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National Institutes of Health
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United States Patent System
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Representatives and Constituents
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Social Processes: Structure
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Social Processes: Content
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Modeling Social Processes

“Policy-makers or computer 
scientists may be interested in 
finding the needle in the 
haystack (such as a potential 
terrorist threat or the right web 
page to display from a search), 
but social scientists are more 
commonly interested in 
characterizing the haystack.”

 ― King & Hopkins, 2010
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Predictive Analyses

$$$ ??? 
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Explanatory Analyses

$$$??? 
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Exploratory Analyses

$$$ = ??? 
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Bayesian Latent Variable Models

● Modeling challenges:

– Aggregating and representing large data sets

– Handling data from sources with disparate emphases

– Efficiently reasoning under uncertain information

● Bayesian latent (i.e., hidden) variable models:

– Appropriate for prediction, explanation, and exploration

– Interpretable structure, not “black-box” models

– Powerful, flexible, widely applicable...



Hanna Wallach   ::    UMass Amherst   ::    19

This Talk
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Communication Networks
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Communication Networks
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Communication Networks
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Observing Communication Networks
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Structure and Content

Subject: New Hanover County Public Safety Talk Groups
From: “Lee, Warren” <WLee@nhcgov.com>
To: “Pope, Troy W.” <twpope@ncshp.org>
Cc: …

Troy,

I wanted to give you an
update on our progress in
moving towards a fully
digital public safety radio
system in New Hanover
County...
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New Hanover County, NC
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NHC Email Network
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Levels of Granularity

= ??? 



Hanna Wallach   ::    UMass Amherst   ::    29

Levels of Granularity

= ??? 



Hanna Wallach   ::    UMass Amherst   ::    30

Levels of Granularity
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Principled Visualization

● Common workflow:

– Construct a statistical model of observed data

– Perform post-hoc visualization to draw conclusions about 
the model and its relationship to the data

● Problem: visualization algorithms can produce visual 
artifacts that may be misleading

● Solution: visualizations should be directly interpretable 
in terms of the model and its relationship to the data
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Exploring Structure and Content

● Facilitate exploratory analysis of topic-specific 
communication patterns by learning 

– Topics of communication

– Topic-specific communication subnetworks

– Principled visualizations of topic-sepcific subnetwork

● Draw upon ideas from two well-known frameworks:

– Statistical topic modeling

– Latent space network modeling
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Topics and Words

gene ncbi computer patent

genome national modeling patenting

dna information data claims

genetic technology algorithm intellectual

genes database analyses property

sequence molecular method rights

human biology model ip

protein genbank information innovation

rna pubmed efficient claim

genomic references complexity claiming

... ... ... ...
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Documents and Topics
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Latent Dirichlet Allocation

probability

..
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[Blei, Ng & Jordan, '03]
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Individuals and Latent Spaces

every individual 
is associated 

with a position 
in latent space 
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Latent Space Network Model

probability of 
communication 

depends on 
distance in 

latent space

[Hoff et al., '02]
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Topics and Spaces

gene ncbi computer patent

genome national modeling patenting
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A New Model...

● Model email content using LDA

● Model recipients using topic-specific latent spaces

● Generative process:

– Generate topics and topic-specific latent spaces

– Generate document-specific topic distributions

– Generate recipients using latent spaces

– Generate words using topics

[Krafft et al., '12]
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Graphical Model

topic
inference

subnetwork
inference

subnetwork
visualization
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Experimental Evaluation

● Quantitative model validation:

– Link prediction performance vs. baselines

– Posterior predictive checks

– Topic coherence vs. LDA

● Exploratory analysis:

– Modularity: disconnected components

– Assortativity: components of a single “type”
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Link Prediction
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Posterior Predictive Checks

degree geodesic distance

transitivity dyadic intensity
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Topic Coherence

[Mimno et al., '11]
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Organization Structure
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High Modularity, High Assortativity

Meeting Scheduling
meeting march board agenda week
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High Modularity, Low Assortativity

Public Signage
change signs sign process ordinance
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Low Modularity, Low Assortativity

Public Relations
city breakdown information give
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Low Modularity, High Assortativity

Broadcast Messages
fw fyi bulletin summary week
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Take Away Message

● Explanatory and exploratory analyses matter

● Communication networks are important:

– Critical to all kinds of collaborative problem solving

– … but can be hard to directly observe

● Topic-partitioned multinetwork embedding:

– Good model of structure and content

– Emphasizes principled visualization
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This Talk
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Transparency in the US

● 52.8 million pages 
reviewed for 
declassification

● 26.7 million pages 
declassified

● $11.36 billion spent on 
administration of the 
US government 
classification system

[ISOO, 2011]
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● Date issued

● Date declassified

● Document type

● Source institution

● Classification level

● Document text

Declassified Documents

[Gale, 2012]
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Inferred Topics
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Predictive Analyses

$$$ ??? 
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Classification Duration

declassification date
4/6/93

creation date
2/21/67 26 years
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Survival Analysis

● Statistical methods for modeling durations:

– Biology/medicine: organism death

– Engineering: component failure

– Social sciences: event durations (e.g., recidivism)

● Goal: model effect on survival time of covariates, e.g.,

– Vaccine treatments

– Temperature differences

– Job placement or education programs
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Duration and Content

14 years 57 years
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● Topics provide 
information about 
classification durations

● Goal: incorporate 
durations into the 
probabilistic model

● Infer latent topics 
using both textual and 
temporal information

Modeling Text and Duration
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To Conclude...



Thanks!

Acknowledgements: P. Krafft, J. Moore, B. Desmarais, R. Shorey

wallach@cs.umass.edu
 http://www.cs.umass.edu/~wallach/
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