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Complex Social Processes
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“Traditional” Social Science

● Case studies

● Interviews

● Participant observation

● Survey research

● Social network analysis

⇒ Self-reports, one-time 
snapshots, small scale
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The Computer “Revolution”
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Computational Social Science

"A computational social 
science is emerging that 
leverages the capacity to 
collect and analyze data with 
an unprecedented breadth and 
depth and scale and may 
reveal patterns of individual 
and group behaviors.”

 ― Lazer et al., 2009
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Structure vs. Content
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Products of Interactions

“Scientific information is both 
the basic raw material for, and 
one of the principal products 
of, scientific research […] 
Scientists find out what other 
scientists are accomplishing 
through [...] journals, books, 
abstracts and indexes, 
bibliographies, reviews.”

 ― NSF Brochure, 1962
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Text as Data

● Structured and formal: 
e.g., publications, 
patents, press releases

● Messy and unstructured: 
e.g., chat logs, OCRed 
documents, transcripts

⇒ Large scale, robust 
methods for analyzing text
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Collaborate to Study Collaboration

“There needs to be a greater 
focus on what these 
[interaction] data mean [...] 
This requires the input of social 
scientists, rather than just 
those more traditionally 
involved in data capture, such 
as computer scientists.”

 ― Julia Lane, NSF, 24 March 2010
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Different (But Overlapping) Roles

● Social science: specific 
models for specific 
applications, extensive 
post-analysis work

● Computer science: 
novel classes of models, 
mathematical and 
computational properties 
of models that extend 
across applications
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This Talk

● Statistical topic models for text analysis

● “Off-the-shelf” topic models: priors, stop words

● Studying formerly-classified government documents
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Statistical Modeling

● Modeling challenges:

– Aggregating and representing large data sets

– Handling data from sources with disparate emphases

– Reasoning under uncertain information

– Performing efficient inference

● Bayesian latent (hidden) variable models:

– Powerful and flexible [Wallach et al. & Adams et al., AISTATS '10]

– This talk: statistical topic models
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Statistical Topic Modeling

● Three fundamental assumptions:

– Documents have latent semantic structure (“topics”)

– We can infer topics from word–document co-occurrences

– Can simulate this inference algorithmically

● Given a data set, the goal is to

– Learn the composition of the topics that best represent it

– Learn which topics are used in each document
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Why Topic Models?

gaussian
regression
covariance
prediction
function
bayesian
process
prior
distribution
matrix

kriging
covariance
mean
estimate
weight
random
mse
matrix
conditional
point

vs.
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Topics and Words

human evolution disease computer

genome evolutionary host models

dna species bacteria information

genetic organisms diseases data

genes life resistance computers

sequence origin bacterial system

gene biology new network

molecular groups strains systems

sequencing phylogenetic control model

map living infectious parallel

... ... ... ...

p
ro

b
a
b
ili

ty
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Documents and Topics
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Mixtures vs. Admixtures

topics

documents

“mixture”

topics

documents

“admixture”
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Generative Statistical Modeling

● Assume data was generated by a probabilistic model:

– Model may have hidden structure (latent variables)

– Model defines a joint distribution over all variables

– Model parameters are unknown

● Infer hidden structure and model parameters from data

● Situate new data in estimated model
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Generative Process

probability

..
.
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Choose a Distribution Over Topics

probability

..
.
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Choose a Topic

probability

..
.
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Choose a Word

probability

..
.
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… And So On

probability

..
.
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Real Data: Statistical Inference

probability

..
.

?

?
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The End Result...

probability

..
.
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This Talk

● Statistical topic models for text analysis

● “Off-the-shelf” topic models: priors, stop words

● Studying formerly-classified government documents
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The State of The Art

● Topic models are extremely appealing

● … but they're not always usable by non-experts

● Need to bridge this gap between producers and 
consumers of topic modeling technology:

– Address problems/challenges faced by practitioners

– Question unquestioned assumptions

– Explore the interplay between theory and practice
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“Off-the-Shelf” Topic Modeling

I want to model technology 
emergence by analyzing 
patent abstracts...

