen of the topics
are used in both clusters. Both clusters clearly contain papers about machine learning.
However the authors most frequently associated with each of these clusters are quite
different (figure 5.2). The top authors for cluster 1 are all well-known for research on
graphical models, neural networks and Gaussian processes. In contrast, several of the
top authors for cluster 2 are known for research on learning theory and support vector
machines. The six topics that appear in only one of the clusters reflect this difference.
Additionally, many of the top authors for cluster 1 are either currently at or have previ-
ously been at universities in the United Kingdom. This reflects the fact that authors at
geographically close institutions are more likely to have co-authored papers together.

5.5 Conclusions

In this chapter, I introduced a nonparametric Bayesian model for clustering docu-
ments by topic. The model was evaluated using academic papers from the NIPS con-
ference, and was found to assign a higher log probability to unseen test data than
either a word-based clustering model or latent Dirichlet allocation. In addition to this,
the clusters inferred by the model represent well-known research areas in the NIPS
community, and provide a concise representation of the relationships between topics.
I also showed how author information can be incorporated into the model, resulting
in finer-grained clusters. Finally, I determined that it is necessary to use the minimal
path assumption (or Gibbs sampling) when inferring counts for hierarchical Dirichlet
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distributions over topics in latent Dirichlet allocation and related models—the maxi-
mal path assumption results in poor performance as well as topics that are difficult to
interpret. Previous treatments of latent Dirichlet allocation have used nonhierarchi-
cal Dirichlet priors over the document-specific topic distributions (with and without
hyperparameter optimisation) and have therefore not encountered this issue.
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function model learning distribution training
functions data task gaussian data

case models learn probability error
set parameters problem bayesian set

paper likelihood examples prior selection
section mixture algorithm noise risk
defined variables set posterior regression
assume density learned random regularisation
vector probability training density generalisation

general estimation tasks estimate parameters

problem network classification training matrix
solution neural class learning kernel

optimisation networks training output linear
problems architecture classifier generalisation space

constraints output classifiers error vector
function weights data examples data

point feedforward classes inputs feature
solutions trained decision number dimensional
constraint recurrent set set pca
objective training pattern weights kernels

(a) Cluster 1 (914 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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cells neurons eye cortex function
cell neuron visual connections functions

visual spike system cortical case
neurons synaptic movements orientation set
response firing position activity paper
stimulus spikes velocity layer section
receptive membrane vor lateral defined

field potential model development assume
responses model target dominance vector

cortex neuronal retina patterns general

stimulus network signal phase motion
stimuli neural auditory sensory visual

response networks signals neurons local
attention architecture frequency receptor scene

task output noise activity direction
visual weights sound olfactory field

subjects feedforward processing oscillatory surface
human trained source oscillators contour

information recurrent sounds binding vision
trial training system inhibitory figure

(b) Cluster 2 (351 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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network function units memory learning
neural functions hidden network algorithm

networks case network dynamics gradient
architecture set layer neuron weight

output paper unit neurons error
weights section output networks descent

feedforward defined weights associative function
trained assume activation model convergence

recurrent vector networks hopfield algorithms
training general net patterns stochastic

learning analog training problem representations
task circuit learning solution level
learn chip output optimisation representation

problem circuits generalisation problems rules
examples vlsi error constraints structure
algorithm digital examples function knowledge

set hardware inputs point connectionist
learned implementation number solutions structures
training output set constraint rule

tasks silicon weights objective hierarchical

(c) Cluster 3 (267 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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function policy learning problem control
functions action task solution motor

case reinforcement learn optimisation model
set learning problem problems system

paper actions examples constraints trajectory
section optimal algorithm function controller
defined agent set point feedback
assume states learned solution movement
vector reward training constraint arm

general decision tasks objective dynamics

learning sequence robot network model
algorithm prediction environment neural data
gradient sequences modules networks models
weight series sensor architecture parameters
error nonlinear sensors output likelihood

descent model information weights mixture
function models module feedforward variables

convergence linear navigation trained density
algorithms states task recurrent probability
stochastic filter spatial training estimation

(d) Cluster 4 (256 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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network representations learning speech object
neural level task recognition objects

networks representation learn word features
architecture rules problem hmm recognition

output structure examples system feature
weights knowledge algorithm speaker images

feedforward connectionist set acoustic transformations
trained structures learned probabilities invariant

recurrent rule training training pattern
training hierarchical tasks performance transformation

classification model user language images
class data query words face

training models data word faces
classifier parameters ranking grammar detection
classifiers likelihood users string video

data mixture program finite human
classes variables queries languages facial

decision density processors strings resolution
set probability machine symbol recognition

pattern estimation parallel context low

(e) Cluster 5 (187 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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neurons cells function network information
neuron cell functions neural entropy
spike visual case networks statistical

synaptic neurons set architecture optimal
firing response paper output mutual
spikes stimulus section weights output

membrane receptive defined feedforward measure
potential field assume trained statistics

model responses vector recurrent principle
neuronal cortex general training distribution

distribution memory signal model stimulus
gaussian network auditory data stimuli

probability dynamics signals models response
bayesian neuron frequency parameters attention

prior neurons noise likelihood task
noise networks sound mixture visual

posterior associative processing variables subjects
random model source density human
density hopfield sounds probability information
estimate patterns system estimation trial

(f) Cluster 6 (185 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.
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object image model motion function
objects face data visual functions

features faces models local case
recognition detection parameters scene set

feature video likelihood direction paper
images human mixture field section

transformations facial variables surface defined
invariant resolution density contour assume
pattern recognition probability vision vector

transformation low estimation figure general

information data independent representations learning
entropy space source level task

statistical clustering basis representation learn
optimal points component rules problem
mutual distance ica structure examples
output dimensional components knowledge algorithm

measure clusters data connectionist set
statistics similarity sources structures learned
principle cluster analysis rule training

distribution algorithm linear hierarchical tasks

(g) Cluster 7 (165 documents).

