Bayesian Models for Dependency Parsing Using Pitman-Yor Priors

Hanna M. Wallach

University of Massachusetts Amherst wallach@cs.umass.edu

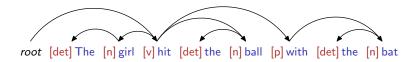
July 8, 2009

Joint work with Charles Sutton and Andrew McCallum

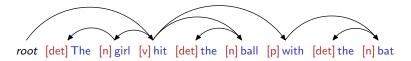
Dependency Parsing

$[det] \, The \ [n] \, girl \ [v] \, hit \ [det] \, the \ [n] \, ball \ [p] \, with \ [det] \, the \ [n] \, bat$

Dependency Parsing



Dependency Parsing



- Dependency trees encodes syntactic relationships between words
- ► Each node is a part-of-speech-tagged, cased¹ word
- An edge from word w_m to $w_{m'}$ means $w_{m'}$ is a *dependent* of w_m

Bayesian Models for Dependency Parsing Using Pitman-Yor Priors

¹Cases: upper, lower, mixed, first capitalized word

Talk Outline

Four hierarchical Bayesian dependency models:

- Bayesian reinterpretation of a classic dependency model
- Extension of this model using hierarchical Pitman-Yor priors
- Bayesian dependency model with "syntactic" states
- Bayesian dependency model with "semantic" states

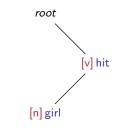
- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

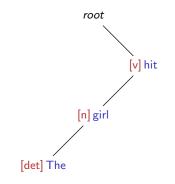
root

- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

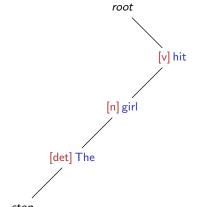
- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees



- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

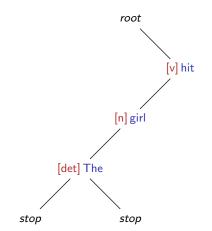


- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

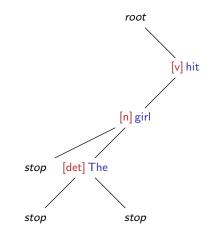


stop

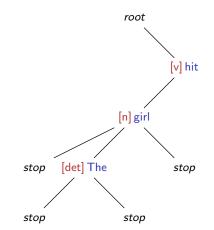
- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees



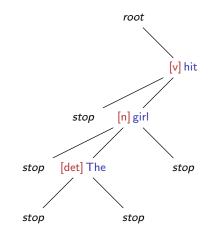
- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees



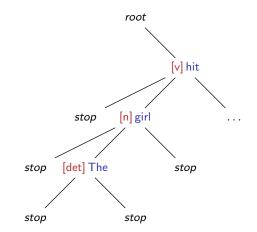
- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

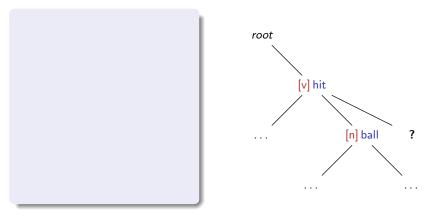


- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

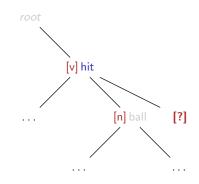


- Conditioned on their parent, left and right children each form a first-order Markov chain
- Final child in each direction is a special stop symbol
- Stop symbols enable simultaneous generation of words and trees

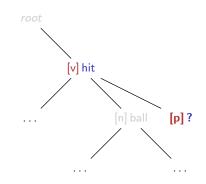




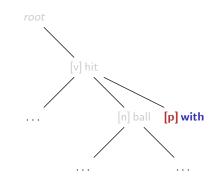
 Generate a tag given the tagged, cased parent word and the sibling tag



- Generate a tag given the tagged, cased parent word and the sibling tag
- Generate an uncased word given the tagged, cased parent word and the just-generated tag



- Generate a tag given the tagged, cased parent word and the sibling tag
- Generate an uncased word given the tagged, cased parent word and the just-generated tag
- Generate a case value given the just-generated tag and uncased word



Use a corpus D = {s, w, c, t} of tagged, cased sentences and trees
 Count relevant occurrences in D, e.g.,

 $N_{c|sw} = \#$ times uncased word w with tag s has case value c

- Use counts to form "estimators", e.g., $N_{c|sw} / N_{\cdot|sw}$
- The more specific the context, the sparser the counts
- "Smooth" more specific estimators with less specific ones
- Same approach as interpolated *n*-gram language modeling