I have a statistical model
that you can use...
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“Off-the-Shelf” Topic Modeling

I want to model technology 
emergence by analyzing 
patent abstracts...

I have a statistical model
that you can use...

a a the the

field the of invention

emission carbon a of

an and to to

electron gas and present

... ... ... ...
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“Off-the-Shelf” Topic Modeling?

Help! All my topics consist
of “the, and of, to, a ...”

Preprocess your data to
remove stop words...

Now they all consist of 
“invention, present, thereof ...”

Make a domain-specific
 list of stop words...

Wait, but how do I choose the
right number of topics?

Evaluate the probability of unseen
data for different numbers...
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Directed Graphical Models

● Nodes: random variables (latent or observed)

● Edges: probabilistic dependencies between variables

● Plates: “macros” that allow subgraphs to be replicated
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Statistical Topic Modeling

topics

observed
word

document-specific
topic distribution

topic
assignment

[Hofmann, '99]
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Latent Dirichlet Allocation (LDA)

Dirichlet
distribution

topics

observed
word

document-specific
topic distribution

topic
assignment

Dirichlet
distribution

[Blei, Ng & Jordan, '03]
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Discrete Probability Distributions

● 3-dimensional discrete probability distributions can be 
visually represented in 2-dimensional space:

A

B C
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Dirichlet Distribution

● Distribution over discrete probability distributions:

base measure (mean) 

concentration
parameter

A

B C

...

≡
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Dirichlet Parameters
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Dirichlet Priors for LDA

symmetric priors:
uniform base measures
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Dirichlet Priors for LDA

● Two scalar concentration parameters: α and β

● Concentration parameters are usually set heuristically

– e.g.,            and 

● Some recent work on learning optimal values for the 
concentration parameters from data

● No rigorous study of the Dirichlet priors:

– e.g., asymmetric vs. symmetric base measures

– Effects of the base measures on the inferred topics
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Symmetric → Asymmetric

● Use prior over                             as a running example

● Uniform base measure → nonuniform base measure

● Asymmetric prior: some topics more likely a priori

[Wallach et al., '09]
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Hierarchical Asymmetric Dirichlet

● Which topics should be more probable a priori?

– Draw     from a Dirichlet distribution:

A

B C

...

A

B C
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Putting Everything Together

● Asymmetric hierarchical Dirichlet priors

● Integrate out    ,    and base measures

● Learn    and concentration parameters from data
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Data Sets

● Carbon nanotechnology patents:

– Ultimate goal: track innovation and emergence

– Fullerene and carbon nanotube patents

– 1,016 abstracts (~100 words each)

– 103,499 total words; 6,068 unique words

● 20 Newsgroups data (80,012 total words)

● New York Times articles (477,465 total words)
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Inferred Topics

the carbon metal composite

a nanotubes catalytic polymer

of nanotube transition matrix

to catalyst catalyst weight

and substrate from fiber

... ... ... ...

a a the the

field the of invention

emission carbon a of

an and to to

electron gas and present

... ... ... ...

before

after
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Sampled Concentration Parameters
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A

B C

...

A Theoretical Observation...

● Symmetric Dirichlet is a special case of the hierarchical 
asymmetric Dirichlet (large concentration parameter)

...

A

B C
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Sampled Concentration Parameters
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Intuition

● Topics should be distinct from each other:

– Asymmetric prior over topics makes topics more similar to 
each other (and to corpus-wide word frequencies)

– Want a symmetric prior to preserve topic “distinctness”

● Still have to account for power-law word usage:

– Asymmetric prior over document-specific topic 
distributions means some topics (e.g., “the, a, of, to ...”) 
can be used more often than others in all documents 
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“Off-the-Shelf” Topic Modeling

I can model technology 
emergence by analyzing 
patent abstracts!

the carbon metal composite

a nanotubes catalytic polymer

of nanotube transition matrix

to catalyst catalyst weight

and substrate from fiber

... ... ... ...

Great! Let me know if you 
need any more help!
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Polylingual Topics
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Polylingual Topics
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Polylingual Topic Model

...

language-specific
Dirichlet parameters

“tuple” of 
aligned documents

...