Table 5.3: The most frequently used topics for the each of the clusters inferred by
the cluster-based topic model. Topics that occur in the top fifteen topics for every
cluster are not shown, while those that appear in the top fifteen for a single cluster
only are highlighted in bold. Each topic is represented by its top ten words.



Chapter 6

Conclusions and Future Work

Topic models have seen many successes in recent years, and are used in a variety
of applications, including analysis of news articles, topic-based search interfaces and
navigation tools for digital libraries. Despite these recent successes, the field of topic
modelling is still relatively new and there remains much to be explored. One of the
most noticeable absences from most of the previous work on topic models is a consid-
eration of the structure of language and text—from low-level structures, such as word
order and syntax, to higher-level structures, such as relationships between documents.

This thesis presented structured topic models—models that combine document struc-
ture with latent topic variables. Three Bayesian models were introduced, each captur-
ing a different type of structure: Word order, sentence-level syntactic structure, and
relationships between semantically related documents. The models were applied to
real-world document collections, demonstrating that structured topic modelling is an
important and useful research area with much to offer in the way of good results.

In chapter 2, I introduced two fixed point-methods for estimating the hyperparam-
eters of Dirichlet-multinomial distributions. Using synthetic and real data, I com-
pared these method with several previously-introduced algorithms for Dirichlet-
multinomial hyperparameter estimation, demonstrating that one of the new methods,
and an algorithm introduced by MacKay and Peto (1995), are significantly faster than
other techniques. I also explained how a gamma hyperprior can be incorporated into
both of the new methods, and described how the log gamma recurrence relation may
be used to efficiently compute the probability of data under a Dirichlet-multinomial
distribution. This work has significance not only for situations where data are di-
rectly modelled using Dirichlet-multinomial distributions, but also for those where
Dirichlet-multinomial distributions are used as components of a larger model.

Chapter 3 presented a new hierarchical Bayesian model that integrates n-gram-based
and topic-based approaches to document modelling. An algorithm for “left-to-right”
evaluation of topic models was also introduced. A bigram version of the new model
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achieves better language modelling performance than do either latent Dirichlet allo-
cation or a trigram language model. Additionally, the topics inferred by the model
are clearly interpretable. I also determined that previous treatments of latent Dirichlet
allocation, in which the base measures of the Dirichlet priors over words and topics
are either both set to the uniform distribution or both optimised, are inappropriate
for data containing stop words. Instead, such data should be modelled using (a) a
nonuniform base measure in the Dirichlet prior over topic distributions, combined
with (b) a uniform base measure in the Dirichlet prior over topic-specific word distri-
butions. These modelling choices prevent the topics from being dominated by stop
words by allowing the model to automatically discover a separate stop word topic.
There is much scope for further work in this area. Firstly, it is likely that using the
Pitman-Yor language model of Teh et al. (2006) rather than MacKay and Peto’s Dirich-
let language model would result in improved performance. In addition to this, the use
of a letter-based language model as a top-level prior, as described by Cowans (2006),
would eliminate the need for a fixed vocabulary. Finally, a complete investigation of
the effects of topics for longer n-gram context lengths would be informative.

In chapter 4, I extended the reach of Bayesian methods to dependency parsing by
introducing a new generative dependency model based on the hierarchical Pitman-
Yor process. I showed that the performance of one of the best-known dependency
parsers (Eisner, 1996a,b) can be significantly improved by using a Pitman-Yor prior
over the distribution over dependents of a word, and by sampling model hyperpa-
rameters. To illustrate the flexibility of using a generative Bayesian approach, I also
presented a second dependency model, in which dependencies between words are
mediated by latent “syntactic topics”. These topics look like finer-grained parts-of-
speech and result in better parse accuracy when used instead of part-of-speech tags in
the parsing model. Future work includes integration of other other latent variables,
such as semantic topics, into the model. This may yield improved performance and
reveal additional interactions between syntactic and semantic structure. As with the
model presented in chapter 2, a letter-based language model could be used instead
of a uniform distribution as a top-level prior, allowing the model to account for an
unlimited vocabulary. Finally, the application of Bayesian techniques to the “left-to-
right” dependency parsing framework of Chelba and Jelinek (1999) would result in
a dependency model that could be combined with the topic-based language model
from chapter 2 to give a single model that integrates word order, syntax and topics.

Chapter 5 focused on higher-level document structure—namely relationships between
documents. I introduced a nonparametric Bayesian model for clustering documents
using latent topics. The model assigned a higher probability to unseen academic pa-
pers from the NIPS conference than either a word-based clustering model or latent
Dirichlet allocation. Furthermore, the cluster-specific distributions over topics cor-
respond well to research areas within the NIPS community and highlight the topics
that are likely to co-occur together. I also determined that when using a hierarchical
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Dirichlet as the prior over topics in latent Dirichlet allocation or related topic mod-
els, the minimal path assumption results in more interpretable topics and a higher log
probability for unseen data than the maximal path assumption. Finally, I extended the
model to incorporate author information by characterising each cluster by two distri-
butions: one over authors and one over topics. This results in finer-grained clusters,
and explicates the relationships between particular groups of authors and topics. The
model presented in chapter 5 was categorical in nature—each document was treated
as belonging to a single cluster or category. An alternative to this characterisation,
worthy of future investigation, is a componential model (MacKay, 1994), in which the
distribution over topics for each document would be indexed by hyperparameters that
are components in the space of document types. Such a model would easily capture
regularities or correlations between document-specific distributions over topics, and
could be compared with the cluster-based topic model introduced in chapter 5.
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