- ► Contexts are obvious in language modeling $(w_{n-2} w_{n-1} \rightarrow w_{n-1})$
- Choice of contexts is much less obvious in parsing, e.g.,

tag word \rightarrow tag or tag word \rightarrow word

Eisner estimates e.g., the case value probability as follows:

$$P(\text{case} = c \mid \text{tag} = s, \text{word} = w, \mathcal{D}) = \frac{N_{c|sw} + 3 \frac{N_{c|s} + 0.5 \frac{1}{C}}{N_{\cdot|s} + 0.5}}{N_{\cdot|sw} + 3}$$

- ► Contexts are obvious in language modeling $(w_{n-2} w_{n-1} \rightarrow w_{n-1})$
- Choice of contexts is much less obvious in parsing, e.g.,

tag word \rightarrow tag or tag word \rightarrow word

Eisner estimates e.g., the case value probability as follows:

$$P(\text{case} = c \,|\, \text{tag} = s, \text{word} = w, \mathcal{D}) = \frac{N_{c|sw} + 3 \frac{N_{c|s} + 0.5 \frac{1}{C}}{N_{\cdot|s} + 0.5}}{N_{\cdot|sw} + 3}$$

- ► Contexts are obvious in language modeling $(w_{n-2} w_{n-1} \rightarrow w_{n-1})$
- Choice of contexts is much less obvious in parsing, e.g.,

tag word \rightarrow tag or tag word \rightarrow word

Eisner estimates e.g., the case value probability as follows:

$$P(\mathsf{case} = c \,|\, \mathsf{tag} = s, \mathsf{word} = w, \mathcal{D}) = \frac{N_{c|sw} + 3 \frac{N_{c|s} + 0.5 \frac{1}{C}}{N_{\cdot|s} + 0.5}}{N_{\cdot|sw} + 3}$$

- ► Contexts are obvious in language modeling $(w_{n-2} w_{n-1} \rightarrow w_{n-1})$
- Choice of contexts is much less obvious in parsing, e.g.,

tag word \rightarrow tag or tag word \rightarrow word

Eisner estimates e.g., the case value probability as follows:

$$P(\mathsf{case} = c \,|\, \mathsf{tag} = s, \mathsf{word} = w, \mathcal{D}) = \frac{N_{c|sw} + 3 \, \frac{N_{c|s} + 0.5 \, \frac{1}{C}}{N_{\cdot|s} + 0.5}}{N_{\cdot|sw} + 3}$$

-

Contexts for Tags and Uncased Words

P(tag parent tagged cased word, sibling tag, dir)				
parent tag parent tag parent tag	parent word	parent case	sibling tag sibling tag	dir dir dir
P(word parent tagged cased word, dir)				
tag tag tag	parent tag parent tag	parent word	parent case	dir dir

A Hierarchical Bayesian Dependency Model

- ▶ We can redefine Eisner's model from a Bayesian perspective
- Treat each probability vector as a random variable, e.g.,

 $\psi_{\mathit{sw}} = {\sf distribution}$ over case values given context s and w

> Draw each probability vector from a Dirichlet prior, e.g.,

$$\boldsymbol{\psi}_{\textit{sw}} \sim \mathsf{Dir}\left(\boldsymbol{\psi}_{\textit{sw}}; \, \alpha_1, \mathbf{m}_{\textit{s}}\right)$$

m_s is a tag-specific base measure (distribution over case values)

Base Measures

- ▶ Base measures of Dirichlet priors, e.g., $\{\mathbf{m}_s\}_{s=1}^{S}$, are also unknown
- Can also draw each m_s from a Dirichlet prior
- Eisner: tag word \rightarrow tag \rightarrow uniform, so

 $\mathbf{m}_{s} \sim \mathsf{Dir}(\mathbf{m}_{s}; \alpha_{0}, \mathbf{u})$

- This induces a *hierarchical* Dirichlet prior over ψ_{sw}
- \blacktriangleright Can integrate out \mathbf{m}_s and ψ_{sw} to obtain the *predictive distribution*

Predictive Distributions

Predictive probability of case value c is

$$P(\mathsf{case} = c \,|\, \mathsf{tag} = s, \mathsf{word} = w, \mathcal{D}, \alpha_1, \alpha_0) = \\ \frac{N_{c|sw} + \alpha_1 \, \frac{\hat{N}_{c|s} + \alpha_0 \, \frac{1}{C}}{\hat{N}_{\cdot|s} + \alpha_0}}{N_{\cdot|sw} + \alpha_1}$$

- ▶ Bottom-level counts $N_{c|sw}$ and $N_{\cdot|sw}$ are raw observation counts
- Higher-level counts are not necessarily raw observation counts