[Mimno et al., '09]
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This Talk

● Statistical topic models for text analysis

● “Off-the-shelf” topic models: priors, stop words

● Studying formerly-classified government documents
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In 2009 Alone...

● 52 million pages 
reviewed for 
declassification

● 29 million pages 
declassified

● $8.8 billion spent on 
administration of the 
US government 
classification system
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How Sensitive?

“After a 14-year legal battle by a California history 
professor, the FBI has released a new cache of material 
from a 300-page dossier on the late rock star John 
Lennon, and has agreed to pay $204,000 to cover legal 
fees incurred in his efforts to open the file. For all the 
years of challenge, however, the file contains little, if any, 
new information about Lennon, though it does present 
some bizarre details, like a description of an antiwar 
activist trying to train a parrot to speak profanities.”

 ― NYT, 25 September 2007
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A Problematic Trade-off

● The more data kept secret, the less secure the data:

– More people need to have access to the data

– More storage space is required
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What We Are NOT Studying...
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Exploring Declassified Documents

● Declassification goals:

– Recommend documents for human review

– Match documents with human reviewers' expertise

● Transparency research goals:

– High-level characterization of the data

– Finding specific, known information of interest

– Finding “interesting” or “unexpected” information
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Declassified Documents: DDRS

● ~88,000 formerly-classified government documents

● Created and declassified between 1926 and 2005
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● Sanitized?

● Classification level

● Issuer

● Creation date

● Document type

● Declassification date

Available Information
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● Sanitized?

● Classification level

● Issuer

● Creation date

● Type

● Declassification date

Available Information
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Declassification Durations
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Survival Analysis

● Statistical methods for evaluating “time until death”:

– Biology/medicine: organism death

– Engineering: component failure

– Social science: event durations (e.g., parolee recidivism)

● Goal: model effect on survival time of covariates, e.g.,

– Vaccine treatments

– Temperature differences

– Job placement or education programs
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Document “Survival”

declassification date
4/6/93

creation date
2/21/67 26 years
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Survival Distribution of Documents
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Accelerated Failure Time Models

● Survival analysis with covariates 

● Linear models for the log of the “duration”:

● Parametric: a probability distribution is specified

– e.g., Weibull, log-normal, gamma, log-logistic... 

● Can make predictions for unseen data
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Classification and Content

1975 to 1989 1946 to 2003
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Classification and Content: 1960s
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Classification and Content: 1960s
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Word Frequencies?

rhodesia
africa
southern
khama
white
african
namibia
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Topics in Declassified Documents
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creation/declassification date

corps, service, volunteers, men, volunteer, age, draft, selective, calls,
young, manpower, year, army, deferments, induction, armed, freedom, ...
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Topics in Declassified Documents
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creation/declassification date

package, hostages, release, hostage, khomeini, packages, ghotbzadeh,
held, released, banisadr, revolutionary, debriefing, scenario, family, date, ...
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Topics in Declassified Documents
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creation/declassification date

oswald, dallas, assassination, kennedy, texas, fbi, orleans, advised,
lee, president, bureau, started, harvey, john, information, ruby, november, ...
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Topics in Declassified Documents
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creation/declassification date

artichoke, subject, drugs, techniques, work, interrogation, writer, drug,
lsd, effects, hypnosis, methods, medical, physical, subjects, human, ...
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Predicting Duration Using Topics
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Predicted Duration - Actual Duration
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● Topics provide 
information about 
classification durations

● Goal: incorporate 
durations into the 
generative model

● Infer latent topics 
using both textual and 
temporal information

Jointly Modeling Text and Duration
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Jointly Modeling Text and Duration

creation date

[Shorey et al., '11]

Dirichlet
distribution

Dirichlet
distribution

normal-gamma
distribution

normal-gamma
distribution

log secrecy duration
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Topic-Specific Duration Distributions
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Topic-Specific Duration Distributions

means of all
LDA topics
relating to
Vietnam & Laos
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What's Next?

● Predict durations directly from the generative model

– Mixture vs. admixture topics

– Supervised topic modeling

– Unseen content

● Subject matter experts

● Analysis and prediction of redactions
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