Relationship to Eisner's Model

Compare Eisner's probabilities with predictive distributions, e.g.,

EisnerBayesian
$$P(c \mid s, w, D) =$$
 $P(c \mid s, w, D, \alpha_1, \alpha_0) =$ $\frac{N_{c\mid sw} + 3}{\frac{N_{c\mid s} + 0.5}{N_{\cdot\mid s} + 0.5}}{\frac{N_{\cdot\mid s} + 0.5}{N_{\cdot\mid sw} + 3}}$ $P(c \mid s, w, D, \alpha_1, \alpha_0) =$ $\frac{N_{c\mid sw} + \alpha_1 \frac{\hat{N}_{c\mid s} + \alpha_0 \frac{1}{C}}{\hat{N}_{\cdot\mid s} + \alpha_0}}{\frac{N_{\cdot\mid sw} + \alpha_1}{N_{\cdot\mid sw} + \alpha_1}}$

Only differences: concentration parameters, higher-level counts

Advantages of the Bayesian Reinterpretation

- There are (at least) three ways of varying the Bayesian model:
 - 1. Concentration parameters (e.g., α_1 , α_0) can be sampled
 - Need not be arbitrarily chosen or set using cross validation
 - 2. Counts need not correspond to observation counts
 - 3. Can use priors other than the hierarchical Dirichlet distribution
 - e.g., the hierarchical Pitman-Yor process
- All three variations have the potential to improve model quality

Using Hierarchical Pitman-Yor Priors

Can use Pitman-Yor priors instead of Dirichlet priors, e.g.,

$$egin{aligned} oldsymbol{\psi}_{sw} &\sim \mathsf{PY}\left(oldsymbol{\psi}_{sw} \,|\, lpha_1, \epsilon_1, \mathbf{m}_s
ight) \ \mathbf{m}_s &\sim \mathsf{PY}\left(\mathbf{m}_s \,|\, lpha_0, \epsilon_0, \mathbf{u}
ight) \end{aligned}$$

- ϵ_1 and ϵ_0 are *discount* parameters
- ▶ When ϵ_1 and ϵ_0 are zero, identical to a Dirichlet distribution
- > PY priors give distributions that better resemble natural language
 - Better at modeling rare words

Pitman-Yor Predictive Distributions

Probability of case value c is now given by:

$$P(\mathsf{case} = c \mid \mathsf{tag} = s, \mathsf{word} = w, \mathcal{D}, \alpha_1, \alpha_0, \epsilon_1, \epsilon_0) = \frac{M_{c|sw} + (\alpha_1 + \epsilon_1 L_{\cdot|sw}) \frac{\hat{M}_{c|s} + (\alpha_0 + \epsilon_0 L_{\cdot|s}) \frac{1}{C}}{\hat{N}_{\cdot|s} + \alpha_0}}{N_{\cdot|sw} + \alpha_1}$$

► Counts are now given by $M_{c|sw} = N_{c|sw} - \epsilon_1 L_{c|sw}$ etc.

Relationship to Bayesian *n*-gram Language Modeling

- ▶ PY priors have been used for language modeling (e.g., Teh '06)
- Kneser-Ney smoothing is equivalent to
 - Setting concentration parameters (α s) to zero
 - Using the "minimal path" approximate inference scheme
- Kneser-Ney smoothing is one of the best smoothing methods
- Dependency models are *lexicalised* (unlike, e.g., PCFGs)
- > PY priors are particularly appropriate for dependency models

Using the Model

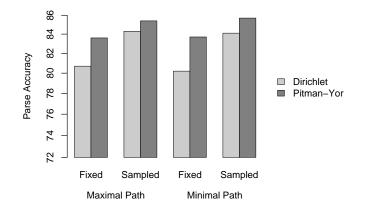
- Can now compute $P(\mathcal{D} | \alpha_1, \alpha_0, \epsilon_1, \epsilon_0)$
- If this were language modeling, we'd be done
- ► For real sentences, only words, tags and case values are known
 - Goal: infer dependency trees for real sentences
- ▶ Use training data (sentences + trees) to learn the model
- Determine trees for test sentences
 - Sample trees using Metropolis-Hastings (Johnson et al. '07)

Parsing Experiments

► Wall Street Journal sections of Penn Treebank:

- ▶ Training (sections 2–21): 39,832 sentences
- Testing (section 23): 2,416 sentences
- Parse accuracy: percentage of parents correctly identified
- Maximum probability trees used for comparison purposes
- ► For efficiency, part-of-speech tags fixed to:
 - Training: "gold standard" tags from Treebank
 - Testing: tags from Ratnaparkhi's tagger ('96)

Results: Parse Accuracy



PY prior, sampled hyperparameters: 26% error reduction over Eisner

Latent Variable Parsing Models

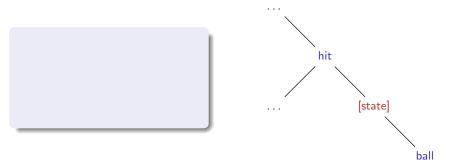
- Generative framework allows for inclusion of other latent variables
- e.g., "syntactic" and "semantic" topics
 - Specialized syntactic or semantic distributions over words
- Can define a (simpler) model that uses latent variables:
 - Sentences are untagged and uncased
 - Siblings are not taken into account (i.e., first order model)
 - Distribution over children depends on parent and latent state variable

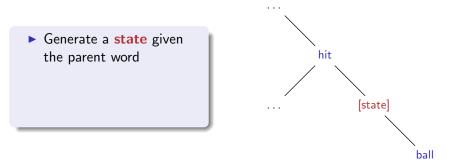
First Order Models

root the girl hit the ball with the bat

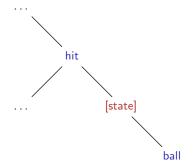
Computationally more efficient than models that consider siblingsChildren are independent of each other given their parent

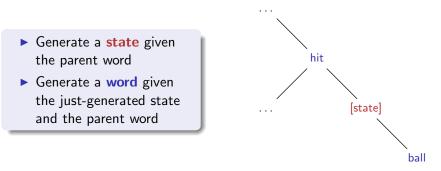
P(girl hit . with the bat the ball) = P(the girl hit the ball with the bat)



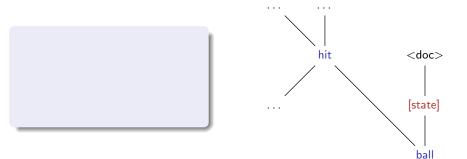


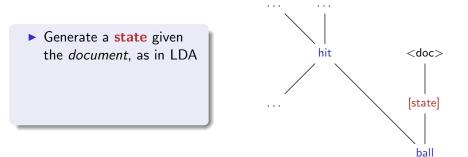
- Generate a state given the parent word
- Generate a word given the just-generated state and the parent word



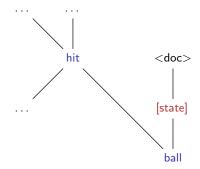


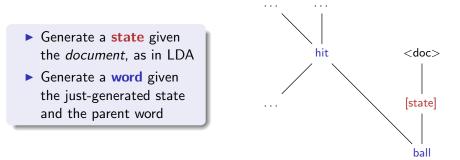
Give all probability vectors Dirichlet priors as before





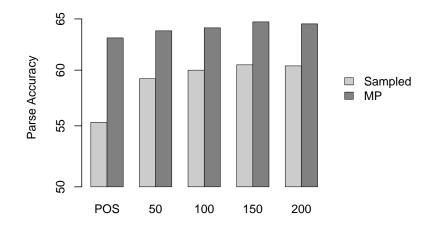
- Generate a state given the *document*, as in LDA
- Generate a word given the just-generated state and the parent word





Give all probability vectors Dirichlet priors

"Syntactic Topics": Parse Accuracy



States Inferred from Treebank Sections 2-21

president	u.s.	made	is	would	10
director	california	offered	are	will	8
officer	washington	filed	was	could	1
chairman	texas	put	has	should	50
executive	york	asked	have	can	2
head	london	approved	were	might	15
attorney	japan	announced	will	had	20
manager	canada	left	had	may	30
chief	france	held	's	must	25
secretary	britain	bought	would	owns	3

Unsupervised Leave-One-Out Bits-Per-Word

Model	Bits-per-Word
LDA	9.08
Deps. only	8.75
Deps. & Syntactic Topics	8.68
Deps. & Semantic Topics	8.25

► The fewer the bits-per-word, the better the model

Conclusions and Future Work

▶ Reinterpreted a classic dependency parser using Bayesian framework

- Parsing performance is improved by:
 - Using Pitman-Yor priors
 - Sampling hyperparameters
- Can incorporate latent variables into the model:
 - Syntactic topics that cluster parent-child relationships
 - Semantic topics, as in LDA
- Future work: syntactic + semantic topics

Questions?

wallach@cs.umass.edu http://www.inference.phy.cam.ac.uk/hmw26/

Bayesian Models for Dependency Parsing Using Pitman-Yor Priors